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1. OVERVIEW

Colorectal cancer (CRC) is a highly heterogeneous disease, both at the molecular and cellular
levels. This heterogeneity significantly influences tumor progression, therapy responses, and
clinical outcomes. Fortunately, the advances in multi-omics technologies and computational
methods provided new opportunities for comprehensive investigation. However, multi-omics
data generated from high-throughput technologies are particularly sensitive to technical
variability and batch effects. Producing meaningful and robust results requires careful
preprocessing of raw data and highly specialized expertise in data mining. This thesis leverages
my unique expertise in bioinformatics and computational modeling to analyze and integrate
multi-omics data, with the aim of uncovering tumor-specific molecular patterns and the

complex interactions within the tumor microenvironment.

The thesis is organized into thematic areas reflecting the scope of my research contributions.
While foundational work in computational methodology (chapter 3.1) and preclinical
models (chapter 3.3) is included mostly for context, the primary emphasis is placed on
molecular subtyping and tumor heterogeneity (chapter 3.2), the integration of imaging and
omics data (part 4), the tumor microenvironment and microbiome (chapter 3.5), and
clinical applications in diagnostics and therapy (chapter 3.6). These themes are supported
by results from key publications that demonstrate how computational approaches in multiomics

setting provide novel insights into CRC biology.

The development and application of computational tools form the foundation of my research.
This section highlights efforts to create robust bioinformatics pipelines and tools that enable
effective multi-omics data analysis and interpretation. For instance, in [I] we introduced
Rgtsp, a generalized top-scoring pairs package that enabled class prediction in gene
expression datasets, setting a foundation for subsequent predictive modeling. Expanding on
these efforts, in [2] we presented TopKLists, an R package designed for statistical inference
and aggregation of ranked omics datasets, addressing challenges in integrating heterogeneous
high-dimensional data. Similarly, in our work [3] we introduced ToPASeq, a novel package
that implements six methods for topological analysis of RNA-Seq and microarray data analysis.
Finally, in [4], we leveraged this R package and critically compared topology-based pathway
analysis methods, evaluating their consistency and biological inference across diverse datasets.

Collectively, these tools not only provide a methodological basis for subsequent studies but



also serve as valuable resources for the broader scientific community, facilitating

reproducibility and innovation in data-driven cancer research.

The chapter on molecular subtyping and tumor heterogeneity focuses on the identification
and characterization of molecular subtypes in CRC, including their clinical relevance. This
includes studies such as [7] and [9] in which we identified gene expression-based CRC
subtypes and linked them to prognosis and treatment responses. In [5], we provided a
comprehensive characterization of genome-wide copy number aberrations in CRC, revealing
novel oncogenes and distinctive alteration patterns relevant to tumor heterogeneity.
Furthermore, in [6], we examined differences between distal and proximal colon cancers,
uncovering molecular, pathological, and clinical features that distinguish these CRC subtypes.
In [8], we assessed the prognostic role of BRAF and KRAS mutation in the context of the
tumour sidedness and MSI status. Last, we investigated tumor architecture and morphological
heterogeneity, providing insights into how structural and molecular variations within tumors
affect clinical outcomes [1]. These results collectively highlight the importance of

understanding CRC at the molecular and structural levels to refine therapeutic strategies.

Preclinical models are instrumental in bridging the gap between computational insights and
biological validation. This theme focuses on cross-species analyses and experimental systems
that enhance our understanding of cancer biology. In [10], we investigated molecular hallmarks
of colorectal cancer using genetically engineered mouse models, identifying parallels with
human disease at the transcriptomic level. Complementing this work, we emphasized the utility
of patient-derived xenografts (PDX) in precision oncology, illustrating how computationally
derived hypotheses can be tested in biologically relevant systems [11]. Additionally, preclinical
efforts in projects like these have enriched the understanding of tumor evolution and
therapeutic response, highlighting the synergy between computational modeling and biological

experimentation.

The integration of digital pathology and omics data represents a critical advancement in
CRC research, as it bridges spatial and molecular heterogeneity. In [12], we contributed to this
field by showing how joint analysis of histopathology images and transcriptomic data can yield
biomarkers for molecular subtypes in breast cancer. Consequently, in [13] we were the first to
demonstrate how histopathological image features combined with gene expression data enable
deeper insights into CRC biology. Building on this, in [14] we examined gene expression

signatures within macro-dissected spatially resolved tumor regions, uncovering specific



spatially distributed molecular patterns. These integrative approaches have proven effective in

identifying image-based molecular biomarkers, advancing precision oncology.

The role of the tumor microenvironment and microbiome in CRC progression is presented
in chapter 3.5. Our work, published in [16], demonstrated how stool sampling techniques
influence microbiome composition, emphasizing the importance of methodological
consistency in microbiome studies. This knowledge was further applied in the analysis of
microbiome data of the Colobiome (AZV) study, which resulted in identification of distinct
microbiome-defined CRC subtypes that correlate with tumor characteristics, revealing how
microbial signatures associate with tumor progression [17]. In [18], we describe how microbial
signatures correlate with tumor progression and immune modulation. These findings show the
importance of environmental and microbial factors in CRC biology and their potential for

biomarker development.

Finally, the thesis emphasizes the practical applications in clinical diagnostics and treatment
selection. In [19], we explored mRNA biomarkers for assessing FOLFIRI treatment efficacy
in Stage III colon cancer, demonstrating the potential for optimizing therapy selection based
on molecular profiling. Next, we derived fecal microRNA signature for CRC diagnosis [20]
and a gene expression signature for identifying high-risk stage IIA CRC patients mining
molecular data from macrodissected invasion front area [21]. These studies show the

translational potential of computational approaches to improve patient care.

By presenting results across these interconnected themes, this thesis provides a cohesive
overview of CRC heterogeneity and demonstrates the role of integrative computational

methods in advancing both basic and clinical cancer research in CRC.

Technical note: Throughout the text, references are cited using numbered brackets [ ], with
each number corresponding to the full citation in the reference list at the end of the thesis,
presented in the order as they appear in the text. To distinguish between references to my own
publications and those from other sources, references to my publications are numbered
according to the list of my works provided in this thesis and are emphasized within the text.
For example, a reference to the first entry in the list of my referenced publications appears as
[Z], whereas a reference to other sources is cited as [1]. This system ensures clarity when
referring to my contributions in the referred list of publications in comparison to my other

contributions (links to SW, patents, preprints of articles) or external works.
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2. INTRODUCTION

Modern cancer research is inherently multidisciplinary, employing multi-omics approaches to
study cancer heterogeneity from different perspectives and is thus heavily reliant on
computational, statistical, and bioinformatics approaches. Among solid cancers, colorectal
carcinoma (CRC) is one of the most common, representing a significant global health burden.
Globally, CRC is the third most diagnosed cancer, accounting for 9.6% of all new cancer cases,
following lung and breast cancers. It is also the second leading cause of cancer-related mortality,
responsible for 9.3% of all cancer deaths, with over 1.9 million new cases and 904,000 deaths
reported in 2022 [2]. In Europe, CRC is the second most frequently diagnosed cancer, making
up approximately 12% of all cancer cases, with over 500,000 new cases diagnosed annually
and around 250,000 deaths each year [2]. In the Czech Republic, CRC is particularly prevalent,
consistently ranking among the top cancers in both incidence and mortality. Recent data
indicate that the age-standardized incidence rate for CRC in Czech men is among the highest
globally, ranking 13th worldwide and 12th in Europe, while for Czech women, it ranks 21st
worldwide and 14th in Europe. The mortality-to-incidence ratio (M/I) for CRC in the Czech

Republic is approximately 0.42, reflecting ongoing challenges in early detection and treatment

[3].

Most importantly, CRC is among the most heterogeneous solid cancers, exhibiting extensive
variability at the molecular, cellular, histopathological and clinical levels, including response
to therapy [4—6]. The current standard treatments remain ineffective for a large group of CRC
patients due to inappropriate patient selection. This means the patients are subjected to
unneeded toxic treatments and that overall costs are too high with respect to achieved efficiency.
Therefore, the identification of predictive biomarkers of clinical response is an absolute
requirement for personalizing the treatment, with numerous benefits for the patients and the
health care system. This translates into an urgent need for robust disease subclassifiers, that
can explain the clinical heterogeneity of CRC beyond the currently used clinical risk factors
(bowel obstruction and perforation, T4 tumour, presence of lymphovascular or perineural
invasion, ...) and molecular markers (such as microsatellite instability - MSI, or mutations in
known oncogenes - KRAS or BRAF). The state-of-the-art approach to bridge this gap is tumour
molecular profiling. Indeed, evidence of clinically relevant tumour molecular heterogeneity
has been flowing from high-throughput gene expression and mutation analyses, copy number

variation assessment, methylation, miRNA and proteomic studies [7,8] [5]. The molecular
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profiling research has taken two main routes: The supervised approach stems from comparison
of known groups (i.e. patients with early vs. late relapse of the disease) and aims at either
explaining differences between groups by identification of the ,,affected” molecular pathways,
or searches for surrogate and measurable predictive or prognostic signatures, that would serve
as decision tools in personalized medicine. The unsupervised approach, on the other hand,
recognizes the molecular phenotype as an additional piece of the puzzle that complements the
complex picture of tumour heterogeneity, which may or may not be correlated with known
clinical risk factors, prognosis or response to therapy. Several studies deriving unsupervised
CRC gene expression subtypes and stratifying tumour aggressiveness and response to

treatment were published and led to the definition of four consensus molecular CRC subtypes

[9].

This heterogeneity underscores the need for multidisciplinary approaches and advanced

methodologies to unravel its complexities and improve patient outcomes [4].
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3. MAIN TEXT
3.1. COMPUTATIONAL METHODOLOGY

The rapid growth of multi-omics technologies has necessitated the development of
computational methods capable of handling large, high-dimensional datasets. Since then,
computational methodologies play a crucial role in uncovering hidden patterns and
relationships within complex biological data and the integration of data across molecular,
spatial, and temporal domains requires innovative algorithms to ensure meaningful biological
interpretations. As a mathematical biologist by training, my research focuses on using these
skills to advance our understanding of cancer biology. While the development of computational
tools is an integral aspect of my expertise, my primary motivation lies in applying them to
translational cancer research. I advance methodologies and develop bioinformatics, data
mining, and image analysis tools, when necessary, driven by the biological and clinical
questions of my research, which aims at uncovering novel insights into colorectal cancer

heterogeneity and its implications for diagnosis, treatment, and patient outcomes.
Class prediction

Development of clinically applicable biomarkers is usually a key focus of clinically oriented
cancer research and requires identification of molecular or multi-omics signatures that are
transferable across platforms and suitable for integration into routine clinical practice.
Interpretability is a critical aspect of computational tools, particularly for applications in
clinical decision-making. Achieving this often requires the use of explainable classification

approaches that rely on a limited number of features.

One of our early works [1] focused on the development of methodology for explainable class
prediction, applicable beyond gene expression datasets. In this study, we developed a
computational tool designed to enhance class prediction across various datasets, including gene
expression profiles. This methodology centers on the Top Scoring Pairs (TSP) classifier [10],
which utilizes relative ranking of variable pairs to predict class labels. By focusing on the
relative expression ordering of gene pairs, the method offers robustness against technical
variations across different platforms, making it particularly suitable for developing clinically
applicable biomarkers. Our contributions include a parallel implementation of the TSP
classifier to significantly reduce training time and extensions to handle multi-class

classification problems. The Rgtsp package, implemented in C++ with R functions, offers
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functions for k-fold cross-validation and proposes using classification trees built on top of TSP
predictions for multi-class problems. This methodology has been implemented as an R package
[11], which is freely accessible to the research community in GitHub [12]. This classifier was
subsequently employed in [7], where we identified and characterized a subgroup of colorectal
cancers that shared molecular and clinical features with BRAF-mutated tumors, despite not
harboring the actual BRAF mutation. This involved developing an explainable classification

system to stratify tumors into a BRAF-like subtype, as further detailed in Part 2 of this thesis.

Ranked Data Aggregation (TopKLists)

By pooling findings across different datasets, meta-analysis helps in identifying patterns,
biomarkers, and pathways that remain consistent across various experiments. This is
particularly valuable in cancer omics research, where high costs of experiments often
necessitate combining data from multiple, diverse datasets to achieve reliable sample sizes. In
this context, rank-based approaches play a particularly significant role. One reason is that omics
data often come from different platforms, each with unique technical characteristics and
distributions. Absolute measurements from one platform may not be directly comparable to
another. Ranked approaches solve this problem by focusing on the relative ordering of features

instead of their absolute values, reducing biases caused by platform-specific differences.

This was a driver of our research where we developed methods for the statistical inference and
aggregation of ranked omics datasets, which led to the development of the TopKLists R
package [2]. This package was specifically designed to tackle the challenges of integrating data
from different high-throughput platforms, where datasets often vary in list lengths,
measurement techniques, and even the items being ranked. By focusing on ranked lists,
TopKLists provides a way to consolidate platform-independent results, making it particularly

relevant for omics research.

The package includes three main modules. TopKInference estimates the optimal length of top-
k lists for integration, even in noisy or incomplete rankings. It uses a moderate deviation-based
method to handle cases where the reliability of rankings decreases after the first k items due to
technical or biological variability. TopKSpace then aggregates these top-k lists using
algorithms like Borda’s method, Markov chain techniques, and a more precise cross-entropy
Monte Carlo (CEMC) method. These approaches consider weighted distances, such as
Kendall’s t or Spearman’s footrule, to create a consensus ranking. Finally, TopKGraphics

provides graphical tools to explore and visualize ranked data, helping users interpret results
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and select parameters, such as with the A-plot for visualizing inter-platform variability. The
package has been optimized for use on standard desktop computers, with computationally
heavy sections implemented in C to speed up processing. Most tasks, even for rankings of
thousands of items, are completed in seconds, although the stochastic aggregation methods can
take slightly longer. A graphical user interface (GUI) has been developed for TopKLists, using
the gWidgets2 package, which makes it more accessible for users without advanced
programming skills. TopKLists is freely available under the LGPL-3 license and can be
downloaded from CRAN, with additional resources, documentation, and the latest
development version available on its R-Forge page [13]. The package has already been applied
to integrate microRNA data from non-small cell lung cancer studies conducted on multiple

platforms, demonstrating its practical utility in handling ranked data from diverse sources.

Topological Pathway Analysis (ToPASeq)

Pathway analysis is a crucial step in interpreting results from molecular analyses, providing a
biological context for the observed changes in gene or protein expression. By mapping these
changes onto known biological pathways, researchers can uncover mechanisms underlying
differences between conditions, disease progression, or other clinical outcomes. This type of
analysis is often the logical next step in exploratory studies, transforming lists of differentially

expressed genes into meaningful insights about cellular processes.

There are two main approaches to pathway analysis: overrepresentation analysis (ORA) and
topology-based methods. ORA identifies pathways that are significantly enriched with genes
of interest, without considering their interactions or positions within the pathway. While
straightforward, ORA assumes that all genes in a pathway are equally important, potentially
missing key insights. In contrast, topology-based approaches account for the structure of the
pathway, incorporating information about gene positions, interactions, and roles within the
network. This additional layer of context allows researchers to prioritize biologically
meaningful changes and identify key regulatory nodes, which are often critical for
understanding disease mechanisms. By leveraging topology, these methods provide a more
accurate and nuanced understanding of the biological processes at play, making them
particularly valuable for studies aiming to uncover the mechanisms driving colorectal cancer

heterogeneity or progression.
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The landscape of topology-based pathway analysis methods is highly diverse, with each
method employing distinct frameworks and assumptions to interpret molecular data. These
differences often result in significant variability in the pathways identified as relevant, making
it challenging for researchers to determine the most appropriate tool for their specific datasets
and research questions. Recognizing this, we conducted a comprehensive comparison of seven
representative topology-based pathway analysis methods [4]. Our aim was to evaluate their
strengths and limitations across multiple criteria, guiding researchers in selecting the optimal

method for their studies.

To support this work and facilitate the practical application of topology-based pathway analysis,
we developed a new R/Bioconductor package, ToPASeq [3]. This package offers a uniform
interface to the seven analyzed methods, three of which we implemented de novo and four
adapted from existing implementations. ToPASeq also includes tailored visualization tools, as
well as functions for importing and manipulating pathways and their topologies, enabling its
application across various species. The package is designed to analyze differential expressions
of pathways between two conditions and is compatible with both gene expression microarray
and RNA-Seq data. Written in R and distributed under an AGPL-3 license, ToPASeq is freely
available from Bioconductor 3.12 [14,15], providing the research community with a powerful

and accessible toolkit for pathway analysis.

The comparison was based on an extensive set of criteria, addressing both dataset
characteristics and methodological aspects. Data set-centric parameters included sample size,
pathway size, the number of differentially expressed genes (DEGs) in the dataset, and
thresholds used to identify DEGs. These factors were tested to describe the performance of
each method under various conditions and provide recommendations for selecting the best tool
for specific dataset configurations. In addition, the ability of the methods to control type I error
was evaluated, ensuring reliability when no true signal exists. We also examined how the
methods handled specific biological and technical challenges. For example, we tested the
influence of overexpression of individual genes, the discarding of topological information, and
the preprocessing of pathway topologies. These experiments were critical to assess whether the
methods genuinely leveraged pathway topology in their analysis. If no effects were observed
under these conditions, the method could not be considered a true topology-based approach.

Furthermore, we evaluated the increased sensitivity and specificity expected from
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incorporating topological information by assessing the identification of biologically relevant

pathways, which is crucial for advancing our understanding of molecular mechanisms.

Additional computational tools for integrating molecular data with image analysis were

developed, and these will be discussed in detail in chapter 3.4.

3.2. MOLECULAR SUBTYPING AND TUMOR
HETEROGENEITY

The last fifteen to twenty years have seen an intensive search for molecular markers of cancer
progression and a deeper understanding of the biology underlying (non)-response to therapy.
Colorectal cancer (CRC) is no exception, with many significant discoveries advancing our
knowledge of the heterogeneity of this disease. The common approach to diagnosing CRC
relies on a combination of clinical evaluation, endoscopic examination, and histopathological
analysis of biopsy samples. Standard treatment strategies include surgical resection, often
followed by adjuvant chemotherapy, particularly for stage III and high-risk stage II cases.
Targeted therapies, such as those inhibiting EGFR or VEGF pathways, are used in advanced

disease based on molecular profiling.

In diagnostics, clinical and histopathological markers play a key role. Staging based on the
TNM system (Tumor, Node, Metastasis) remains the cornerstone for assessing disease severity
and guiding treatment decisions. Histopathological features such as tumor grade,
lymphovascular invasion, and presence of perineural invasion provide additional prognostic
information. Another critical factor in CRC is tumor sidedness, which reflects distinct
biological and clinical differences between tumors originating in the proximal (right-sided) and
distal (left-sided) colon. These differences are partly attributed to the embryonic development
of the gut, where the right side arises from the midgut and the left side from the hindgut.
Additionally, as I will discuss in chapter 3.5, this variation is likely influenced by the site-

specific microbial composition of the gut.

Aside from histopathological features and staging, molecular testing has become increasingly
important in CRC diagnostics, particularly for identifying mutations with therapeutic
implications. The most commonly tested mutations include those in the KRAS and NRAS genes,
as their presence predicts resistance to anti-EGFR therapies. BRAF mutations, particularly the
V600E variant, are associated with a poor prognosis and also influence treatment strategies.

Additionally, testing for mismatch repair (MMR) deficiency or microsatellite instability (MSI)
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is now standard, as these biomarkers can identify patients eligible for immune checkpoint

inhibitors.

This section explores the identification and characterization of molecular subtypes and
heterogeneity in colorectal cancer (CRC), emphasizing their clinical implications.
Understanding CRC heterogeneity at the molecular, genetic, and structural levels is vital for
refining therapeutic strategies and improving patient outcomes. My journey in this field began
with the unique opportunity to contribute to the analysis of molecular data from the PETACC-
3 clinical trial [16]. The PETACC-3 clinical trial provided a unique opportunity to analyze
colorectal cancer (CRC) at multiple molecular levels, combining transcriptomics, comparative
genomic hybridization (CGH), histopathological images, and clinical molecular markers with
comprehensive clinical data, including long-term follow-up for prognosis modeling. This
experience led to my long-term interest in the subject and has shaped my scientific research

carcer.

Supervised approach to molecular profiling in CRC: Insights from Tumor Location,

Mutational Status, Transcriptomics and Copy Number Aberrations

Leveraging the unique PETACC-3 dataset, we performed comprehensive analyses to explore
how tumor location (proximal vs. distal) and mutational status and morphology influence

molecular profiles, clinical parameters, patient prognosis and response to therapy.

In [5] we conducted a comprehensive analysis of somatic copy number aberrations (CNAs) in
302 stage II/III CRC samples from PETACC-3. The aim was to provide a detailed molecular
overview of CNAs, elucidate their underlying biology, and explore associations with clinical
outcomes. We identified regions of recurrent CNAs, comprising both well-established
oncogenes (e.g. MYC, EGFR, and CCND]I), as well as novel loci with potential biological
significance. Notably, amplification of 12p13.33 revealed WNKI as a candidate oncogene
implicated in MAPK signaling and various cancer hallmarks, while multiple loci on 20q
(including 20q11.21, 20q13.12, and 20q13.31) pointed to oncogenic drivers such as HNF4A,
WISP2, and BMP7, which are involved in epithelial-mesenchymal transition, metastasis, and
tumor aggressiveness. Additionally, our findings on 10p15.3-p14 and 19p13.12 deletions
linked these loci to poor survival outcomes, while 20q gains were unexpectedly associated with
better overall survival in stage III tumors, contrasting prior reports. This was later shown to be
consistent with definition of CRC molecular subtypes [9], see below. Importantly, our study

highlighted a novel aspect of CNA interactions: significant non-random correlations between
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unlinked DNA loci. This observation brought hypothesis of emergence of highly ordered
structural changes during tumor progression, potentially driven by selective pressures acting

on tumorigenic pathways.

Right-sided CRCs often exhibit features such as microsatellite instability, higher mutation
burden, and immune infiltration, and are associated with a worse prognosis and reduced
response to anti-EGFR therapies compared to left-sided tumors. In contrast, left-sided CRCs
are typically chromosomally unstable and show better responses to targeted therapies,
highlighting the need to consider tumor location in treatment planning. Our work in [6] was
among the studies that contributed to this understanding, offering key insights into the
molecular and clinical differences between right- and left-sided CRCs by leveraging data from
the PETACC-3 trial. We confirmed the well-established observation that proximal tumors are
more frequently microsatellite unstable (MSI) and hypermutated, largely due to deficiencies in
DNA mismatch repair (MMR). Even among microsatellite stable (MSS) proximal tumors, we
found an enrichment of potentially deleterious mutations, including alterations in KRAS, BRAF,
and PIK3CA. Consistent with prior studies, we observed that proximal tumors are often
mucinous, densely infiltrated by tumor-infiltrating lymphocytes, and exhibit activated MAPK
signaling. They also frequently express a serrated pathway signature and a high BRAF score,
indicating pathway activation even in the absence of BRAF mutations. Potential contributors
to these features are side-specific environmental factors (e.g., bacterial toxins, mutagenic
metabolites) and tolerance to DNA repair defects and oncogenic stress. For distal CRCs, our
work corroborated the frequent presence of large-scale chromosomal alterations, including 18q
loss and 20q gain (leveraging data from [J]), hallmark features of chromosomal instability. We
also observed the activation of EGFR signaling, with HERI and HER2 amplifications present
in a subset of distal tumors, particularly those wild-type for KRAS and BRAF. These findings
suggested the importance of EGFR pathway activation in distal colon carcinogenesis and its
potential as a therapeutic target. Beyond confirming these previously known patterns, our
analysis provided new insights into the relationship between tumor location and clinical
outcomes. We showed that tumor location acts as an independent prognostic factor for survival
after resection (SAR) and relapse-free survival (RFS). Proximal tumors, even when MSS, were
associated with higher mutation rates and cellular plasticity, which may exacerbate the
deleterious effects of chemotherapy. These features likely contribute to poorer outcomes under
current treatment regimens, suggesting that proximal tumors may require entirely different

therapeutic approaches. Our observations also reinforced the benefit of anti-EGFR therapies in
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distal CRCs. We found that EGFR pathway activation in distal tumors makes them more
responsive to anti-EGFR agents than proximal tumors, later evidenced by results from a clinical

study [17].

Another influential result in this category was the identification of a subgroup of colorectal
tumors with a BRAF wild-type (BRAFm-like) phenotype but molecular profiles resembling
BRAF-mutated (BRAFm) tumors [7]. This subgroup was identified through a high-sensitivity
gene expression signature derived from BRAFm tumors, which was robust enough to support
a patent filing for the BRAFm-like signature [18]. The methodology for developing this
classifier was implemented using the Rgtsp tool, as previously described in chapter 3.1. The
BRAFm-like subgroup was found to also share clinicopathologic features with BRAFm tumors,
such as enrichment for MSI-H, mucinous histology, and right-sided location. Frequencies of
high-grade tumors were 30% in BRAFm, 20% in BRAFm-like, and only 5% in predicted BRAF
wild-type (pred-BRAFwt) tumors, while MSI-H rates were 30%, 30%, and 3%, respectively.
Interestingly, this group also showed poor prognosis, even in microsatellite stable (MSS) cases
(Figure 1). Importantly, this finding challenged the conventional understanding that KRAS-
mutated tumors form a homogeneous group, as the BRAFm-like subgroup included part of
tumors with KRAS mutations as well as double wild-type (WT2) samples. Additionally,
BRAFm-like tumors demonstrated a distinct adenoma-carcinoma progression sequence linked
to the serrated pathway, suggesting a shared underlying biology with BRAFm tumors. From a
biological perspective, the BRAFm-like subgroup highlights tissue-specific biology in CRC
compared to melanoma, where BRAFm inhibitors have been successful. This tissue-specific
biology may explain why inhibitors like PLX4032, effective in BRAFm melanoma, have shown
limited efficacy in BRAFm CRC. The study’s results underscored the need for a revised
definition of CRC subgroups, particularly within KRAS-mutated tumors, and provided a

framework for developing tailored therapeutic strategies.
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Figure 1. Kaplan-Meier curves for different stratifications of the stage III subpopulation and different end points. Columns correspond to

overall survival and survival after relapse end points, respectively. Panels A-D correspond to stratifications into samples predicted to be BRAF

mutant (pred-BRAFm)/predicted to be BRAF wild type (pred-BRAFwt; A, B) and BRAF mutant (BRAFm)/BRAF mutant like (BRAFm-

like)/pred-BRAFwt (C, D) in the whole stage I1I subpopulation (from [7])

In this work we established a novel subgroup with clear prognostic and histological

significance and demonstrated the value of gene expression profiling in refining CRC

classification. It also supported the need for further functional investigations and clinical trials

aimed at identifying actionable targets within the BRAFm-like population and subsequent

functional investigations, including search for actionable targets [19] and clinical trials [20].

Context-Dependent Prognostic Value of BRAF and KRAS Mutations

While BRAF and KRAS mutations have been widely studied as prognostic markers in CRC,

their predictive value has remained controversial, particularly for KRAS. The prevailing




assumption in earlier studies was that these mutations have a uniform prognostic effect across
all patients, independent of clinical context. However, our work in [8] demonstrated that the
prognostic impact of BRAF and KRAS mutations is highly context-dependent, varying

significantly based on tumor location and microsatellite instability (MSI) status.

By leveraging the PETACC-3 dataset, which included mutation data from over 1,400 stage 11—
III CRC patients, we systematically assessed the prognostic value of BRAF and KRAS
mutations across multiple clinically relevant subgroups. To ensure statistical robustness, only
subgroups with at least 20 patients were considered for prognostic assessment. We employed
univariate survival analyses using log-rank tests and estimated hazard ratios (HR) for overall
survival (OS), relapse-free survival (RFS), and survival after relapse (SAR). Multiple testing
correction was applied using the Bonferroni method, setting a stringent significance threshold
(adjusted p < 0.01). To assess potential interactions, we further performed multivariate Cox
regression models incorporating second-degree interaction terms between MSI status, BRAF

mutation, and tumor location, adjusting for grade, T stage, and N stage.

Our analysis confirmed that BRAF mutations were strongly prognostic for overall survival (OS)
and survival after relapse (SAR), but notably, this effect was almost entirely driven by
microsatellite stable (MSS) tumors located in the left colon. Within this subgroup, BRAF
mutations conferred a six-fold increase in mortality risk compared to BRAF-wild-type MSS
left-sided tumors, whereas in MSI-high (MSI-H) or right-sided tumors, BRAF mutations had
no significant prognostic value (Figure 2). This observation challenged the widespread practice
of reporting hazard ratios for BRAF mutation without considering tumor location and MSI

status, highlighting the need for more nuanced interpretation of prognostic biomarkers in CRC.
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Figure 2. Overall survival: prognostic value of BRAF and KRAS mutations within MSS and by tumor site. A: all MSS tumors; B: MSS left-
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For relapse-free survival (RFS), we made the novel observation that BRAF mutations were also
prognostic in MSS left-sided tumors, contradicting prior studies that did not find an association
between BRAF and relapse (Figure 3). Importantly, these results were validated in multivariate
models that accounted for tumor grade, T stage, and N stage, reinforcing the robustness of the

findings.

In contrast, KRAS mutations did not reach statistical significance as a prognostic marker for
OS, SAR, or RFS in the overall cohort. However, our stratified analyses revealed that KRAS
mutations showed trends towards significance in certain subpopulations, particularly for RFS
in right-sided tumors. Intriguingly, in MSI-H right-sided tumors, KRAS mutations appeared to
have a protective effect, identifying a subset of patients with better prognosis. While these
results did not reach the stringent significance threshold after multiple testing correction, they
suggest that the prognostic role of KRAS may be more complex than previously assumed. Our
findings support the hypothesis that the KRAS-mutant population is molecularly
heterogeneous, which may explain the inconsistent prognostic associations reported in the

literature.
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Figure 3. Relapse-free survival: prognostic value of BRAF and KRAS in left-sided tumors. A: all left-sided tumors; B: MSS left-sided

tumors. The light gray survival curve represents the whole subpopulation survival (A: all left tumors; B: MSS left).

These results provided a key conceptual advance: the prognostic value of oncogenic mutations
in CRC cannot be interpreted in isolation but must be considered within the broader tumor
context. This insight has direct implications for clinical trial design, biomarker interpretation,
and the development of prognostic gene signatures, reinforcing the need for stratification by

MSI status and tumor location in future studies.
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Unsupervised approach to CRC molecular heterogeneity — the CRC molecular
subtypes

While supervised approaches to exploring tumor heterogeneity are informative, they are
inherently limited in their ability to uncover the unknown. Unsupervised methods, such as
clustering, address critical questions like: ‘Do we have enough information? Are we
overlooking key insights? What if our existing classifications are incorrect?. In 2015, an
important study introduced the Consensus Molecular Subtypes (CMS), a framework that
stratifies CRC into biologically distinct groups based solely on gene expression profiles of
tumors, revealing subtype-specific differences in prognosis and therapy response. Our work in
[9] played a pivotal role in the development of the CMS framework. Notably, our group was
among the first to initiate efforts to define molecular subtypes of CRC. Our subtyping system
was one of the six approaches included in the CMS study, reflecting its significance in shaping
the consensus. Furthermore, the robustness of our subtypes was evident in their strong
alignment with the CMS subtypes, highlighting the reproducibility as well as biological validity
of our methodology (Figure 4).

I |
CMS PETACC3

Figure 4. Sankey diagram of concordance between five Budinska gene expression subtypes (right) [9] and 4 CMS subtypes (left).

The methodological approach we employed for gene expression-based subtyping was designed

to ensure robustness and biological relevance. It consisted of the following key steps:
i) Dimensionality Reduction:

To reduce noise and focus on informative features, we implemented a multi-step
dimensionality reduction process. First, we filtered for genes with high coefficients of variation

(CV), eliminating low-expressed and non-informative genes. Next, we grouped the remaining
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genes into clusters based on the correlation of their expression patterns, summarizing each
cluster as a meta-gene represented by the median expression value of its member genes. These
meta-genes were further clustered into higher-order structures, which were then subjected to
gene set enrichment analysis. This final step enabled the identification of key biological

processes driving CRC heterogeneity.
ii) Consensus Clustering and Dynamic Hybrid Tree Cut for Sample Stratification:

We applied robust consensus clustering [21] to group samples based on their meta-gene
expression profiles into five distinct clusters. The principle of consensus clustering lies in
aggregating results from multiple clustering iterations (in our case, hierarchical clustering),
typically using subsampled data, to identify stable and reproducible groupings. This approach
mitigates the sensitivity to initial conditions inherent in many clustering methods, leading to
more reliable and reproducible results. This robustness is particularly relevant for high-

throughput molecular datasets, which are often prone to technical variability and batch effects.

In each iteration, clusters were determined using a dynamic tree cut procedure [22], which
provided a more robust and adaptive method for defining cluster boundaries. The dynamic
hybrid method offers significant advantages over traditional fixed-height cutoffs for
hierarchical clustering, particularly in the context of CRC molecular subtyping. Unlike fixed
methods, it adapts to the shape and structure of dendrogram branches, enabling the detection
of clusters with varying sizes and densities, which is crucial for capturing CRC heterogeneity.
Additionally, it identifies nested clusters and effectively handles outliers, ensuring that subtle
subtypes and unique molecular signatures are not misclassified or lost. Its flexibility allows for
parameter tuning and automation, making it well-suited for large-scale genomic datasets. These
features make the dynamic hybrid method a robust and precise tool for defining clinically
relevant CRC subtypes. The final optimal number of clusters was determined using the
consensus index, ensuring statistical robustness. To maintain homogeneity within the identified
groups, we excluded samples that did not cluster with high probability. These outliers may
represent rare subtypes or technical artifacts and excluding them helped to prevent the

distortion of group-specific characteristics.
iii) Validation Across Independent Datasets:

The robustness of our findings was further validated by performing clustering across five

independent external datasets. Cross-cluster training of classifiers was employed to assign
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samples to their respective groups in these external cohorts, ensuring the reproducibility of our
methodology.  We  compared the molecular, prognostic, mutational, and
clinical/histopathological features of the groups across datasets, confirming the consistency

and biological relevance of the identified subtypes.

This approach resulted in the generation of five CRC molecular subtypes (A-E), characterized
by distinct molecular processes, mutation profiles, and differences in overall survival (OS),
relapse-free survival (RFS), and survival after relapse (SAR) (Figure 5). Importantly, and in
contrast to other groups [23—26], we also characterized these subtypes from a histopathological
perspective. Initially, our expert pathologist performed an unsupervised assessment of common
histopathological features, such as tumor budding, hypoxia, peritumoral lymphocytic
infiltration, necrosis etc. Statistical analysis, however, revealed no significant differences in the
distribution of these characteristics among the subtypes. In a subsequent supervised analysis,
we identified that the proportion of distinct morphologies - namely complex tubular, mucinous,
solid/trabecular, serrated, papillary, and desmoplastic - varied significantly between subtypes.

This finding aligned with molecular data.

Subtype A, which exhibited a gene expression signature associated with differentiated colon,
referred to as surface-crypt-like, was notably enriched in papillary and serrated morphologies.
Papillary adenocarcinomas are characterized by finger-like epithelial projections, reflecting
differentiation patterns akin to normal colonic crypts. Serrated adenocarcinomas, with their
hallmark saw-toothed glandular pattern, arise from serrated polyps following the serrated
neoplasia pathway, which involves BRAF mutations and Wnt signaling pathway alterations.
These morphologies align with the differentiation process of normal colonic crypts, where stem
cells at the crypt base give rise to epithelial cell types that migrate and differentiate along the
crypt axis. Subtype B - Lower-crypt like, showed enrichment in the complex tubular pattern,
aligning with the typical morphology of colorectal adenocarcinoma. This subtype's molecular
profile exhibited active proliferation, amplification of chromosomes 20q and 20p, and
deregulation of genes commonly associated with intestinal differentiation, including CDX2,
IHH, VAV3, ASCL2, and PLAGL2. Histologically, this subtype demonstrated low immune cell
infiltration and a minimal presence of epithelial-mesenchymal transition (EMT) or stromal
components, consistent with a more proliferative and less invasive phenotype.
Immunohistochemical staining revealed active B-catenin signaling, a hallmark of the Wnt

pathway, which is frequently implicated in colorectal carcinogenesis and reflects the molecular
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processes driving tumor progression in this subtype. Subtype C (CIMP-H like) displayed
molecular and clinicopathological characteristics that closely align with the well-established
CIMP-H phenotype of colorectal cancer. This subtype expressed the BRAF-mutant signature
identified in our earlier work [7] (87.0% of cases) and a robust CIMP-H signature,
characterized by widespread promoter hypermethylation. In addition, subtype C was enriched
for MSI, right-sided location, and mucinous histology, hallmarks of the CIMP-H phenotype.
Similar to previously reported hypermutated tumors, this subtype exhibited a low frequency of
copy number variations (CNVs), suggesting that its tumorigenesis is driven more by epigenetic
and mutational events than by chromosomal instability.

Most interesting, however, was Subtype D, which exhibited a molecular signature strongly
indicative of epithelial-to-mesenchymal transition (EMT), characterized by high immune cell
infiltration and low proliferation. This suggested that the tumor might comprise cancer cells
actively undergoing the process of EMT. Surprisingly, histopathological examination revealed
that this molecular profile was not primarily due to high proportion of mesenchymal tumour
cells but rather result of a high desmoplastic reaction. A desmoplastic reaction refers to the
excessive growth of fibrous or connective tissue, often triggered by interactions between tumor
cells and the surrounding stromal microenvironment. This process creates a dense, fibrotic
stroma composed of activated fibroblasts, immune cells, and extracellular matrix proteins,

which can mimic EMT at the molecular level by inducing similar gene expression patterns.

Interestingly, Subtype D exhibited significantly lower overall survival (OS) and relapse-free
survival (RFS), even after accounting for other clinically relevant variables, such as tumor stage
or MSI status. The association between tumour stromal content and prognosis was not entirely
novel [27], but our identification of stromal enrichment within unsupervised molecular
subtypes prompted further studies to explore this relationship in greater depth [28]. Summary

of subtype characteristics is shown in Table 1.

This work consequently steered my research path in a very specific direction, focusing on the
integration of histopathological and molecular data to better understand tumor heterogeneity in

CRC.
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Figure 5. Meta-gene expression pattern in subtypes, connected with prognostic effect of subtypes and meta-genes, in the discovery set. (A)
Two heat maps clustering normal (left) and CRC (right) samples (columns) and meta-genes (rows). Colours represent decreased (blue) or
increased (red) meta-gene expression relative to their medians. Normal samples were clustered independently on meta-genes centred to CRC
meta-gene medians. For comparative purposes, ordering of meta-genes in normal samples is imposed to correspond to that of CRC samples.
‘White horizontal lines denote eight unsupervised clusters of meta-genes, each assigned a colour bar on the left; meta-genes not belonging to
a cluster have no colour bar. Names of the meta-genes corresponding to gene modules with gene—gene correlations in normal samples
comparable to those in cancer samples are marked red (see Supplementary material, Figure S1D). (B) Effect of inter-quartile range (IQR)
standardized expression of meta-genes on RFS, OS and SAR. Points represent estimated hazard ratio (HR), bars represent 95% CI. Bold lines
represent effects significant at 5% without adjustment for multiple hypothesis testing; red lines represent effects significant at FDR < 10%;
details are provided in Table S6 (see Supplementary material). (C) Kaplan—Meier plots for RFS, OS and SAR, with HR for significant pairwise

comparisons (p values adjusted for FDR). Numbers below x axes represent number of patients at risk at selected time points. (from [9])

Table 1. Summary of subtype characteristics (adjusted from [9])
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3.3. PRECLINICAL MODELS

The study of colorectal cancer (CRC) has been transformed by the integration of computational
modeling with experimental validation. While bioinformatics-driven analyses reveal critical
aspects of tumor heterogeneity, drug resistance, and molecular subtypes, their true impact lies
in biological validation. Preclinical models serve as a crucial link, allowing us to test
hypotheses, confirm computationally derived biomarkers, and dissect the mechanisms

underlying tumor progression and therapy response.

Different experimental models offer complementary advantages, each addressing distinct
aspects of CRC biology. Genetically engineered mouse models (GEMMs) provide a controlled
system to study oncogenic pathways in vivo, capturing key molecular hallmarks of CRC.
Patient-derived xenografts (PDXs) have proven invaluable for precision oncology, faithfully
preserving patient-specific tumor characteristics and drug response profiles. More recently,
patient-derived organoids (PDOs) have emerged as a versatile ex vivo system, bridging the gap
between in vitro experimentation and in vivo validation, enabling high-throughput functional
studies on molecular subtypes and therapy resistance. Beyond their individual strengths,
preclinical models are most powerful when combined with computational analyses. Cross-
species transcriptomic comparisons refine computational predictions by identifying conserved
molecular programs, while functional studies in PDX and organoid models validate key
molecular drivers and therapeutic targets. These models have also provided new perspectives
on tumor-microenvironment interactions, immune infiltration, and the role of the microbiome

in CRC progression.

Cross-Species Transcriptomic Analysis of CRC: Insights from Genetically Engineered
Mouse Models

For decades, GEMMs have been instrumental in modeling human CRC by introducing
mutations in key driver genes, such as APC, TP53, KRAS, and BRAF, which are frequently
altered in human tumors [29]. Unlike traditional cancer models, GEMMs allow for the
stochastic and tissue-specific activation of these mutations, mimicking the sporadic nature of
human CRC development. By combining GEMMSs with high-throughput transcriptomic
profiling, it is possible to assess how specific genetic alterations shape the tumor

microenvironment and contribute to disease progression. I had the unique opportunity to be
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involved in such efforts, where our expertise in mining large-scale CRC transcriptomic datasets
was applied to evaluate the molecular fidelity of GEMMs and assess their relevance to human
disease [10]. This study focused on establishing genotype-specific gene expression signatures
in GEMMs and determining their molecular resemblance to human CRC and their utility in
preclinical research. Gene expression profiling of GEMM-derived tumors was performed, and
mutation-specific transcriptional signatures were identified through multivariable statistical
modeling. These signatures were then validated in clinically annotated human CRC datasets
(PETACC-3, GSE14333), revealing a strong overlap between the GEMM KRAS signature and
human KRAS-mutant and BRAF-like tumors, both of which are associated with poor prognosis
and MAPK pathway activation. In contrast, the BRAF signature did not align well with human
BRAF-mutant CRC, likely reflecting biological differences in APC co-mutation frequencies.
Further, the GEMM KRAS signature predicted increased sensitivity to MEK inhibitors (PD-
0325901, AZD6244) in CRC cell lines, providing a potential tool for therapeutic stratification.
This confirmed the relevance of GEMMs in modeling CRC heterogeneity and emphasized the

need for refined models to better capture BRAF-driven disease biology.

Data Integration Challenges in PDX Models: Bridging Preclinical and Clinical
Insights

Patient-derived xenografts (PDXs) have emerged as a powerful tool in translational oncology,
enabling high-throughput studies that link genetic and functional characteristics to therapeutic
responses. However, the large-scale use of PDX models presents significant challenges,
particularly in data management, integration, and analysis. The central focus of my work was
developing strategies to harmonize preclinical PDX data with molecular classifications derived
from patient tumors. This involved addressing the biological variability introduced during
tumor engraftment and propagation, as well as ensuring robust data normalization,
standardization of sample metadata, and applying analytical corrections to account for
systematic biases, such as the loss of human immune and stromal components. This expertise
was integrated into the review by Byrne et al. (2017) [11], where we critically assessed the role
of PDXs in cancer precision medicine, highlighting both their advantages and limitations in
preclinical research. The review examined how PDX models can bridge the gap between
laboratory findings and clinical applications, especially in drug development and biomarker

discovery. We emphasized the importance of standardized protocols, rigorous data integration,

and careful result interpretation to maximize the translational value of PDX models in oncology.

My contribution to the review focused specifically on the complexities of data stratification in
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PDX studies, where we proposed computational solutions to mitigate population selection
biases and improve integrative analyses across various experimental platforms. In particular, I
helped design analytical workflows to standardize these processes, ensuring that PDX models
could be meaningfully aligned with clinically relevant subgroups. These efforts are essential
for enhancing the translational potential of PDX-based approaches, particularly in preclinical

drug testing and biomarker discovery.
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3.4. INTEGRATING DIGITAL PATHOLOGY AND
OMICS DATA

Histopathological evaluation has long been a cornerstone of cancer diagnostics, providing
essential insights into the structural and cellular organization of tumors. By examining stained
tissue slides under the microscope, pathologists assess key features such as tumor grade,
cellular morphology, tissue architecture, and the extent of invasion. These assessments not only
guide clinical decision-making but also serve as a basis for understanding tumor biology.
However, while traditional histopathology has been invaluable, its reliance on subjective visual
interpretation introduces variability and limits its capacity to harness the vast information
contained in high-resolution histological images. The advent of computational methods has
revolutionized this field, enabling the extraction of quantitative features from histopathological
slides. These features range from measurements of nuclear size, texture, and cell density to

spatial arrangement and tissue heterogeneity.

In our work, where we derived molecular subtypes of CRC based on gene expression profiles
[9], we showed that the molecular subtypes correlate with tumour morphology — a
histopathological variable which is not routinely assessed or reported. Most interestingly,
tumours classified as molecular subtype D (20% of tumours) had the worse relapse-free
survival and were characterized by increased expression of epithelial-mesenchymal transition
(EMT) genes. The histopathological evaluation, however, led to the discovery that these
tumours comprised often of more than 70% fibroblasts (“desmoplastic” morphotype). In
consequence, this means that the observed high expression of the EMT genes is due to high
fibroblast content and not to the stem-cell like (mesenchymal) tumour phenotype, as incorrectly
interpreted in other studies. In addition, this important tumour subtype has escaped the attention
of some cataloguing studies, such as The Cancer Genome Atlas (TCGA), which excluded
tumours with tumour cell content lower than 80%. Molecular profiles thus must be interpreted
with respect to histopathological evaluation. In addition, we observed multiple morphological
patterns within the same tumour, and each can express a different molecular profile. A thorough
histopathological evaluation of different tumour regions and micro-dissection of
morphologically homogenous populations prior to molecular analyses was necessary for
correct molecular classification. This, however, is in many studies impossible to achieve — in
order to be correctly histopathologically evaluated, tumour specimens are routinely formalin

fixed, and paraffin embedded (FFPE) after surgical excision to preserve histology. Most
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importantly, the examined specimen is usually taken from the invasive front of tumour on the
colonic wall, since this region is the most important for characterization of tumour
aggressiveness and its classification according to WHO standards. This part of tumour
therefore cannot be stored as fresh frozen tissue, imposing important constraints on the
methodology of sample collection. The studies performing molecular profiling from fresh
frozen samples (considered of much better quality for molecular profiling) are therefore using
material from a different tumour site, which can represent a different clonal population. This

is often disregarded and introduces further bias into the interpretation of results.

In retrospect, it is natural to expect that tumor gene expression profiles represent a mixed signal
derived from various cell types within the tumor microenvironment. Consequently, the
observation that different tumor (cell) morphologies correlate with distinct molecular profiles
is not surprising. This principle underlies the concept of deconvolution methods, which aim to
estimate the proportions of different cell types present within tumor samples, providing a more
nuanced interpretation of molecular data. However, while estimating the proportions of
different cell types provides valuable insights, it overlooks a critical aspect of tumor
architecture: the spatial organization of these cells within the tissue. Morphology, in contrast,
inherently captures this spatial context and is relatively easy to assess in formalin-fixed
paraffin-embedded (FFPE) samples. This is particularly true when enhanced by Al-driven
image analysis software, which can standardize and automate morphological evaluations.
Approaching tumor heterogeneity from a morphological perspective is not only more practical
but also cost-effective, faster, and more universally applicable in clinical settings, as it
leverages resources already available in most pathology departments.

In collaboration with Masaryk Memorial Cancer Institute, we collected multiple cohorts of
colorectal samples, which enabled us to embark on a comprehensive exploration of the
relationship between tumor morphology and molecular profiles, as well as the role of

morphology in CRC heterogeneity.

Traditional digital image analysis in histopathology focuses primarily on the automatic
extraction of predefined features. These typically include measurements such as nuclear size,
cell density, the recognition and classification of different cell types, and their proportions
within the tissue. These features are then quantified and statistically correlated with prognostic
or diagnostic variables, offering an objective means of evaluating tumor morphology. While

this approach has greatly improved the reproducibility of histopathological assessments, it
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remains constrained by human-defined criteria, effectively limiting the analysis to features that

are already recognizable to the human eye.

In contrast, our approach diverged from this paradigm by leveraging molecular data to guide
the extraction of image features, enabling us to capture patterns and relationships that go
beyond what is visually discernible. By integrating histopathological images with gene
expression profiles, we aimed to identify novel features reflective of underlying molecular
mechanisms. This data-driven strategy opens possibilities for uncovering previously
unrecognized biomarkers and relationships, providing a deeper understanding of tumor biology
that is both more comprehensive and more closely aligned with the molecular heterogeneity of

the disease.

Joint image and molecular analysis

First, we demonstrated how histopathological image features could be jointly analyzed with
gene expression data, initially in the context of breast cancer [12], to identify meaningful
correlations between morphology and molecular signatures. Histopathology images, while rich
in information, are inherently complex, containing billions of pixels. To extract meaningful
patterns, we employed a bag-of-features approach, which compresses the image data into
essential patterns called codeblocks, identified using Gabor wavelets. This method enables the
representation of each image as a histogram of codeblock frequencies, supplemented with
extended features describing the spatial distribution of codeblocks, such as area, compactness,
and skewness. This approach retained critical morphological information that is often
overlooked in conventional analyses. The codebook was optimized through clustering to
minimize overlap among tissue categories (e.g., fat, connective tissue, tumor nuclei), ensuring
that the image representation was both sparse and discriminative. The resulting codeblocks
captured three key morphological components: proliferation, invasion/differentiation, and

isolated tumor nuclei (Figure 6).
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Figure 6. Hierarchical clustering of the codebook. Clustering the codeblocks led to identification of three major clusters, to which generic
terms have been assigned. The codeblocks correlated with gene expression are marked with red dots. The codeblocks with potential prognostic

value (in univariate analysis) are marked with blue squares (dark blue for p-value < 0.01, light blue for 0.01 < p-value < 0.05 (from [12])

The methodology also incorporated canonical correlation analysis (CCA) and other statistical
tools to link these image features to gene expression, tumor size, grade, and relapse-free
survival (RFS). A major contribution of this work was the development of an image-based
prognostic score, derived from five key image features. This score was shown to be
independent of genomic predictors and significantly improved prognostic models when

combined with gene expression-based scores (Figure 7).
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Figure 7. Kaplan-Meier curves for binarized scores. The genomic (a), image-based (b) and combined scores (c) were binarized by the

respective median values into “low score” (low risk) and “high score” (high risk) categories. The combined score slightly improves on the

genomic score (from [12]).
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The code implementing this method was developed in R and made freely available for further
research and application, laying the groundwork for broader integration of imaging and

genomics in data mining and clinical practice [30].

Building on the observed link between tumor morphology and molecular profiles, we were the
first to develop an image-based classifier capable of predicting CRC molecular subtypes from
histopathological images [13]. Using histopathological slides from the PETACC-3 clinical trial,
we analyzed a dataset of 300 tumor samples, which represented molecular subtypes A—E with
the following frequencies: subtype A (n=21), B (n=140), C (n=37), D (n=81), and E (n=21).
These samples were drawn from the PETACC-3 cohort of 458 molecularly annotated cases,
focusing on those with high-quality images and sufficient tumor content, while excluding
outliers and fragmented samples. The methodology involved processing hematoxylin-eosin
(H&E) stained tumor sections, which were scanned at high magnification and subsequently
downscaled to an equivalent magnification for computational efficiency. Tumoral regions were
manually delineated based on expert pathologist annotations, ensuring that only relevant areas
were analyzed. Local image features were extracted using a deep convolutional neural network
(CNN) pre-trained on the ImageNet dataset, with the 4096-element descriptor vector from the
penultimate layer reduced to 128 dimensions via principal component analysis (PCA). These
local descriptors were pooled into global representations using Gaussian Mixture Models
(GMMs), which facilitated the generation of a "visual codebook" summarizing key

morphological features.
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Figure 8. Top four prototypes associated with each subtype: (a—d) Subtype A, (e-h) Subtype B, (i-1) Subtype C, (m—p) Subtype D and (q-t)

Subtype E. Under each image the corresponding P value from Wilcoxon rank-sum test is shown (from [13])
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The image features were integrated into a multi-class support vector machine (SVM)
classifier with a hierarchical design, optimized to first distinguish subtypes A and B from
subtypes C, D, and E, before further separating individual subtypes. This decision tree structure
was informed by misclassification patterns and the biological similarities between subtypes
identified in previous studies. Model performance was assessed through 10-fold cross-
validation, achieving an overall accuracy of approximately 85%. Importantly, subtype-specific
features, such as mucinous histology in subtype C or stromal desmoplasia in subtype D, were
accurately captured by the classifier, reflecting the morphological heterogeneity across CRC
molecular subtypes (Figure 8). Additionally, our analysis demonstrated that the image-based
predictions could stratify patients by relapse-free survival (RFS) in a manner consistent with
molecular subtyping, further validating the clinical relevance of the approach (Figure 9). While
the SVM models we used for classification provided high accuracy, they are inherently difficult
to interpret biologically. Future work aims to develop simplified models to facilitate biological

interpretation, which is essential for clinical acceptance.
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Figure 9. Survival analysis: risk of relapse stratified by (a) molecular subtypes and (b) image-based classifier. Subtypes A and B represent a
lower risk group, while subtypes C, D and E a higher risk (from [13].)

Exploring molecular patterns of the morphotypes

One question, however, remained unanswered. We showed a clear association of our molecular

subtypes with morphology, but the comprehensive molecular characterization of each
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morphological region was missing. In [14] we explored the transcriptomic landscape of the six
morphotypes (CT, DE, MU, PP, SE and TB) and examined them alongside peritumoral regions,
including normal adjacent tissue (NR) and supportive stroma (ST), to better understand how
molecular programs map onto tumor histology. Using 111 unique primary CRC tumors across
stages II (n=59), I1I (n=32), and IV (n=20), we macro-dissected 202 distinct regions, including
149 tumor regions, of which 126 were core samples containing at least 80% of a single
morphological pattern (Figure 10). RNA extraction was performed on formalin-fixed paraftin-
embedded (FFPE) histopathological slides, ensuring compatibility with archived clinical
samples. Transcriptomic profiling was conducted using the Clariom D Array for human
samples (Thermo Fisher Scientific), a platform that captures both coding and multiple forms
of non-coding RNA.

The high-purity sampling allowed for a more accurate assessment of how distinct morphotypes
contribute to the molecular heterogeneity of CRC. The samples originated from the
COLOBIOME study, which we performed at Masaryk Memorial Cancer Institute in Brno [31].
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Figure 10. Morphological patterns and their distribution in the dataset. (A) The six CRC morphological patterns of interest
(morphotypes). Left: example of an original annotation used for macro-dissection and RNA extraction. Note that the original annotations in
the image are not identical to the ones used in the main text. Here, A-SE stands for serrated (SE) in the text, B-DE for desmoplastic (DE) in
the text, C-MUC for mucinous (MU) in the text, and D-ST for solid/trabecular (TB) in the text, respectively. Also, N indicates a tumor-
adjacent normal epithelial region and S a supportive stroma region, respectively. Right: examples of morphotypes — complex tubular (CT),
desmoplastic (DE), mucinous (MU), papillary (PP), serrated (SE), and solid/trabecular (TB). (B) Morphotype distribution per case (unique
tumor) and intersections thereof: some cases had several morphotypes profiled (from [14]).

The morphotypes were characterized using gene set enrichment analyses (GSEA), and in silico
deconvolution to identify differences in key biological processes, cell types, and pathway
activity. Consistent with previous findings, MU and DE morphotypes (linked to CMS1 and
CMS4) were enriched in fibroblast-associated signatures, TGF-B signaling, and immune
response pathways, with DE further distinguished by inflammatory CAFs (IL-iCAF).
Conversely, epithelial-rich SE and PP morphotypes showed downregulated EMT and KRAS
signaling but upregulated MYC target pathways, reflecting their connection to the serrated
oncogenic pathway. Interestingly, the CT and TB morphotypes demonstrated active
proliferation and basal cell signatures, with TB also sharing stromal characteristics such as

active TGF- signaling with MU and DE (Figure 11).
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Figure 11. Top differentially expressed genes and hallmark pathways. (A) GSEA scores for hallmark pathways in the six morphotypes
and two non-tumoral regions. Only pathways with statistically significant scores are shown. (B) Principal component analysis of hallmark
pathways: the median profiles of the six morphotypes (CT: complex tubular, DE: desmoplastic, MU: mucinous, PP: papillary, SE: serrated,
and TB: solid/trabecular) and the two non-tumoral regions (NR: tumor-adjacent normal and ST: supportive stroma) are projected onto the
space defined by first two principal components (74% of the total variance). The top pathways contributing to the principal axes are shown as

well. See also Figure 3—figure supplement 1. (C) Heatmap of top 5 up- and down-regulated genes for each of the six morphotypes (from
[14]).

An important aspect of this study was the exploration of intra-tumoral heterogeneity. By
analyzing matched regions within the same tumor, we showed that molecular classifiers like
CMS are less stable at the regional level, with 60% of tumors displaying discordance between

CMS assignments in whole-tumor profiles versus individual regions (Figure 12).
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[14]).

Prognostic gene expression signatures also varied significantly across regions, with some
morphotypes showing scores more than 50% higher than the corresponding whole-tumor score.
This suggests that whole-tumor profiling may underestimate the risk in morphologically
heterogeneous tumors. Our findings showed the need to account for tumor morphology in
molecular profiling studies and that anchoring expression profiles to histopathological
morphotypes can serve as a practical alternative to spatial transcriptomics, which remains
challenging to implement in routine practice. To support further research, we developed a web
application [32] for interrogating gene expression profiles in various morphological regions,

providing a valuable resource for the broader scientific community.
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How heterogenous the tumours are in terms of morphologies?

Given these observations, we naturally turned our attention to exploring the full extent of tumor
morphological heterogeneity across CRC cases and its potential clinical implications. In our
recent study [1], we aimed to address this question by combining traditional pathology with
cutting-edge Al-driven image analysis. Specifically, we sought to quantify the diversity of
tumor morphotypes within individual cases and to assess the clinical relevance of this

heterogeneity.

We began with a pilot analysis of 22 CRC tumors, sampling four histological sections per
tumor (n=88 slides) and employing three expert pathologists to evaluate the dominant,
secondary, and tertiary morphologies in each section. This initial assessment revealed a high
degree of morphological heterogeneity, with most tumors exhibiting 2-3 dominant
morphotypes across different sections. The complex tubular (CT) morphotype was the most
frequently observed, while desmoplastic (DE) the least observed. Inter-pathologist variability
was minimal for CT and more prominent for DE and MU (mucinous) morphologies,

emphasizing the need for a standardized, objective method to classify these patterns.

To scale up the analysis, we developed an Al-based deep learning model trained on the
annotations from the pathologists. This model was applied to an expanded cohort of 161 CRC
cases (n=644 slides), allowing us to systematically characterize the distribution of morphotypes
and their combinations. The Al-guided analysis confirmed the findings of the pilot study, with
over 50% of tumors exhibiting more than two dominant morphotypes and medium to high

morphological diversity, as measured by a normalized Shannon index (Figure 13).
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Figure 13. A. Observed intratumoral patterns of dominant morphotype combinations (IPDMCs) and their frequency (main barplot) and
frequency of their distribution patterns (embedded top right barplot). B. Distribution of normalized Shannon index of median tumor profiles
in the IPDMCs. C. Median morphotype area in the IPDMCs and their further clustering into 9 clusters. D. Frequencies of pairwise
combinations of dominant morphotypes in the sections. E. Examples of representative tumor morphological areas of slides from selected
IPDMCs clusters as identified by image analysis. F-H. Examples of intratumoral morphological heterogeneity as assigned by image analysis
over four examined slides/blocks. Values of normalized Shannon index (NSI) of each slide and the average tumor profile are shown. F. Tumor
with low heterogeneity across all slides, expressing one dominant morphotype (CT). G. Tumor with low heterogeneity in two slides and
medium heterogeneity in two slides, expressing two dominant morphotypes (CT and PP) H. Tumor with high heterogeneity in all four sections,

expressing two dominant morphotypes (DE and MU) (from [1]).

Importantly, this diversity was not itself associated with clinical variables, but the proportion

of specific morphotypes—such as DE and MU—correlated strongly with outcomes. For
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example, tumors with higher proportions of DE morphotype were associated with advanced T-
stage, N-stage, metastasis, and shorter relapse-free survival (RFS), while MU was linked to

MSI, right-sided location, and poorer overall survival (OS).

These findings highlighted the critical need to consider intratumoral heterogeneity when
performing molecular analyses. For instance, we observed that morphotypes such as MU and
PP often coexisted with other morphologies, potentially reflecting shared oncogenic programs
like KRAS or BRAF mutations. Conversely, the SE morphotype, which is associated with the
serrated neoplasia pathway, was rarely found alongside MU. Similarly, CT, the most common
morphotype, often combined with other morphologies, while TB—a hallmark of
dedifferentiation—was predominantly found in tumors with low diversity and was largely

independent of specific oncogenic pathways.
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3.5. TUMOR MICROENVIRONMENT AND
MICROBIOME

At the same time, and somehow in parallel, more and more attention is paid to CRC tumour
microenvironment and even more importantly to the role of gut microbiota. Human gut
microbiota is composed of four major domains of life of which vast majority are Bacteria (95%),
the rest being Archaea, Eucaryota and Viruses. Gut microbiota outnumbers 10 times the
number of human cells in the human body and comprises majority of mammalian-associated
microbes. It is referred to as commensal intestinal microbiota and forms a versatile
microecosystem that changes its composition in response to the host’s development, diet, or
disease state [33]. Most dense and metabolically active microbial community resides in the
large intestine, comprised mainly of anaerobic bacteria of two phyla: Firmicutes and
Bacteroidetes, accompanied by Actinobacteria, Proteobacteria and Verrucomicrobia. In a
healthy organism, the gut microbiota is in a symbiotic relation with the human host and
contributes to controlling the intestinal epithelial homeostasis, to food digestion, to synthesis
of certain vitamins and to defense against pathogens. This has a great impact on the set-up of
the human immune system, which uses specific mechanisms for discrimination of between
harmful and helpful microbial species: immune exclusion (secretory IgA antibodies present in
mucosa layer selectively block antigens and pathogenic microbiota from accessing cell
epithelial receptors) and immunosuppression (recognizing antigens of pathogenic and
commensal bacteria via Toll-like receptors - TLRs) [34,35]. The tumour microenvironment
contains several different immune cell types, including tissue-associated macrophages (TAMs)
and other innate immune cells, as well as T cells and B cells, which communicate with each
other and the other cells in the tumour microenvironment via direct contact or via cytokine
and/or chemokine signalling to control tumour growth. TAMs primarily promote tumour
growth, and high numbers of TAMs generally correlate with cancer progression.

Dysbiosis — chronic alteration of gut microbiota — is reported in many diseases, such as
autoimmune diseases or even colon cancer and there is growing evidence that development of
these diseases is influenced by microbiota - human immune response interactions [33]. Recent
studies show that bacteria adherent to colorectal adenomas or carcinomas are different from
bacteria adherent to healthy mucosa [36]. This is a result of changes in the local tumour
microenvironment, which has decreased pH and changed nutritional conditions as a
consequence of altered metabolism of tumour due to hypoxia [37]. Bacteria can promote colon

cancer development or change the tumour invasion potential through immunomodulation
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[38,39] or metabolic activity — through production of specific toxins inducing DNA damage
responses [40]. This is enhanced by defects in barrier function of the gut, which allow luminal
bacteria to translocate to epithelial layer and directly influence host cells. Overall, the evidence
of microbiome importance in colon cancer development is so overwhelming that a bacterial
driver-passenger model for colorectal cancer development and progression was suggested [36]
as an alternative to the broadly accepted driver-passenger mutational adenoma-carcinoma
model.

Our expertise in the microbiome and its role in CRC was summarized in a review article
published in Klinicka onkologie [15]. This journal, written in Czech and targeted at clinical
oncologists, aimed to bridge the gap between basic research and clinical practice by providing
a comprehensive overview of the microbiome’s role in CRC development, progression, and
potential therapeutic implications. This work served as a foundation for the more detailed
experimental studies that followed. In addition, we contributed a chapter titled Mikrobiom v
solidnich nadorech to the book Mikrobiom a zdravi [41]. This chapter explored the
microbiome’s interactions with solid tumors in depth, including microbiota residing on the
tumor surface, within the tumor, and even inside tumor cells. It also examined the mechanisms
of microbiome-tumor interaction, such as immune modulation and metabolic influence, and
discussed the potential for directly targeting tumors through microbiota-based therapies.
Together, these contributions reflect our multifaceted approach to understanding and

leveraging microbiome in cancer research and clinical application.

Gut microbiota plays an important role also in cancer therapy. Microbiota influences drug
metabolism, immune responses, and the tumor microenvironment, thereby impacting the
effectiveness of chemotherapy, immunotherapy, and radiotherapy. For example, Akkermansia
muciniphila has been shown to enhance the efficacy of immune checkpoint inhibitors by
stimulating anti-tumor immune responses [42]. In contrast, antibiotic-induced microbiome
depletion can impair therapeutic efficacy, as observed in studies linking antibiotic use with
reduced responses to both immunotherapy and chemotherapy [43]. Furthermore, certain
microbes can either promote or inhibit tumor growth through their effects on drug metabolism,
such as the modulation of gemcitabine efficacy by Gammaproteobacteria [44]. Microbiome
can be perceived as both a therapeutic ally and a potential barrier, and it is of crucial importance

to consider microbiota modulation as a complementary approach to optimize cancer treatments.

It has been long recognized, that bacteria are capable of penetrating and moving within the

tumour [45], making them a perfect candidate for anticancer agents. When using bacteria for
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treatment, tumour regression can be achieved by native bacterial cytotoxicity caused by
sensitization of the immune system and competition for nutrients [46]. This effect, however,
can be hampered by the immune system preventing intra-tumoural bacterial dissemination [47].
One hypothesis we put forward is that the intra-tumoural presence of commensal bacteria
(either recruited by the tumour or opportunistic) helps the tumour escape the immune system,
since these bacteria are not recognized as pathogens. If this hypothesis can be validated, it could
serve as the basis of a bacterial-targeted treatment.

It is our strong belief that the identification of gut microbiota specific to treatment-resistant
tumours is a key step towards a finer patient population stratification and more targeted

therapies.

The need for multimodal approach

Molecular profiling, however powerful, constitutes only one modality of exploration of the
complex picture of CRC heterogeneity. The machinery of molecular events adapts swiftly to
the signals from its surrounding microenvironment, which plays an important role in shaping
the tumour phenotype. Tumour and patient metabolome profiling is currently in its renaissance
and is being exploited for identification of marker metabolites defined as surrogate indicators
of colorectal cancer development [48]. Differences in metabolic profiles were found not only
between normal and cancer tissue, but also within subtypes of CRC [49]. The metabolic and
inflammatory milieu within the tumour microenvironment may affect the function and
phenotype of tumour cells, irrespective of genotype.

While we are witnessing increased interest in characterizing the gut microbiome from cancer
clinical perspective, this research applied to colorectal cancer lags behind tumour molecular
profiling by several years. Some studies tried to incorporate information on tumour associated
microbiome in order to improve the accuracy of the existing patient CRC prognostic score [50]
or developed new screening/prognostic models [51]. However, despite consistent patterns of
gut microbial disruption in comparison to healthy individuals [52,53], the variability between
diseased individuals remains too high. One source of this variability is the type of diet. Another
source, however, can again be assigned to tumour molecular heterogeneity and the respective
tumour metabolic profile, which might influence the tumour microbiota. Due to this, we
suggested, that any study aiming at unveiling the role of microbiota in colorectal cancer
progression or response to therapy should investigate the presence and distribution of bacteria

and immune cell types accounting for the intra-tumoural heterogeneity and metabolism. If
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microbiota is to answer some of the key outstanding questions about CRC heterogeneity that
are not explained by molecular profiling, we have to move from simple healthy-
tissue/adenoma/carcinoma correlation studies towards complex multimodal approaches. A new
approach is definitely needed, that is data-driven and can cleverly and efficiently mine and
combine all the modalities (molecular data, clinical data, histopathology, metabolism and
microbiome) and not only catalogue the existing correlations but also generate sound
hypotheses that can be tested in further functional analyses.

This perspective motivated us to submit the AZV research project (COLOBIOME), which
aimed to integrate microbiome and tumour microenvironment analyses into the study of
colorectal cancer heterogeneity. Through this project, we successfully established a prospective
cohort of approximately 200 stage [-IV CRC patients. This cohort includes an extensive array
of samples: stool samples, tumour and adjacent visually normal mucosa swabs for microbiome
profiling, tumor resections preserved as FFPE and fresh-frozen tissues, as well as peripheral

blood collected at the time of diagnosis.

Methodological considerations of microbiome studies in clinical samples

Studying the microbiome in clinical samples is inherently challenging due to numerous
technical and biological factors that can influence the quality and reproducibility of results. In
our study [16], we systematically evaluated the impact of stool sampling methods and DNA
isolation kits on quality of extracted DNA and estimation of bacterial composition and diversity
using 16S rRNA sequencing on the MiSeq [llumina platform. Thanks to this study, we gained
insights into the methodological aspects that need to be standardized to ensure robust

microbiome profiling in our further studies.

Sixteen volunteers provided samples from a single stool using three sampling kits: stool
container (SK1), flocked swab (SK2), and cotton swab (SK3). DNA was extracted using two
isolation kits, PowerLyzer PowerSoil (PS) and QIAamp DNA Stool Mini Kit (QS), resulting
in 96 samples for analysis. User preference evaluations showed that 100% of participants
favored the stool container (SK1) for ease of use, while 81.25% found the flocked swab (SK2)
least convenient due to challenging handling. DNA quality assessments revealed higher yields
with the QS kit, but PS preserved better DNA integrity, particularly when paired with stool
containers. Interestingly, stool container samples also exhibited reduced PCR inhibitors,

enhancing downstream processing efficiency. While bacterial diversity metrics (Chao 1 and

50



OTUs) were influenced by both sampling and isolation methods, PS consistently extracted

more Gram-positive bacterial taxa due to its robust bead-beating procedure.

Bacterial composition analysis confirmed that both the sampling and isolation methods
significantly influenced taxonomic abundance, particularly at higher taxonomic levels (phylum,
class, order) (Figure 14). PS exhibited greater efficiency in recovering Gram-positive taxa, a
trend attributed to its superior cell lysis capabilities. Notably, stool container samples resulted

in higher bacterial diversity, likely due to optimized sample dilution during preprocessing.
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Figure 14 Distributions of relative abundances of significantly affected taxa at family level. Four graphs represent families divided according
to third quartile of their abundance. Only taxa that passed the filtering criteria (maximum abundance >1%), significantly affected by isolation
or sampling kit are shown. The colored squares below the graph indicate whether the family was affected significantly by the sampling kit
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The tumour mucosa microbial subtypes

The microbial composition within the colorectal cancer (CRC) tumor microenvironment
represents a pivotal factor in understanding tumor biology and its progression. In our study
[17], we adopted a microbial community-centric approach to comprehensively characterize the
heterogeneity of the tumor-associated microbiome across three distinct sampling

environments: tumor mucosa, adjacent visually normal mucosa, and stool samples. Utilizing a
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cohort of 178 CRC patients (stages 0—IV) from the COLOBIOME project, and analyzing 483
samples, our aim was to explore the microbial landscape and its association with clinical
variables, while addressing limitations of earlier studies that were either species-centric or
underpowered in sample size. By focusing on microbial communities rather than individual
species, we provided a different perspective into the tumour microbial heterogeneity. Our final
result was identification of CRC tumor mucosal microbial subtypes.

To ensure robust methodology, 16S rRNA sequencing was used for microbial profiling, with
data processing performed using state-of-the-art compositional data techniques. Prior to
analysis, zero multiplicative replacement and centered log-ratio (clr) transformations were
applied to address the compositional nature of microbiome data. Microbial diversity was
evaluated using alpha diversity metrics, such as Chao 1 and observed species, while beta
diversity was analyzed based on Aitchison distance matrices. Co-occurrence patterns among
microbial taxa as well as clusters of tumours with similar microbial compositions were
identified through hierarchical clustering.

To identify differences in diversity and bacterial composition across environments and their
associations with clinical variables, we applied comprehensive statistical analyses, including
the Friedman test, rank regression, and permutational multivariate analysis of variance
(PERMANOVA). Multiple testing corrections were conducted using the Benjamini-Hochberg
procedure, with a false discovery rate (FDR) threshold set at <0.1.

The analysis of the tumor microbiome associations with clinical variables revealed numerous
associations. Notably, higher-grade tumors (grade 3) were characterized by an increased
abundance of the potentially pathogenic genera such as Fusobacterium, Campylobacter,
Leptotrichia, Selenomonas, and Prevotella in tumor mucosa, reflecting their potential role in
tumor progression and aggressiveness. These associations were particularly pronounced in
right-sided tumors, where high-grade tumors were enriched in genera such as Prevotella and
Selenomonas. In contrast, lower-grade tumors (grade 1 and 2) and left-sided tumors exhibited
a depletion of pathogenic genera and an enrichment of commensal species such as
Bifidobacterium, Ruminococcaceae UCG-010, and Victivallis. Tumor location was also a
critical determinant of microbiome composition, with distinct microbial signatures observed
for right-sided and left-sided tumors, reflecting the well-known biological differences between
these tumor types. Advanced tumor stages (pT3/pT4) were associated with increased

abundance of genera such as Peptoclostridium and Parvimonas in tumor mucosa, while
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metastasis status primarily influenced the stool microbiome, with genera like Akkermansia
enriched in patients with local or distant metastases.

To characterize the microbial heterogeneity of tumor mucosa while excluding potential stool
contaminants, we focused solely on species that were statistically significantly more abundant
in tumor mucosa compared to stool. Overall, 121 genera showed significant differences in
abundance across sample environments, leading to the definition of five microbial categories:
tumor genera (enriched in tumors compared to stool), divided further into mucosa genera
(shared enrichment in tumor and visually normal mucosa) and tumor-specific genera (enriched
only in tumor mucosa). Then, we defined stool genera (enriched in stool), and no-difference
genera (consistent abundance across sample types). The analysis uncovered 57 genera enriched
in tumor mucosa compared to stool, 16 of which were defined as tumor-specific genera,
uniquely associated with tumor tissue and absent in adjacent normal mucosa. Notably, these
tumor-specific genera predominantly consisted of genera comprising oral pathogens such as
Fusobacterium, Parvimonas, Campylobacter, and Leptotrichia, supporting their potential role
in tumorigenesis. Similarly, bacterial groups dominated by gut commensals, such as
Ruminococcus and Bacteroides, were primarily found in stool samples, emphasizing the
distinct microbial ecosystems between mucosal and luminal compartments.

The bacteria were classified into six groups, labeled B1-B6. Groups B1 and B2 predominantly
represented typical gut microbiome members. The B1 group included the five most common
and abundant genera: Fusobacterium, Lachnoclostridium, Bacteroides, Escherichia-Shigella,
and an uncultured genus from the Lachnospiraceae family. Nearly all tumors contained at least
three of these genera, with 78.7% containing all five. These bacteria exhibited high co-
occurrence across sample types, except for Fusobacterium, which was primarily found in
mucosal samples. Group B4, referred to as the Selenomonas group, was exclusively composed
of oral microbiome genera, enriched in Selenomonas. Groups B3 and B5 also primarily
consisted of oral microbiome genera, which exhibited significantly lower incidence in stool
samples, being absent in 45.7%-94.1% of cases where they were present in tumor mucosa.
Finally, Group B6 comprised 27 less common species with incidence rates ranging from 0% to

37% (median 11.1%).

The new tumour microbial classification was proposed on the 57 tumour genera and comprised
of three tumor microbial subtypes (TMS1-TMS3), each associated with distinct clinical and

microbial features (Figure 15).

53



TMS1: High Pathogen Burden and Biofilm Association

TMSI, representing 26% of tumors, was characterized by the highest microbial pathogen
burden, with a high abundance of potential oral pathogens and bacteria associated with
advanced tumor progression. This subtype contained all microbial groups (B1-B4) and was
enriched in genera such as Fusobacterium, Campylobacter, Leptotrichia, Peptoclostridium,
and Selenomonas. These bacteria have been linked to biofilm formation and cancer-associated
inflammation, which might explain the more aggressive features of TMS1 tumors. Clinically,
TMSI1 was associated with right-sided tumors (60.9%), higher-grade tumors (58.7% grade 3),
advanced pathological stages (95.6% pT3/pT4), and a higher prevalence of microsatellite
instability-high (MSI-H, 34.8%) and BRAF mutations (15.2%). This subtype likely represents
a biologically distinct group of tumors enriched in microbial biofilms, which could drive local

inflammation and promote tumor progression.
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TMS?2: Intermediate Pathogen Burden and Left-Sided Tumors
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TMS2 accounted for 31% of tumors and displayed an intermediate pathogen burden. Unlike
TMSI, this subtype lacked bacteria from the Selenomonas group (B4) but included other oral
and gut-associated genera such as Leptotrichia, Granulicatella, Aggregatibacter, and
Veillonella. TMS2 tumors were predominantly left-sided, including rectosigmoid and rectal
tumors (70.9%), and exhibited a more heterogeneous microbial composition. This subtype
could be further divided into two groups: TMS2a, enriched in oral bacteria such as Neisseria
and Granulicatella, and TMS2b, enriched in gut-associated bacteria such as Tyzzerella 4 and
Hungatella. TMS2 mucosal microbiomes also showed a higher abundance of commensal
bacteria such as Haemophilus and Sutterella, indicating a more balanced microbial

environment compared to TMS1.

TMS3: Low Pathogen Burden and Commensal-Enriched Microbiome

TMS3, the largest subtype, comprised 43% of tumors and was defined by a low microbial
pathogen burden. This subtype had a reduced presence of oral pathogens and biofilm-
associated bacteria and was characterized by a higher proportion of commensal gut bacteria.
TMS3 tumors were equally distributed between right-sided and left-sided locations, with a
notable enrichment of lower-grade tumors (15.6% grade 1). TMS3 was further divided into
two subgroups: TMS3a, associated with an increased presence of Incertae Sedis from the
Erysipelotrichaceae family and Tyzzerella 4, and TMS3b, characterized by genera such as
Clostridium sensu stricto 1, Ruminococcaceae UCG-013, and Lachnospiraceae Incertae Sedis.
Interestingly, TMS3 included all tumors that lacked Fusobacterium in both tumor mucosa and

stool samples, suggesting a distinct microbial profile compared to the other subtypes.

In conclusion, this study extended the characterization of the colorectal cancer microbiome in
several important directions. By analyzing 483 samples from 178 patients, we identified
bacterial genera previously unassociated with colorectal cancer mucosa or clinical variables,
revealing novel avenues for understanding their roles in disease progression. Our focus on
microbial community-level analysis rather than species-centric approaches allowed us to
describe three major tumor-microbial subtypes, each differing in microbial composition,
associations with clinical parameters, and what we define as microbial pathogen burden—
highlighting their potential relevance to tumor aggressiveness and progression.

The complementary nature of the sampled environments—tumor mucosa, visually normal
mucosa, and stool—provided insights into the distinct contributions of the microbiota across

these niches. While tumor mucosa and visually normal mucosa reflected tumor-specific
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variables, such as grade and location, stool microbiomes were more influenced by the presence
of metastases and overall disease progression. It is evident that combining both mucosal and
stool sampling is essential for gaining a more comprehensive understanding of CRC
microbiome dynamics.

Although this study provided valuable insights, the absence of validation data and the potential
influence of dietary and lifestyle factors limit broader applicability. Further investigations with
larger, geographically diverse cohorts are necessary to confirm and refine these findings.
Nonetheless, the ability to associate tumor microbial subtypes with clinical variables suggests
the potential for leveraging the microbiome in CRC management. Tailored strategies, such as
diet modifications, probiotics, or antimicrobial interventions, may emerge as valuable additions
to current therapeutic approaches. This study represented a significant step forward, offering
new perspectives for exploring microbiome-related treatments and biomarkers in colorectal
cancer.

Our unique CRC dataset provided the foundation for our involvement in the H2020 project
ONCOBIOME [54], which enabled us to further enhance our tumor sample data by
incorporating whole metagenome sequencing (WMGS) and stool-derived miRNA profiling.
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3.6. OMICS BIOMARKERS IN DIAGNOSTICS
AND THERAPY OF CRC

mRNA Biomarkers for Predicting FOLFIRI Treatment Response

Personalized treatment strategies in colon cancer remain a major clinical need, particularly in
optimizing adjuvant chemotherapy selection for Stage III patients. In our study using the
PETACC-3 clinical trial cohort, we evaluated the predictive value of ABCG2 and
topoisomerase 1 (TOP1) mRNA expression for assessing the benefit of irinotecan-based
therapy (FOLFIRI) [18]. We analyzed mRNA expression data from 580 Stage III colon cancer
patients randomized to receive either 5-fluorouracil/leucovorin (SFUL) alone or in combination
with irinotecan (FOLFIRI). Patients were stratified into two biomarker-defined groups: a
“resistant” group characterized by high ABCG2 and low TOP1 expression (n = 216) and a

“sensitive” group encompassing all other expression profiles (n = 364).

Applying Cox proportional hazards regression, Kaplan-Meier survival analysis, and log-rank
testing, we demonstrated that patients classified as “sensitive” derived significant benefit from
FOLFIRI, with improved recurrence-free survival (HR: 0.63, p = 0.016) and overall survival
(HR: 0.60, p=0.02) compared to the “resistant” group. These associations were even stronger
in microsatellite-stable (MSS) and microsatellite-instability-low (MSI-L) patients (n = 470),
while no survival differences were observed when patients received SFUL alone. This
suggested that the ABCG2/TOP1 mRNA profile may serve as a clinically relevant biomarker

for predicting responsiveness to irinotecan-based chemotherapy.

Fecal microRNA Signatures for Non-Invasive CRC Diagnosis

Current colorectal cancer (CRC) screening programs rely on fecal tests, which often lack the
sensitivity needed to detect early-stage tumors and precancerous lesions. Thanks to our
participation in the H2020 project ONCOBIOME, I had the opportunity to address this
limitation and explore stool microRNA (miRNA) profiles as potential biomarkers for non-
invasive CRC detection, leveraging a comprehensive multi-cohort study and explainable

machine-learning approaches.
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In this study [19] conducted 1,273 small RNA sequencing experiments across multiple
biospecimens, analyzing fecal samples from both an Italian and a Czech cohort (155 CRC
patients, 87 adenomas, 96 individuals with other intestinal diseases, and 141 colonoscopy-

negative controls) (Figure 16).
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Figure 16. Graphical abstract of the miRNA biomarker study (from [19]).

Through systematic analysis, we identified a robust 5-miRNA signature (miR-149-3p, miR-
607-5p, miR-1246, miR-4488, and miR-6777-5p) capable of distinguishing CRC patients from
controls with high accuracy (AUC = 0.86, 95% CI: 0.79-0.94). This signature was
independently validated in our COLOBIOME cohort (AUC = 0.96, 95% CI: 0.92—-1.00) and
further tested in fecal immunochemical test (FIT) leftover samples, demonstrating
compatibility with existing CRC screening workflows. Importantly, the signature effectively
classified patients with early-stage tumors and advanced adenomas (AUC = 0.82, 95% CI:
0.71-0.97), underscoring its potential utility for early detection. Beyond its diagnostic
relevance, our study provided additional novel insights into the biological role of miRNAs in
CRC progression. Very importantly, we found that stool miRNA profiles mirrored those of
tumor tissues, reinforcing thus their potential as biomarkers. Moreover, the detection of CRC-
associated miRNA alterations in FIT leftover samples showed the feasibility of integrating

stool miRNA analysis into routine screening programs.

Despite the study’s strengths—such as its large sample size and rigorous multi-cohort
validation—some challenges remain. CRC and adenoma subtypes were not exhaustively
represented, and the investigation of miRNAs in screening samples remains in an early phase.
Nevertheless, this work laid the foundation for refining non-invasive CRC diagnostics. By

integrating stool miRNA profiling into existing screening strategies, we may significantly
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enhance early detection, improving patient outcomes while minimizing the need for invasive

procedures.

Gene Expression Profiling of the Invasion Front for Risk Stratification in Stage 114
CRC

In a more applied extension of our work exploring CRC morphological heterogeneity, we
hypothesized that focusing on the invasion front, rather than whole tumor sections, could
provide additional insights for patient prognostic stratification. The tumor invasion front
represents a biologically dynamic interface where cancer cells interact with the surrounding
stroma, undergo epithelial-to-mesenchymal transition (EMT), and acquire invasive properties.
Given its role in tumor progression, we investigated whether gene expression profiling of this
specific region could improve risk assessment in Stage IIA CRC patients [20]. We specifically
focused on Stage IIA CRC because this subgroup presents a major clinical challenge in
treatment decision-making. While these patients generally have a good prognosis, a subset
experiences early relapse despite the absence of traditional high-risk features. Unlike Stage III
CRC, where adjuvant chemotherapy is standard, the benefit of additional treatment in Stage
ITA remains debated.

We analyzed matched bulk tumor and invasion front samples from 39 patients, divided into
early relapse (n = 19) and no relapse (n = 20) groups. While differential expression analyses
did not reveal individual genes with significant differences after multiple testing corrections,
pathway analyses highlighted the epithelial-to-mesenchymal transition (EMT) pathway as
notably upregulated in early relapse cases. This finding underscores the invasion front's role in

tumor aggressiveness.
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By developing predictive models using ElasticNet regression, we discovered that gene
expression profiles from the invasion front were more effective in forecasting early relapse
than those from bulk tumor samples. The invasion front model achieved an area under the curve
(AUC) of 0.931, surpassing the bulk tumor model's AUC of 0.887. This suggests that the

invasion front harbors critical molecular insights pertinent to tumor progression.
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4. CONCLUSTION

Throughout my scientific journey, I have focused on integrating computational and molecular
approaches to better understand the heterogeneity of colorectal cancer and its implications for
clinical decision-making. My work has spanned multiple facets of CRC research, from mining
large-scale molecular datasets to defining robust subtypes, linking these classifications to
histopathological features, and validating key findings in preclinical models. The opportunity
to work with the PETACC-3 clinical trial data allowed me to contribute to refining CRC
molecular subtyping, particularly by identifying transcriptional programs associated with
tumor location and progression. This naturally extended into investigating tumor morphology
at a finer scale, where I explored how features at the invasion front contribute to patient risk

stratification.

Recognizing that CRC is not just a tumor-intrinsic disease but one shaped by its
microenvironment, [ also turned my attention to the role of the microbiome. By leveraging our
unique dataset of paired mucosal and stool samples, I contributed to characterizing microbial
signatures associated with tumor subtypes and clinical variables. These findings not only
deepen our understanding of CRC biology but also open possibilities for microbial-based

biomarkers and therapeutic strategies.

A critical aspect of my work has been ensuring that computational insights are validated in
biologically meaningful systems. I had the opportunity to contribute to efforts leveraging
genetically engineered mouse models (GEMMs) and patient-derived xenografts (PDXs) to test
hypotheses derived from our molecular analyses. This work underscored the challenges of
translating in silico findings into preclinical models and the need for rigorous data integration

strategies, some of which I helped shape.

Finally, my research has always been driven by its translational potential. From identifying
biomarkers that predict response to chemotherapy to developing fecal microRNA signatures
for noninvasive CRC diagnosis, I have sought to bridge the gap between discovery and clinical
application. The ability to contribute to projects with real-world impact, including those within

the ONCOBIOME consortium, has been particularly rewarding.

In summary, this thesis reflects my commitment to leveraging data-driven approaches to
answer key questions in CRC research. By continuously refining methodologies and embracing

interdisciplinary collaborations, I have aimed to contribute to a more precise and clinically
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actionable understanding of CRC. While many questions remain open, I see this work as a

foundation for further exploration—both in the laboratory and in clinical practice.
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ABSTRACT

Summary: A top scoring pair (TSP) classifier consists of a pair
of variables whose relative ordering can be used for accurately
predicting the class label of a sample. This classification rule has
the advantage of being easily interpretable and more robust against
technical variations in data, as those due to different microarray
platforms. Here we describe a parallel implementation of this
classifier which significantly reduces the training time, and a number
of extensions, including a multi-class approach, which has the
potential of improving the classification performance.

Availability and Implementation: Full c++ source code and
R package Rgtsp are freely available from http://lausanne.isb-
sib.ch/~vpopovic/research/. The implementation relies on existing
OpenMP libraries.

Contact: vlad.popovici@isb-sib.ch
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1 INTRODUCTION

Top scoring pairs (TSPs; Geman er al., 2004) are simple two-
variables binary classifiers, in which the prediction of the class label
is based solely on the relative ranking of the expression levels of
the two genes. The rank-based approach to classification ensures a
higher degree of robustness to technical variations and makes the
rule easily portable across platforms. Also, the direct comparison of
the expression level of the genes is easily interpretable in the clinical
context, making the TSPs attractive for medical tests.

Let x=[x;1;=1,.. m €R™ be a vector of measurements (e.g. gene
expression) representing a sample and let the corresponding class
label be y, with two classes denoted by 0 and 1. Then, for all pairs
of variables i and j, a score is computed,

sij =P <xjly=1)—Px; <xjly=0),1<i,j<m (D)

where P are conditional probabilities estimated from the data, and
the corresponding decision rule is: if sign(s; j)x; <sign(s; ;)x; then
predict y=1, otherwise y=0. The pairs are ordered by the absolute
values of their scores and the top # pairs (¢ > 1) are then considered for
the final model (Geman et al., 2004; Tan et al., 2005; Xu et al., 2005).
Remarkably, training a TSP does not require the optimization of any
parameter and does not depend on any threshold. Selecting a suitable
value for ¢ should be done following the usual machine learning
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Fig. 1. Predicting estrogen receptor status: if GSTP1<ESRI, then the
sample is considered ER+ (circles), otherwise ER— (triangles).

paradigm for optimizing meta-parameters (see, for example, Hastie
et al., 2001). Figure 1 shows an example of a TSP predicting the
estrogen receptor status. The decision boundary (in grey) is always
a line with a slope of 1.

2 IMPLEMENTATION

While the method briefly described above is simple and poses
no implementation problems, using it in the context of highly
dimensional data requires the evaluation of an extremely large
number of pairs of variables making its usage impractical, especially
in the context of resampling techniques for performance estimation.
However, most if not all of the modern desktop computers are multi-
core machines, making parallel programs a feasible alternative to
classical serial ones.

Our implementation in C++ exploits the multi-core architecture
by using the OpenMP libraries of the system (Chapman et al.,
2007), and is wrapped in an R package — Rgtsp. The full source
code and the R package are available from http://lausanne.isb-
sib.ch/~vpopovic/research/. As C++ is the main implementation
language, the library can easily be extended and integrated with
other software libraries. Also, the R functions are independent of
the domain of application so they could be applied to any kind of
data.

© The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 1729
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3 USAGE EXAMPLES

We present a typical case of using Rgt sp package. These examples
represent solely some code snippets and not the full process of
developing and assessing the performance of a classifier.

The data used in these examples consists of 130 samples stage |
to III breast cancer (Hess e? al., 2006) and the goal is to predict the
estrogen receptor status (positive or negative coded with ‘+1° and
‘0, respectively). For illustration purposes we use only a subset of
full dataset available from GEO repository under accession number
GSE16716.

Before starting R, the user has the option of choosing the
number of processing units that will be used, by setting the
environment variable OMP_NUM_THREADS. If not set, it defaults
to the maximum number of processing units available.

The first steps load the library and the data and build a list of TSPs
(note that the matrix X contains the variables as columns):

> library (Rgtsp)

> data (mdabr)

> tsp.list = tsp.n(X, y.erpos, 500)
> str(tsp.list)

> print(tsp.list)

The function tsp.n () returns at most n TSPs as a list with three
components: the first two correspond to the indexes of the selected
variables and the third one contains the associated scores. A similar
function, tsp.s (), returns all the TSPs that have a score larger
than a specified value.

For the p-th TSP, the prediction rule can be written as: predict
class ‘+1’if X[, tsp.1listSI[pl] < X[,tsp.listsST(pl]
and this forms the core of the predict function. The decision
function for p=1 in the above example is shown in Figure 1.
Given a list of TSPs one has different choices on how to obtain
the final predicted labels. Currently, Rgt sp proposes two means
of combining the predictions of individual TSPs: either by majority
voting or by weighting the votes with the correspoding scores—
giving more weight to the TSPs with better scores. This functionality
is available through the predict () generic function:

> yp = predict(tsp.list, X, combiner="majority")
> sum(yp != y.erpos) # count the errors
[1] 3

By inspecting the list of TSPs, it becomes clear that there are
variables that are selected many times as having always either higher
or lower value than all its pairing variables. We call such a structure
a TSP hub and we can construct all the hubs larger than a specified
size (25 pairs for example) using

> h = tsp.hub(tsp.list, min.hub.size=25)
> print (h)
Hub 1: 194 pairs
Center: 953 >
14 25 42 43 44 45 54 105 140 146 149 150 152 202

This corresponds to a TSP hub in which the probeset
colnames (X) [953] (205225_at, ESR1) has a higher

expression than all other probesets in the list tsp.1list. The TSP
hubs can also be used in predicting the labels, through the same
mechanism as above:

> yph = predict(h, X, combiner="majority")
> sum(yph != y.erpos) # no. of errors: 6

We see that in this particular case the prediction by TSP hubs is
slightly less accurate than the combined predictions of the individual
TSPs.

The generalization performance of the TSPs classifiers can be
estimated by various methods. The Rgtsp package provides a
function for k-fold cross-validation of the binary TSP classifiers
(either tsp.n() or tsp.s() functions), cv.tsp (), which
returns the training and validation performance of the classifier (it
defaults to 5-fold cross-validation).

> r = cv.tsp(X, y.erpos)

> print(r)

Str.m

Error.rate Sensitivity Specificity AUC
0.02884615 0.97812500 0.96000000 0.96906250

In the case of a multi-class problem, we propose to use
classification trees built on top of TSPs predictions. For C>2
classes, one can train TSPs to solve each of the C(C —1)/2 pairwise
binary classification problems [called one-versus-one (Hsu and Lin,
2002) or round robin (Fiirnkranz , 2002) strategy] and then combine
the predictions of the TSPs through a classification tree to predict
the original classes. For more details the reader is referred to the
package web page. This approach is implemented in the function
mtsp () and makes use of the ctree () function in the party R
package (v4 is an artificial 4—class label vector):

> m = mtsp (X, y4)
> yp = predict(m, X)
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statistical inference, stochastic aggregation,
and visualization of multiple omics ranked lists

Abstract: High-throughput sequencing techniques are increasingly affordable and produce massive amounts
of data. Together with other high-throughput technologies, such as microarrays, there are an enormous
amount of resources in databases. The collection of these valuable data has been routine for more than a
decade. Despite different technologies, many experiments share the same goal. For instance, the aims of
RNA-seq studies often coincide with those of differential gene expression experiments based on microar-
rays. As such, it would be logical to utilize all available data. However, there is a lack of biostatistical tools
for the integration of results obtained from different technologies. Although diverse technological platforms
produce different raw data, one commonality for experiments with the same goal is that all the outcomes
can be transformed into a platform-independent data format — rankings — for the same set of items. Here we
present the R package TopKLists, which allows for statistical inference on the lengths of informative (top-k)
partial lists, for stochastic aggregation of full or partial lists, and for graphical exploration of the input and
consolidated output. A graphical user interface has also been implemented for providing access to the under-
lying algorithms. To illustrate the applicability and usefulness of the package, we integrated microRNA data
of non-small cell lung cancer across different measurement techniques and draw conclusions. The package
can be obtained from CRAN under a LGPL-3 license.

Keywords: 62G99; 65K10; 68N01; 65C60; 62F07.

DOI 10.1515/sagmb-2014-0093

1 Introduction

Several high-throughput technologies have emerged in the past decade, most notably next generation
sequencing, but also methods that estimate abundance levels of proteins and small molecules. Together,
these methods are contributing to an enormous collection of experimental data. However, current research in
molecular science is typically based on rather small studies in terms of sample size, many of them addressing
the same disease or target. The findings obtained across platforms and studies are often quite diverse and an
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increasingly important task is to strengthen the evidence of these findings. Hence, there is a strong demand
for statistical methods that integrate such findings, for example for combining microarray-based expression
measurements with RNA-seq results.

A central task is the integration of such data, which differ in important aspects such as laboratory tech-
nology, quantification, scale, and study size. When several studies are combined, the involved sets of genes
or of other omics entities usually do not match and missing observations are likely to occur. Moreover, often
only subsets of unknown size of these data are relevant or informative. In almost all situations the origi-
nal metric measurements from the involved studies can be transformed into rank data. Until recently, most
integration tools for rank data have been heuristic in nature and could not meet all the above mentioned
demands. The few statistical integration approaches in use are limited to microarray results (Yang et al.,
2006; Plaisier et al., 2010). A general methodology allowing for the integration of other high-throughput
technologies, as well as allowing for a platform and technology mix, even when ranked lists are incomplete,
had been lacking until the work of Lin and Ding (2009) and Hall and Schimek (2012). Schimek et al. (2012)
combined these approaches and extended them with the goal of processing arbitrarily long multiple ranked
lists. To turn such novel statistical methods into practical tools, we have implemented them in the Top-
KLists R package. It focuses on the nonparametric estimation of the top-k list length and on the stochastic
aggregation of the identified top-k lists. In addition, it also includes conventional aggregation techniques and
visual aids for the analysis of ranked lists and the interpretation of aggregation results. In the following, we
give an overview of the package and its statistical background, and we apply it to microRNA lung cancer data
obtained from a number of different platforms.

2 Structure and availability of the R package

The TopKLists package comprises three modules: (i) TopKInference offers exploratory nonparametric
inference for the estimation of the top-k list length of paired rankings; (ii) TopKSpace provides various rank
aggregation techniques; (iii) TopKGraphics comprises a collection of graphical tools for the exploration of
data and for the visualization of aggregation results. The analysis pipeline is to estimate the top-k consensus
list length first, which also works for more than two ranked lists comprising tens of thousands of items, and to
then aggregate the already obtained truncated lists. A new graphical concept, the aggregation map, has been
implemented to visualize this graphically. It displays the selected top items with quality measures indicating
their relevance with respect to the full ranked lists. Venn-type representations and a summary list form the
end of the pipeline. The obtained formal results can then be used in succeeding downstream analysis and
experimental validation. The modules can be used as stand-alone R libraries or via a graphical user interface
(GUI) for ease of use (see Figure 1 for an example of the GUI interface).

TopKLists is available under the LGPL-3 license from CRAN for all major operating systems. Its R-
Forge Web page http://TopKLists.r-forge.r-project.org/ offers the latest development version of the package,
detailed vignette-based information about the methods and the package, and instructions on how to analyze
the application data described in the example of this paper.

3 Implementation and performance of the R package

The TopKLists package has been designed and implemented for usage on standard desktop computers. To
increase the computational speed and performance, parts of the sampling methods have been implemented
in C. Therefore, when locally building the package from the source code these methods will be compiled.
The graphical user interface, which provides interactive access to several TopKLists’ procedures, has been
implemented using the gWidgets2 package (Verzani, 2014).

The time needed for computation in the modules TopKInference and TopKSpace depends strongly
on the choice of tuning parameters (see next section). Typically, when these parameters are chosen
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Figure 1: GUI window with the final aggregation map of the NSCLC application.

appropriately, for lists with thousands of items, the runtime should be in the range of several seconds for
inference as well as for aggregation. Most of the implemented aggregation techniques are computationally
more demanding than the inference approach. For this reason, aggregation is usually performed on partial
lists obtained from the inference procedure. For stochastic aggregation techniques runtime can amount to
five or more seconds in a typical scenario.

4 Brief description of the statistical methods

The purpose of the TopKInference module is inference on the concordant top length of several rankings
comprising the same set of items. The assumptions are: the reliability of rankings breaks down after the first
k items due to lack of discriminatory information, irregular or even missing assessments, and substantially
more ranked items than assessors exist. The index j, is the rank position where the consensus information
of two lists degenerates into noise. The estimation of }0—1=12 is achieved via a moderate deviation-based
method developed by Hall and Schimek (2012).

For a given set of items, the input is the overlap of rank positions represented by a sequence of indica-
tors, where Il.:l if the ranking, given by the second assessor to the item ranked j by the first assessor, is not
more than 6 index positions distant from j, otherwise I=0. The assumption that the variables I follow a Ber-
noulli random distribution can be relaxed. There is theoretical and simulation evidence that dependencies
among the ranked lists do not impair the estimates (Hall and Schimek, 2012). As well as the distance 9, the
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inter-assessor or inter-platform variability, there is another tuning parameter, the pilot sample size v, which
is a smoothing parameter controlling the irregularity of assessments or expression measurements. A graphi-
cal method called A-plot is implemented in TopKGraphics which helps to select 6. The parameter v can be
chosen interactively via the GUI.

The overall estimate k for ¢ multiple lists is calculated in the following way: The inference method
is applied to all pairwise hst comblnatlons Y= (ﬁz /) of the lists, thus we obtain ¢ values k 4=1, 2, ..., 2.
The overall top-k list length is then defined by k , =Max, (k ) (note, other criteria could be chosen as well)
The ¢ full lists truncated after k . form the input to TopKSpace As the reader will see from the description
below, TopKSpace is more general, and this specific scenario constitutes a special case that TopKSpace is
applicable to.

The principle of the TopKSpace module is to consolidate information from the 7 top-k lists to arrive
at an aggregate list, AL. The top-k lists (Ll, L,.,L () may not only be of different lengths, they may also
come from studies or assessments that consider different sets of items, hence the underlying spaces (S,,
S,, ..., S)) from which the top-k lists are derived may actually be different. The goal therefore is to find the
top-k list, AL, from the aggregate new space (ulf;lLi), such that the weighted sum of distances between
each of the input lists and AL will be the minimum among lists of the same length. Two distance meas-
ures, Kendall’s T and Spearman’s footrule, are available in the package. Both take the differences in the
underlying spaces into account (Lin, 2010). There are three classes of algorithms implemented in TopK-
Space, namely Borda’s method, Markov chain (MC) algorithms (Lin, 2010), and a cross entropy Monte
Carlo (CEMC) method taking advantage of the new order explicit algorithm (OEA) as described by Lin and
Ding (2009). The Borda and MC methods consist of heuristic algorithms that do not directly optimize the
objective function (i.e., minimizing the weighted distances), whereas the CEMC method employs a Monte
Carlo search procedure for achieving this optimization. Borda and MC algorithms run substantially faster
than the CEMC algorithm, however the latter usually achieves better results. Nevertheless, simulation
studies indicate that taking the underlying space into consideration has a much greater impact than
using different algorithms.

5 Application to cross platform microRNA profiles

Stimulated by the methodological discussion of microRNA profiling in Baker (2010), we compared non-small
cell lung cancer (NSCLC) cell lines grown in vitro and in vivo as xenograft models across platforms. From
the NCBI GEO database we retrieved data (Tam et al., 2014) of five in vitro and five in vivo samples from
three different platforms: (i) GSE51501, Illumina Human v2 MicroRNA Expression BeadChip; (ii) GSE51504,
NanoString nCounter Human vl miRNA Expression Assay; (iii) GSE51507, Illumina HiSeq 2500 (High Through-
put Sequencing, abb. HTS). Data (i) and (ii) were normalized using Bioconductor’snormalize.quantiles
and analysed with the R-package samr (Tibshirani et al., 2011) (cell line vs. xenograft). The next generation
sequencing data (iii) were processed with Bioconductor’s DESeq2 (Love et al., 2014). The resulting miRNA
expression values (items) from each platform were ranked according to their FDR-adjusted p-values. Those
items common to all three lists were the input to the package TopKLists and comprise N=531 miRNAs. The
thus obtained ranked lists and the corresponding code for the data analysis can be accessed and downloaded
from the TopKLists Web page.

Data exploration led to the choice of §=40 and v=22 for the inference procedure (for details please refer to
the show case instructions on the Web page). The obtained result was iém= 12 and the three lists were trun-
cated at this index position. The associated aggregation map is displayed in Figure 1. Its left group (NanoString-
HTS-BeadChip) represents the aggregation result when all three platforms are integrated, and the right group
(HTS-BeadChip) when NanoString is excluded. A group comparison allows us to identify platform differences
(‘white’ denotes that an item is top-listed in only one of the concerned lists, ‘gray’ otherwise). NanoString
had the strongest impact on the selection of top-ranking miRNAs and forms, with the other two platforms,
a highly conforming group of six items. hsa-miR-107, on rank 7 in NanoString, is of special interest, as it was
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shown to suppress growth of NSCLC cell lines and induced a G1 cell cycle arrest in H1299 cells (Takahashi
etal., 2009). It was ranked 83 and 53 index positions away in HTS and BeadChip, and therefore is represented
as close in the map by a ‘red’ color as opposed to more dlstant ranks, presenting themselves in yellow

Finally, we calculated an optimized aggregate list AL for the three lists truncated after k =12 via
CEMC under Kendall’s 7 and Spearman’s footrule. In Table 1 (columns 1 and 2) the final items are displayed
in their new rank order. For comparison, the 12 top-ranked miRNAs based on Fisher’s method for combining
p-values (Fisher, 1925) are listed in the third column of the same table. We have used the function fisher.
method from the R package MADAM (Kugler et al., 2010) with Benjamini-Hochberg p-value correction.

The CEMC stochastic search algorithm may select items that are top-ranked only in one of the lists (here
BeadChip). This applies to the following items in Table 1: hsa-miR-576-5p, hsa-miR-490-5p, hsa-miR-139-5p,
hsa-miR-1233, hsa-miR-1284, and hsa-miR-505. In contrast, Fisher’s method tends to select ’‘consensus’ items,
thus having greater agreements with the aggregation map results. Within the top-5 positions the same items
are selected by all methods. Only the orders are permuted. However, apart from this rather limited set of over-
lapping miRNAs, both aggregate lists from CEMC, as well as the aggregation map discussed before, clearly
point at substantial platform differences.

Using the miRSystem (Lu et al., 2012) we found the final lists (one for Kendall, one for Spearman, and
one for Fisher’s method) of ranked miRNAs to be highly enriched for the JAK-STAT signaling pathway and
the Hedgehog signaling pathway both of which were suggested to play an important role in NSCLC. The
interesting candidates comprise hsa-miR-143, which is among a set of 43 miRNAs that were found to be differ-
entially expressed between noncancerous lung tissues and lung cancer tissues (Yanaihara et al., 2006) and
has also been suggested as a putative biomarker for NSCLC (Gao et al., 2010). Finally, on rank 1 and on rank 2,
respectively, we have the RAB14 targeting tumor suppressor hsa-miR-451 (Wang et al., 2011).

6 Discussion

A major advantage over ground truth-based and other ad hoc methods is TopKLists’s ability to provide
an objective data-driven top-list length estimate and a consolidated as well as optimized aggregate ranking
based on multiple input lists. In the described NSCLC application it allowed us to efficiently select those
miRNAs which are supported by all three or at least by two platforms. In addition, a consolidated set of
miRNAs under different aggregation criteria (distance measures) could be obtained. The aggregation map

Table 1: Aggregate list results of the NSCLC application.

Rank AL (Kendall) AL (Spearman) Fisher’s method
1 hsa-miR-451 hsa-miR-143 hsa-miR-143

2 hsa-miR-223 hsa-miR-451 hsa-miR-451

3 hsa-miR-199a-5p hsa-miR-223 hsa-miR-223

4 hsa-miR-143 hsa-miR-144 hsa-miR-144

5 hsa-miR-144 hsa-miR-199a-5p hsa-miR-199a-5p
6 hsa-miR-150 hsa-miR-1284 hsa-miR-145

7 hsa-miR-576-5p hsa-miR-139-5p hsa-miR-133a

8 hsa-miR-490-5p hsa-miR-150 hsa-miR-195

9 hsa-miR-139-5p hsa-miR-195 hsa-miR-214

10 hsa-miR-107 hsa-miR-145 hsa-miR-150

11 hsa-miR-1233 hsa-miR-505 hsa-miR-1246
12 hsa-miR-133a hsa-miR-1246 hsa-miR-142-5p

First and second columns: CEMC consolidated list results under the distance measures Kendall’s 7 and Spearman’s footrule.
Third column: consolidated list using Fisher’s method for combining p-values (miR-symbols in bold coincide with the
aggregation map result in Figure 1).
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as well as the stochastic CEMC aggregation method also aid in giving an answer to the problem raised in
Baker (2010): Although there is high conformity among the top-5 items across all (graphical and stochastic)
aggregation techniques, our results support the observation that substantial platform differences exist with
respect to all other miRNA measurements. As has been demonstrated in this paper, TopKLists offers a
variety of highly useful and computationally efficient state-of-the-art methods for omics data integration,
most of them implemented in R for the first time.
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Background: Pathway analysis methods, in which differentially expressed genes are mapped to databases of
reference pathways and relative enrichment is assessed, help investigators to propose biologically relevant
hypotheses. The last generation of pathway analysis methods takes into account the topological structure of a
pathway, which helps to increase both specificity and sensitivity of the findings. Simultaneously, the RNA-Seq
technology is gaining popularity and becomes widely used for gene expression profiling. Unfortunately, majority of
topological pathway analysis methods remains without implementation and if an implementation exists, it is limited

Results: We developed a new R/Bioconductor package ToPASeq offering uniform interface to seven distinct
topology-based pathway analysis methods, of which three we implemented de-novo and four were adjusted from
existing implementations. Apart this, ToPASeq offers a set of tailored visualization functions and functions for
importing and manipulating pathways and their topologies, facilitating the application of the methods on different
species. The package can be used to compare the differential expression of pathways between two conditions on
both gene expression microarray and RNA-Seq data. The package is written in R and is available from Bioconductor 3.2

Conclusion: ToPASeq is a novel package that offers seven distinct methods for topology-based pathway analysis,
which are easily applicable on microarray as well as RNA-Seq data, both in human and other species. At the same
time, it provides specific tools for visualization of the results.

Keywords: Topology, Pathway analysis, Microarray, RNA-Seq, Packages

Background

High-throughput gene expression technologies (such as
microarray or RNA-Seq) are used to estimate expression
levels of thousands of genes in one experiment. Often the
aim of such experiments is to find pathways and biologi-
cal processes altered between two conditions, which helps
investigators to propose biologically relevant hypotheses
for further research. Achieving this aim implies inte-
gration of a priori known pathway information into the
data analysis. Most often, a set of genes with similar
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biological function or participating in a regulatory pro-
cess is employed as a set of entities in enrichment-based
methods [1]. This approach, however, ignores known
interactions between particular genes reflected in the
topological structure. Thus, if a change in interactions
occurs, this is not reflected in the results. The last gener-
ation of pathway analysis methods takes into account the
topological structure of a pathway, which helps to increase
both specificity and sensitivity of the findings.

Several types of methods for topology-based pathway
analysis were proposed in the recent years (for review
see [2]) - in all of them, the topological structure of a
pathway is represented as graph with nodes (genes, pro-
teins) and edges (interactions between genes/proteins).
The methods test one of the two types of null hypothe-
ses as proposed in [3] for gene set enrichment analysis.
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Independently on the hypothesis tested, we can further
distinguish multivariable and univariable methods. For
more detailed description of differences between multi-
variable vs univariable methods, we refer the reader to
Additonal file 1.

Here, we focus on methods that (i) aim to identify
pathways affected between two conditions based on dif-
ferential expression of genes in the pathway - the most
frequent aim of high-throughput genomic data studies, (ii)
use the a priori known pathway topologies and (iii) use the
pathway topologies separately.

The vast majority of existing topology pathway analy-
sis methods were designed for continuous gene expression
measures as obtained from microarray experiments. In
order to apply them to discrete count data - a typical out-
put from RNA-Seq experiment (number of reads mapped
to a particular gene) - one must use a suitable transforma-
tion. Poisson or Negative binomial distribution are used
as model distributions in differential expression analysis
at gene-level for RNA-Seq data and a wide range of both
transformation methods and statistical tests for this pur-
pose exists. Performance of these methods is only recently
being compared in extensive simulation studies [4—7].

The published methods are only rarely implemented as a
publicly available software tool or package, and sometimes
the existing implementation is not available anymore (e.g
TAPPA [8]). The existing implementations can be divided
into three categories: (i) commercial products (e.g. Meta-
Core [9]); (ii) R-packages (e.g. SPIA [10]) (iii) standalone
applications (e.g. PWEA [11] or PRS [12]) and (iv) web-
based applications (e.g. iPathwayGuide [13]). All of these
tools usually offer embedded pathway topologies with a
limited battery of methods (typically only one) and simple
visualization (if any) of the results. Simultaneous applica-
tion of different methods and comparison of their results
is therefore very time-consuming, cuambersome and prone
to clerical errors due to need for repeated data conversion
and transfer. Additionally, the results may not be directly
comparable, since some of the implementations use either
built-in pathway topologies or their own pathway topol-
ogy processing algorithm that leads to different topologi-
cal structures. One of the best existing tools offering com-
mon interface to four topology-based pathway analysis
methods (TopologyGSA [14], clipper [15], DEGraph [16]
and SPIA [17]) is the R/Bioconductor package graphite
[18]. The user can also access lists of parsed pathway
topologies for some of the most common experimen-
tal organisms (14 in version 1.14.1) from several distinct
databases (up to 6 for H. Sapiens, same version) stored as
objects of class PathwayList where individual pathways
are represented as instances of class Pathway. Although
more pathways can be obtained from public databases
or specialized websites and parsed to the R environment
with available CRAN/Bioconductor packages, there is no
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transformation function from other pathway classes to
the PathwayList or Pathway. The current graphite
implementation has no uniform way of calling methods
or specification of their parameters, making simultaneous
application of different methods unhandy. Additionally,
SPIA is limited only to data with EntrezGene identi-
fiers and the signs of the interactions are neglected in
DEGraph.

Here, we present ToPASeq (Topology-based Pathway
Analysis of microarray and RNA-Seq data) - a Biocon-
ductor package that adjusts the set of methods available
through graphite and extends them by addition of three
more methods. The package offers their unified manipula-
tion and provides tools for their easy application on RNA-
Seq count data. In addition, it provides special functions
for conversion of user-imported pathways into Pathway
class and a set of tools for coercing graphs between dif-
ferent formats and manipulation and visualization of the
results.

In section Implementation, we describe the software
implementation and available functions. Concrete exam-
ples of package usage and its comparison to other tools are
given section Results and Discussion.

Implementation

ToPASeq was implemented using statistical programming
language R and the package is available through the open-
source Bioconductor project [19].

In order to apply a topology-based pathway analysis
method we need (i) gene expression measurements (a
gene expression data matrix in which rows refer to genes
and columns to samples), (ii) a vector with sample class
labels and (iii) a list of pathways of interest together with
their topologies in a specific format. The gene expression
measurements and sample class information are usually
available from the experiment.

Pathway topologies and their manipulation

Pathway topologies are necessary for topology-based
pathway analysis and can be created manually, or - even
better - obtained from public databases or R packages,
where they are typically stored in one of the standard-
ized formats (KGML, BioPax, specific R classes). These
formats, however, need to be parsed (downloaded and
converted to specific format) to be used within the meth-
ods’ particular implementations. Within R framework,
multiple ways exist for pathway topology/graph represen-
tation. More detailed description of some of them in the
context of biological pathways can be found in Additional
file 1.

Our package requires the pathway topologies in for-
mat defined as S4 class PathwayList where individual
pathways are of class Pathway, which allows combina-
tion of oriented and not-oriented edges as well as multiple
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edges between nodes. We have especially designed several
transformation functions that convert the most common
formats into Pathway.

The users might be interested in manual editing of
topology of the parsed pathways. We added group of
methods such as (i) adding/removing of the nodes and
edges, (ii) changing the type of interaction/directionality,
(iii) merging two pathways into one, (iv) obtaining the
induced subgraph. Additionally, the user may need to
select only a subset of pathways based on their topologi-
cal properties (e.g. number of edges related to a particular
node, number of nodes, number of edges, number of con-
nected components etc.). These can be easily obtained
with other set of available functions.

Moreover, we especially designed a new function
reduceGraph which merges the user defined named
sets of nodes into a single node. The members of
the sets must form either a gene family or a pro-
tein complex. The another function estimateCF esti-
mates the maximal list of the sets of the nodes that
can be merged. Finally, we provide a general function
convertIdentifiersByVector which requires user
specified information. For the detailed desctiption of the
functionalities mentioned above we refer the reader to
Additional file 1.

Methods for topology-based pathway analysis
The package offers seven different methods covering
various approaches in topological pathway analysis (see
Table 1 for details). For detailed description of each
method the reader is referred to cited references. We will
focus on those aspects that are relevant to methods’ new
implementation. All methods are implemented as a single
function that applies the method over the list of pathways.
More detailed description of differences between previous
implementations of methods to our implementation can
be found in Additional file 1.

We imported and adjusted the implemetation of the
following methods: TopologyGSA, DEGraph, SPIA and
Clipper. We found that the original implementation of

Table 1 Methods included in the package
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the TopologyGSA method is extremely computationally
intense for some of the pathways as the authors employ
function that implements the exact branch-and-bound
algorithm [20] to detect all of the cliques (subsets of nodes
where every two nodes are connected by an edge) in
a pathway topology. In our implementation, we substi-
tuted this function with getCliques which implements
more efficient Bron-Kerbosch algorithm [21]. For the
DEGraph method we have created a new wrapper func-
tion that preserves the possibility to consider interaction
types (activation and inhibiton) and transforms the results
into more user-friendly format - a data frame. The pre-
vious implementations of the SPIA method were limited
to Entrez identificators. In our package we have bypassed
this limitation by incorporating a more general converting
function. Additionally, the user can also obtain a gene-
level net perturbation accumulation — a measure of the
importance of a gene in the topology. The Clipper method
constists of two steps: (i) first, the differential expression
of a pathway is assessed, (ii) then, the pathway topology is
transformed into a junction tree and the portions of the
tree which are mostly associated with phenotype are iden-
tified. We designed a new function that performs both
steps of the algorithm in a single call.

In all of the imported and adjusted implementations
we also added, when appropriate, an additional parameter
specifying how should be the undirected interactions ori-
ented. The user can choose whether an edge is oriented
in both directions or only in one according to the order of
the nodes.

We de-novo implemented three methods: TAPPA,
PWEA, PRS, for which there was no implementation
available within R framework. The PRS and PWEA are
implemented in MATLAB and C++ respectively and these
tools are discussed in the section Comparison with other
Tools. Our de-novo implementations are settled for path-
way topologies from graphite package where one node
is represented by only one gene or protein. Both PWEA
and PRS methods incorporate a permutation-based test in
order to assess the statistical significance of the pathway

Method Ref. Type? Hypothesis AP Primary Graph Implementation Input data“

TopologyGSA [14] M self-contained No DAG adjusted GEDM

DEGraph [16] M self-contained Yes DAG adjusted GEDM

clipper [15] M self-contained No DAG adjusted GEDM

SPIA [17], U competitive Yes directed adjusted DEG and their log fold-change
[25]

PRS [26] U competitive No directed de novo DEG and their log-fold change

PWEA [27] U competitve No undirected de novo gene-level statistics

TAPPA [8] U self-contained No undirected de novo GEDM

9 - M - multivariable, U - univariable © - A - Activation, | - Inhibition © - the data related to the pathway topology
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score. Considering the computational complexity of this
approach we parallelized the crucial step of the PWEA
method (repeated application of the differential expres-
sion analysis). In addition, the function for obtaining the
number of the differentially expressed genes in PRS algo-
rithm was implemented in C++ via Repp package.

While several methods (TopologyGSA, DEGraph,
Clipper and TAPPA) work directly with normalized
gene expression values, others (SPIA, PRS and PWEA)
use the result of differential gene-expression analysis
with or without application of significance thresholds to
obtain the list of differentially expressed genes (Fig. 1).
With respect to this, all the methods were adapted
also for a simple use of RNA-Seq count data. First, we
employed pre-processing step for RNA-Seq normaliza-
tion, with a selection of two best performing methods
TMM [22], DESeq [23], as compared in Dillies et al. [4]
and regularized log transformation from DESeq2 package
which effectively removes the mean-variance relation-
ship known in RNA-Seq data. Second, we added methods
for RNA-Seq differential gene expression analysis (from
limma and DESeq2 packages).

Usage and visualization

Each method is implemented as a single wrapper func-
tion which allows the user to call a method in a single
command. The wrapper function offers: (i) normaliza-
tion of count data; (ii) differential gene expression analysis
and (iii) pathway analysis. The data input types were uni-
fied for all the methods. Expression data can be supplied
both as matrix or as ExpressionSet. The functions’
outputs have uniform format defined as a new S3 class
topResult with specified output of generic functions
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(print, plot, summary) and methods for accessing indi-
vidual slots of the resulting object. The users can specify
which method should be used for normalization or dif-
ferential expression analysis of the RNA-Seq data, with
respect to their own preferences. This data pre-processing
step can be completely omitted and users can submit
already normalized data or, if appropriate, the results of
the differential expression analysis (a table containing log
fold-changes, statistics and p-values). Note, that PWEA
method requires also so called Topology Influence Factors
(TTFs), which need to be calculated from normalized gene
expression data matrix.

When the generic function plot () is applied to a
topResult class, together with a name of the path-
way or position in the list of pathways identifying the
pathway to be plotted, a visualization of the pathway
with three gene-level statistics is produced (Fig. 1 in
Additional file 1. The user can specify a threshold by
which an agreement between the expression status of the
nodes and the interaction type between them is examined
(Fig. 2 in Additional file 1).

The topology can be reduced by user specified list of
nodes that are to be merged into one node. In this sit-
uation a pie chart is used as a representation of a node
and the number of slices equals to the number of nodes
merged. The filling colour and the radius is preserved
from the separated nodes (Fig. 2). By default a mean
change of the gene expression is used as a representative
of the values when the agreement between gene expres-
sion and the interaction type is examined, but the user can
specify another aggregation function. A slightly modified
graph is plotted for TopologyGSA and Clipper, which per-
form differential expression analysis of the cliques. Since

Count data

Normalization and transformation

Gene Expression Data Matrix

Analysis of differential expression

Application of thresholds \

Gene-level statistics

Differentially expressed genes and

All the genes in the experiment

Fig. 1 Schema of a processing pipeline. The red boxes refer to the outputs from regular analysis of differentially expressed genes and possible
inputs for topology-based pathway analysis. Arrows indicate the processing pipeline of each of the methods implemented in the package

TopologyGSA, clipper,
DEGraph, TAPPA

Pathway topologies
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merged into single nodes. Those nodes are drawn as pie-chart, in which the number of slices equals to the number of gene merged. The colour,
border and radius are preserved from the complete graph (Fig. 2 in Additional file 1). Average log fold-change is used as representative value, when
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a single node can be a member of more than one clique,
the colour of edges is used for their visualization (Fig. 4 in
Additional file 1).

Results and Discussion
For a simple example of how to create and manipulate a
pathway, we refer the reader to Additional file 1.

We provide a simple application example of imple-
mented methods on a RNA-Seq dataset. For more detailed
descriptions of all the functions we refer the reader to the
package manual.

The aim is to compare gene expression profiles
between wild-type and RNA-binding protein hnRNP C
(HNRNPC) knockdown HeLa cells [24]. The RNA-Seq
dataset came from gageData package. There are four
knockdown samples and four experimental samples in
this dataset containing the count data for 22932 genes.
We load the data and remove genes with count O in
all samples:

library (ToPASeq)
library (gageData)
data (hnrnp.cnts)

vV V. V V

group<-c (rep ("sample", 4),

rep ("control",b4))
hnrnp.cnts<-hnrnp.cnts [rowSums
(hnrnp.cnts) >0, ]

... download the KEGG pathways and apply all seven
topology-based pathway methods:

>

kegg<-pathways ("hsapiens", "kegg")

> top<-TopologyGSA (hnrnp.cnts, group,
type="RNASeq")
deg<-DEGraph (hnrnp.cnts,
type="RNASeq")
cli<-clipper (hnrnp.cnts,
type="RNASeq")
spi<-SPIA (hnrnp.cnts,

type="RNASeq")

kegg,
group, kegg,
group, kegg,

group, kegg,



Table 2 Known implementation of the methods provided in ToPASeq

Method Language Source Pathways Format Input data Methods Issusses
topologyGSA R Bioconductor one example graphNEL GEDM topologyGSA  too computationaly intense
clipper R Bioconductor imported from pathway GEDM clipper two separate steps neces-
graphite sary
DEGraph R Bioconductor parsing function for graphNEL GEDM DEGraph
KGML
SPIA R Bioconductor parsing function for list of adjacency matrices DEG and log SPIA Only for EntrezGene IDs
KGML, H. sapiens and fold-changes
M. musculus pre-parsed
PRS tool MATLAB web? KEGG unknown GEDM PRS can not add or modify path-
ways, the data must have
manufacturer probeset IDs,
limited set of: possible plat-
forms, DE tests,
PWEA C++ web? human pathways from unknown GSD PWEA only for UNIX-like
KEGG
TAPPA Java web® KEGG or PPI added to - - TAPPA not available
a gene set
graphite R Bioconductor pathways for 14 species Pathway depends on topologyGSA, suboptimal import of the
from up to 6 databases the method  clipper, SPIA, methods
DEGraph,

9 - http://www.buckingham.ac.uk/research/clore-laboratory-diabetes-obesity-and-metabolic-research/staff/maysson-al-haj-ibrahim/prs-tool/

b - httpy/zlab.bu.edu/PWEA/index.php

¢ - http://watson.mcgee.mcw.edu:8080/~sgao, the page is down. (First accessed 4 Apr 2012) PPI - protein-protein interactions GEDM - gene expression data matrix, log2-transformed and normalized expression profiles
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> prs<-PRS (hnrnp.cnts,
type="RNASeq")

group, kegg,

> pwea<-PWEA (hnrnp.cnts, group, kegg,
type="RNASeq")
> tap<-TAPPA (hnrnp.cnts, group, kegg,

type="RNASeq")

The arguments of all functions are as follows (from left
to the right): a count matrix (or gene expression data
matrix), a grouping vector, list of pathways with topolo-
gies and a type of the data). The TMM normalization and
the 1imma-based differential gene-expression analysis are
used by default. The pre-set thresholds for considering a
gene significant are p-value less than 0.05 and the abso-
lute log fold change above 2. Further, the gene identifiers
in pathways are automatically converted to the Entrez-
Gene identifiers and the non-oriented edges are oriented
in both directions, when required.

The results for an individual pathway can be visualized
as shown in Fig. 1 in Additional file 1:

> plot (spi, "Prolactin signaling pathway",

+ kegg, fontsize=50)

Comparison with other tools

The known previous implementations of the methods
(if any) offered in ToPASeq are summarized in Table 2.
We will further discuss only the methods implemented
de-novo in R/Bioconductor frame work. For TAPPA
there is no other available implementation known to
the authors. A C++ implementation of PWEA can be
downloaded from http://zlab.bu.edu/PWEA/download.
php. The expression data have to be in the GSD for-
mat from Gene Expression Omnibus, where the probe-
sets are named by both manufacturer IDs and the gene
symbols. It is coupled with python script for retrieving
and processing of KEGG .xml and .gene files. Beside the
limitation to KEGG pathways and the need for manual
downloading of non-human pathways or conversion to
KGML format, it can be run only on UNIX-like systems.
Recently, a standalone MATLAB-based implementation
of PRS was published [12]. The application requires nor-
malized microarray data in XLS file with manufacturer
identifiers of the probesets, together with specification
of the platform and the normalization method that was
applied to the data. The set of possible platforms is limited
to selection of Affymetrix HG and one Agilent platform.
The user has no control over the pathway topologies that
are used.

None of these tools allows for different method for
normalization (e.g normalization with custom CDF-files
from http://brainarray.mbni.med.umich.edu) or differen-
tial expression analysis; nor can it be used to analyse the
RNA-Seq data.

Page 7 of 8

Some users may prefer Cytoscape for visualization of
pathways, since it provides user-friendly and interactive
interface, which can be achieved using the RCytoscape
package. Within this interface, however, the user can spec-
ify only the basic graphical parameters like size, shape
or colour of the nodes or the styles of edges. Advanced
graphical approaches provided through plug-ins can be
accessed only directly from Cytoscape. We are currently
working on the option of interactive graph visualization.

Conclusions

Topology-based pathway analysis comprises a new gener-
ation of methods in gene set analysis, with the potential
of generating more sensitive and more specific results.
Currently, high-throughput technologies producing gene
expression data that serve as input to these methods
are employed in almost every biological and biomedical
research with RNA-Seq being in the leader position. Tools
for comfortable and quick application of these methods
and visualization of their results are needed. Available
packages or standalone applications are usually limited to
one or few methods, readily applicable mainly to human
studies and rarely contain also a visualization tool. We
propose ToPASeq, a Bioconductor package providing a
set of easy-to-use and general tools for topology-based
pathway analysis within the R workspace. It offers seven
distinct topology-based pathway analysis methods that
cover wide range of approaches and can be easily applied
on both microarray and RNA-Seq data. It also offers a
visualization tool that is able to capture all the relevant
information about the expression of genes within one
pathway. Finally, the functions for pathway conversion
extend the application of topology-based pathway analysis
to experiments on species other than human.

Availability and requirements

Project name: ToPASeq

Project home page: http://www.bioconductor.org/
packages/release/bioc/html/ToPASeq.html

Operating system(s): Platform independent
Programming language: R

Other requirements: R version 3.2.1, CRAN and Biocon-
ductor packages: graphite (>= 1.14), graph, gRbase
License: AGPL-3

Any restrictions to use by non-academics: none
Availability of supporting data: EBI ArrayExpress Exper-
iment E-MTAB-1147: http://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-1147/, also in gageData package

Additional file

Additional file 1: Supplementary material.pdf. The file contains
additional details on the following: i) common principles of the
multivariable and univariable topology-based methods; ii) the functions for
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pathway creation and manipulation (desciption as well as demostration);
i) comparison of ToPASeq with existing tools. (1013 Kb)

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

Il'and EB designed the package. Il implemented the methods in R and drafted
the manuscript. All authors contributed to, read and approved the final
version of the manuscript.

Acknowledgements
Part of the work was carried out with the support of Proteomics Core
Facility of CEITEC - Central European Institute of Technology, ID number

CZ.1.05/1.1.00/02.0068, financed from European Regional Development Fund.

This research was supported by RECETOX research infrastructure and by the
Czech Ministry of Education (LM2011028, LO1214).

Author details

!Institute of Biostatistics and Analyses, Faculty of Medicine, Masarykova
Univerzita, Brno, Czech Republic. 2Central European Institute of Technology,
Brno, Czech Republic. *RECETOX, Faculty of Science, Masarykova Univerzita,
Brno, Czech Republic.

Received: 7 September 2015 Accepted: 7 October 2015
Published online: 29 October 2015

References

1. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
et al. Gene set enrichment analysis: A knowledge-based approach for
interpreting genome-wide expression profiles. Proc Natl Acad Sci.
2005;102(43):15545-15550.

2. Mitrea C, Taghavi Z, Bokanizad B, Hanoudi S, Tagett R, Donato M, et al.
Methods and approaches in the topology-based analysis of biological
pathways. Front Physiol. 2013;4(278):1-22.

3. Goeman JJ, Buhlmann P. Analyzing gene expression data in terms of
gene sets: methodological issues. Bioinforma. 2007;23(8):980-7.

4. Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M,
Servant N, et al. A comprehensive evaluation of normalization methods
for illumina high-throughput rna sequencing data analysis. Brief
Bioinform. 2013;14(6):671-83.

5. Soneson C, Delorenzi M. A comparison of methods for differential
expression analysis of ra-seq data. BMC Bioinforma. 2013;14(1):91.

6. RapaportF, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, et al.
Comprehensive evaluation of differential gene expression analysis
methods for ra-seq data. Genome Biol. 2013;14(9):95.

7. Seyednasrollah F, Laiho A, Elo LL. Comparison of software packages for
detecting differential expression in rna-seq studies. Brief Bioinforma.
2015;16(1):59-70.

8. Gao S, Wang X. Tappa: topological analysis of pathway phenotype
association. Bioinforma. 2007;23(22):3100-102.

9. Thomson R. MetaCoreTM Data-mining and Pathway Analysis.
http://thomsonreuters.com/metacore/. Access Date: 13 Jul 2013.

10. Tarca AL, KathriP, Draghici S. SPIA: Signaling Pathway Impact Analysis
(SPIA) Using Combined Evidence of Pathway Over-representation and
Unusual Signaling Perturbations, R package version 2.16.0. 2013.
http://bioinformatics.oxfordjournals.org/cgi/reprint/btn577v1.

Access Date: 10 Sep 2013.

11. Hung JH. PWEA Pathway Enrichment Analysis. http://zlab.bu.edu/PWEA/
index.php. Access Date: 13 Jul 2014.

12. Ibrahim M, Jassim S, Cawthorne MA, Langlands K. A matlab tool for
pathway enrichment using a topology-based pathway regulation score.
BMC Bioinforma. 2014;15:358.

13. Advaita C. iPathwayGuide. http://www.advaitabio.com/products.html.
Access Date: 13 Jul 2013.

14. Massa M, Chiogna M, Romualdi C. Gene set analysis exploiting the
topology of a pathway. BMC Syst Biol. 2010;4(1):121.

20.

21

22.

23.

24,

25.

26.

27.

Page 8 of 8

Martini P, Sales G, Massa MS, Chiogna M, Romualdi C. Along signal
paths: an empirical gene set approach exploiting pathway topology.
Nucleic Acids Res. 2013;41(1):e19.

Jacob L, Neuvial P, Dudoit S. Gains in Power from Structured
Two-Sample Tests of Means on Graphs: Annals of Applied Statistics; 2012.
6:pp. 561-600.

Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim J-s, et al. A novel
signaling pathway impact analysis. Bioinforma. 2009,25(1):75-82.

Sales G, Calura E, Cavalieri D, Romualdi C. graphite - a bioconductor
package to convert pathway topology to gene network. BMC Bioinforma.
2012;13(1):20.

Gentleman RC, Carey VJ, Bates DM. Bioconductor: Open software
development for computational biology and bicinformatics. Genome
Biol. 2004;5:80.

Niskanen S, Ostergard PRJ. Cliquer user's guide, version 1.0. Technical
report. Espoo, Finland: Communications Laboratory, Helsinki University of
Technology; 2003.

Bron C, Kerbosch J. Algorithm 457: Finding all cliques of an undirected
graph. Commun ACM. 1973;16(9):575-7.

Robinson M, Oshlack A. A scaling normalization method for differential
expression analysis of rna-seq data. Genome Biol. 2010;11(3):25.

Anders S, Huber W. Differential expression analysis for sequence count
data. Genome Biol. 2010;11(10):106.

Luo W, Friedman M, Shedden K, Hankenson K, Woolf P. GAGE: generally
applicable gene set enrichment for pathway analysis. BMC Bioinforma.
2009;10(1):161.

Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, etal. A
systems biology approach for pathway level analysis. Genome Res.
2007;17(10):000.

Al-Haj Ibrahim M, Jassim S, Cawthorne MA, Langlands K. A
topology-based score for pathway enrichment. J Comput Biol. 2012;19(5):
563-573.

Hung JH, Whitfield T, Yang TH, Hu Z, Weng Z, DeLisi C. Identification of
functional modules that correlate with phenotypic difference: the
influence of network topology. Genome Biol. 2010;11(2):23.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( ) BiolMed Central
J



http://thomsonreuters.com/metacore/
http://bioinformatics.oxfordjournals.org/cgi/reprint/btn577v1
http://zlab.bu.edu/PWEA/index.php
http://zlab.bu.edu/PWEA/index.php
http://www.advaitabio.com/products.html

[4] Thnatova I, Popovici V, Budinska E. A critical comparison of topology-based pathway
analysis methods. PLOS ONE. 2018;13(1):e0191154. doi:10.1371/journal.pone.0191154.

72



@° PLOS | ONE

Check for
updates

G OPEN ACCESS

Citation: Ihnatova I, Popovici V, Budinska E (2018)
A critical comparison of topology-based pathway
analysis methods. PLoS ONE 13(1): 0191154.
https://doi.org/10.1371/journal.pone.0191154

Editor: Xia Li, College of Bioinformatics Science
and Technology, CHINA

Received: March 12, 2017
Accepted: December 29, 2017
Published: January 25, 2018

Copyright: © 2018 Ihnatova et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information
files.

Funding: This research was supported by the
CETOCOEN PLUS project (CZ.02.1.01/0.0/0.0/15
003/0000469), by the Ministry of Health of the
Czech Republic under grant no.16-31966A and by
the European Community’s Seventh Framework
Programme under grant agreement no. 602901
MErCuRIC. Computational resources were
provided by the CESNET LM2015042 and the
CERIT Scientific Cloud LM2015085, provided

under the programme "Projects of Large Research,

RESEARCH ARTICLE
A critical comparison of topology-based
pathway analysis methods

Ivana Ihnatova'2, Vlad Popovici', Eva Budinska'-2*

1 RECETOX, Faculty of Science, Masarykova Univerzita, Brno, Czech Republic, 2 Institute of Biostatistics
and Analyses, Faculty of Medicine, Masarykova Univerzita, Brno, Czech Republic

* budinska @recetox.muni.cz

Abstract

One of the aims of high-throughput gene/protein profiling experiments is the identification

of biological processes altered between two or more conditions. Pathway analysis is an
umbrella term for a multitude of computational approaches used for this purpose. While in
the beginning pathway analysis relied on enrichment-based approaches, a newer genera-
tion of methods is now available, exploiting pathway topologies in addition to gene/protein
expression levels. However, little effort has been invested in their critical assessment with
respect to their performance in different experimental setups. Here, we assessed the perfor-
mance of seven representative methods identifying differentially expressed pathways
between two groups of interest based on gene expression data with prior knowledge of path-
way topologies: SPIA, PRS, CePa, TAPPA, TopologyGSA, Clipper and DEGraph. We per-
formed a number of controlled experiments that investigated their sensitivity to sample and
pathway size, threshold-based filtering of differentially expressed genes, ability to detect tar-
get pathways, ability to exploit the topological information and the sensitivity to different pre-
processing strategies. We also verified type | error rates and described the influence of over-
expression of single genes, gene sets and topological motifs of various sizes on the detec-
tion of a pathway as differentially expressed. The results of our experiments demonstrate a
wide variability of the tested methods. We provide a set of recommendations for an informed
selection of the proper method for a given data analysis task.

Introduction

High-throughput gene expression technologies (microarrays or next-generation sequencing)
allow the estimation of the expression levels of thousands of genes in a single experiment.
Often these experiments are just a first step in a broader biological investigation and serve gen-
erating hypotheses based on identified differentially expressed genes and pathways. A biologi-
cal pathway is a collection of genes or molecules that act synergistically by means of chemical
reactions, molecule modifications or signal transduction to execute a biological function.
Thus, from a computational analysis perspective, a pathway is a set of genes (proteins) and
their associated pairwise interactions. Pathway analysis aims to discover those pathways whose
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activation/inactivation is associated with a group of interest. This type of analysis requires inte-
grating information about gene ontology and pathway structure.

Generally, there are two main approaches: one that relies only on the expression levels of
the constituent genes (of the pathway)—and is epitomised by the GSEA family of methods—
and a second one that additionally exploits the pathway topology. The second group of meth-
ods represents a more recent evolution of pathway analysis methods that try to improve both
specificity and sensitivity of the findings.

The application of topology-based methods is facilitated by the existence of public databases
which gather information about gene/protein interactions, such as the well-known Kyoto
Encyclopedia of Genes and Genomes (KEGG) database which provides access to hundreds of
pathways representing state-of-the-art knowledge about molecular interactions. Prior to per-
forming a topology-based pathway analysis, the pathway of interest must be pre-processed
into a simple interaction network.

Each new topology-based pathway method usually compares its performance to an enrich-
ment-based method (most often GSEA [1]) on a set of benchmark datasets. Sometimes, the
underlying mathematical model is verified by simulations. The reviews that include topology-
based pathway analysis methods either examine their algorithms from mathematical perspec-
tive [2—4] or their performance on both real and simulated data [5, 6]. The latter approach
revealed that topology-based methods outperform enrichment-based methods in accuracy and
sensitivity only for non-overlapping pathways [5] and that the FCS variant of CePa [7] method
exhibits the best cross-study concordance [6]. However, there are multiple limitations to the
existing comparisons which hamper the identification of actionable information about the
most appropriate method for a given analytical problem. First, the comparison of a topology-
based method with enrichment-based methods is oversimplistic as it does not investigate the
topological aspects of pathway deregulation (position and biological importance of a gene in a
pathway, deregulation of topological motifs etc.). Second, the existing reviews do not examine
the effect of pathway topology pre-processing strategy or whether the inclusion of the pathway
topology information in the analysis has actually any effect at all. Third, multiple other effects,
such as sample size (crucial aspect in biological experiments) or the effect of a deregulation of
a single or very few genes, are not explored either.

Given the proliferation of methods (see [8] for a review of 22 methods) and with limited
insight into their performance, data analysts are confronted with the difficult task of selecting
the best-suited method for analysing the data at hand. We propose a systematic investigation
of several prominent recently proposed methods and provide a simple guideline for decision-
making.

In this work, we consider a number of parameters that influence the quality of the results
obtained by topology-based pathway analysis. These parameters are varied in controlled exper-
iments in order to study the sensitivity of the methods and—when possible—to quantify it.
These experiments are performed on both artificial and real-world data, thus resulting in a
comprehensive characterisation of the behaviour of each considered method. From the begin-
ning, we did not expect to identify a single method that would fit all possible applications,
thus, in our investigations, we tried to capture most of the standard scenarios. The methods
under investigation were selected based on the following criteria: (i) the aim is to detect differ-
entially expressed pathways (DEPs) between two groups of interest based on gene expression
data; (ii) the pathway topology is a priori known and is modeled as simple interaction network
or graph G = (V, E), where Vis a set of vertices/nodes represented by products of genes and E
is a set of edges representing interactions between them; (iii) the pathways are modeled and
analyzed individually (without cross-pathway interactions). The typical input data for these
methods consists of a gene expression data matrix (log2-transformed normalised expression
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profiles from a high-throughput technology after standard pre-processing), group member-
ship labels (as a vector) and the list of pathway topologies. Based on these criteria we selected
the following methods: SPIA [9], PRS [10], CePa [7], TAPPA [11], TopologyGSA [12], Clipper
[13] and DEGraph [14]. Each method assigns a test-statistic and a p-value to each pathway
(possibly other parameters like the number of differentially expressed genes, pathway size etc.)
and pathways with extreme test-statistic or low p-value are called‘differentially expressed’.

Materials and methods

We performed eight distinct experiments to provide comprehensive insight into the topology-
based pathway analysis methods (Fig 1, Table 1, S1 Text). In these experiments, we examined
the influence of the number of parameters on the results obtained by topology-based pathway
analysis methods. A detailed description of the experiments can be found in the S1 Text.

The first group of parameters are data set-centric (sample size, pathway size, number of
DEGs in the dataset and thresholds used to detect DEGs; Experiment 1) and helped us to
describe the performance of a method under various conditions and to guide the selection of

INPUT DATA
Gene expression data )
(real or simulated) Pathway topologies

Clinical groups

ANALYSIS l EVALUATION OF RESULTS

Topology-based pathway analysis method S 6 peElues (15 205

i Distribution of ranks (Ex. 6-8)

—>» Number of differentially
expressed pathways (Ex. 1-8)

p-value

FACTORS AFFECTING THE RESULTS

Pathway size (Ex. 1)

Number of differentially Platform density (Ex.1)

expressed genes (Ex.1) Serinale dh

(Ex. 1) Pre-processing of pathway

Overexpressed gene(s) topologies (Ex. 8)

(number, position, effect size,
information (Ex. 7)

Fig 1. Overview of the eight controlled experiments (Ex. 1-8) performed.

https://doi.org/10.1371/journal.pone.0191154.g001
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Table 1. Overview of the experiments performed to evaluate methods’ performance.

Experiment | Parameter(s) under study Varied parameter(s)* Datasets Pathway Evaluation
topologies criterion
1 Effect of sample size, pathway size and significance | ny, ny, | V], 0 Simulated, graphite Prop. DEPs
thresholds for DEGs Real
2 Type I error rate y Simulated graphite Prop. DEPs,
histogram
3 Single gene overexpression XpicICV,|I|=1,j€1,2,3,...,nsuch | Simulated graphite Prop. DEPs
that y; =1
4 Multiple genes overexpression XpielCV,|l|€2,3,4,5j€1,2,3,..., | Simulated graphite Prop. DEPs
n such that y; =1
5 Topological motif overexpression X;picICV,|11€3,4,5j€1,2,3,...,n | Simulated graphite Prop. DEPs
such that y; =1
6 Target pathway detection XpicICV,|I|=1,j€1,2,3,...,nsuch | Simulated, graphite Median p-value,
that y; =1 Real rank
7 Inclusion of topological information PT Simulated, graphite f Prop. DEPs
Real
8 Pre-processing of pathway topologies PT Simulated, ToPASeq Prop. DEPs
Real

*X is a normalized log,-transformed gene expression data matrix of expression profiles of p genes (rows) and n, + n, samples (columns), n; and n, denote number of
samples in two compared groups, y is a vector of 1’s and 2’s assigning samples into the groups, PT is a set of pathway topologies (graphs) G = (V, E), where V is a set of
vertices/nodes represented by products of genes and E is a set of edges representing interactions between them, 6 is the threshold used for detection of DEGs;

"Prop. DEPs denotes Proportion of Differentially Expressed Pathways;

*without interactions

https://doi.org/10.1371/journal.pone.0191154.t001

the optimal method for a specific dataset. The methods’ ability to control type I error was stud-
ied in Experiment 2. The influence of overexpression of particular gene(s) (Experiments 3-5),
the influence of discarding the topological information (Experiment 7) and the effect of the
pre-processing of pathway topologies (Experiment 8) tested the topology-based nature of the
methods. If no effects were observed, the method should not be considered as topology-based
pathway analysis method. The increased sensitivity and specificity expected from the incorpo-
ration of the topological information were examined by the identification of biologically rele-
vant pathways (Experiments 6-8) since no proper method for identifying truly differentially
expressed pathways is known.

Following the categorization of GSEA methods, the topology-based pathway analysis meth-
ods can be grouped based on three main criteria: (i) the null hypothesis (competitive and self-
contained); (ii) the (non)identification of differentially expressed genes (DEGs) prior pathway
analysis (over-representation analysis (ORA) and functional class scoring (FCS)) and (iii) the
number of variables in the model (univariable and multivariable) (see S1 Text for the details).
We will use these categories in methods evaluation.

For each experiment we applied selected methods (Table 2) on gene expression datasets,
looking for differentially expressed pathway(s) between two groups of interest from a collec-
tion of pathways. In ORA methods we detected differentially expressed genes with moderated
t-test [15] and significance level o = 0.05, unless stated otherwise. For all methods estimating
significance threshold using permutations, the number of permutations was set to 1000. The
pathways were considered differentially expressed if their p-value was below the significance
threshold a = 0.05. All the analyses were performed in R statistical framework [16] and Bio-
conductor [17]. There are multiple freely-available implementations of the selected topology-
based pathway analysis methods: (i) original implementation (all but TAPPA), (ii) graphite
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Table 2. Overview of the selected methods.

SPIA
Reference [9, 20, 21]
Null hypothesis C
ORA/ECS ORA
Type U
Pathway model DG
Node statistic Log FC
Topology usage Perturbation factor
Pathway statistic Impact factor
Statistical significance Gene perm.

PRS CePa TAPPA TopologyGSA Clipper DEGraph

(10] (7] (11] [12] [13] [14]

C C * SC SC SC

ORA ORA FCS FCS FCS FCS

U U U M M M

DG UG, DG UG DAG DAG UG

Log FC Log FC - - - -
Downstream DEG Centrality PCI GGM, IPS GGM, IPS GL, FT

Sum Sum * T T T

Gene perm. Gene perm. * Sample perm. Sample perm. F-distribution

SC = self-contained, C = competitive, ORA = over-representation analysis, FCS = functional class scoring, M = multivariable, U = univariable, DAG = directed acyclic

graph, UG = undirected graph, DG = directed graph, PCI = Pathway Connectivity Index, GGM = Graphical Gaussian Models, IPS = Iterative Proportional Scaling,

GL = Graph Laplacian, * = various statistics are possible, for detection of differentially expressed pathways between two conditions authors suggests Mann-Whitney test.

https://doi.org/10.1371/journal.pone.0191154.t1002

package (SPIA, TopologyGSA, Clipper, DEGraph) [18] and (iii) ToPASeq package [19] (all
methods). ToPASeq package is our previous work in which we either de novo implemented or
optimised existing implementations of a number of existing topology-based pathway analysis
methods. For the sake of access uniformity for method application and access to method-spe-
cific pre-processing, we chose to use the ToPASeq package in our work.

The following section describes gene expression data matrices and pathway topologies used
in each experiment. We do not define the basic terms from graph theory, since they are
explained in many textbooks, for example [22]. Statistical details of individual experiments
and key properties of the compared methods are described in the S1 Text.

Real datasets

In our study we used real gene expression microarray datasets from three public collections:
Gene Overexpression Data Collection [23, 24], Breast Cancer Data Collection [25] and Disease
Control Data Collection [26, 27]. These collections were obtained and pre-processed as
described in the S1 Text. For each real dataset, we can anticipate one or several pathways that
are expected to be differentially expressed or their identification is of particular interest due to
experimental design. However, those pathways cannot be called ‘true positive’. The Gene
Overexpression Data Collection was selected because it allows us to study the effect of one per-
turbed gene. The Breast Cancer Data Collection represents a collection of datasets related to
the same biological problem, and we focus on the reproducibility of the results. In the Disease-
Control Data Collection, datasets cover various biological problems (cancer, metabolic, neuro-
degenerative diseases etc.) in a unified experimental design in which expression profiles of
patients are compared to healthy controls. Additionally, we can identify a single pathway (tar-
get pathway) which is directly related to the particular disease and hence very likely to be dif-
ferentially expressed. These datasets were used in Experiments 1, 6, 7 and 8.

Simulated datasets

Since the proper statistical distribution of the pathway expression data is unknown, we decided
to use a real dataset (a dataset from Breast Cancer Data Collection denoted as VDX) as a base
for the generation of simulated data. It contains 344 expression profiles of breast tumours
obtained on an Affymetrix Human Genome U133A Array platform with 22 283 probesets
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corresponding to 13 091 unique Entrez IDs. We used estrogen receptor status as the main
parameter dividing samples into two clinical groups. The simulated datasets were used in all
experiments. The datasets for particular experiments were generated as shown in S1 Text.

Pathways and their topologies

We used human pathways from the KEGG database as the source of pathway topologies. For
our comparison we used graphite’s pre-processed pathways as a default set of pathway
topologies for the following reasons: (i) they are claimed to be superior to original imple-
mentation [28]; (ii) they allowed us to compare only the methods’ algorithms regardless of
the pre-processing strategy; (iii) the details of the pre-processing strategy are rarely described
in the corresponding publication; (iv) the graphi te implementation is readily available
and widely used. In ToPASeq one can choose either graphite pre-processed pathways
(+GPT) or pathway pre-processing as in the original implementation (MSPT) (if available)
and hence evaluate the effect of different pre-processing strategies. The +GPT topologies
were used in all experiments, and the MSPT was used in Experiment 8 only. In Experiment 7
we also used non-topological variants of the compared methods corresponding to pathway
topologies without interactions (-GPT). To reduce computational complexity, we filtered
out pathways with more than 150 genes and with less than two genes with available expres-
sion data.

Results

Experiment 1: Effect of sample size, pathway size, platform density and
number of differentially expressed genes

Fig 2 shows the influence of sample size on the proportion of DEPs in both real and simulated
data. In the simulated datasets (Fig 2A), an increase in sample size results in an increase in the
proportion of DEPs for TAPPA and all the multivariable methods (TopologyGSA, Clipper,
DEGraph). For each of these methods, we observed a breakpoint (sample size) beyond which
the proportion of DEPs stabilised. For TopologyGSA and Clipper, this breakpoint was at 68
samples, with 94.9% and 93.4% DEPs, respectively. For the complete dataset (344 samples),
DEGraph and TAPPA identified 94.2% and 68.7% of pathways to be differentially expressed,
respectively. On the other hand, SPIA, PRS and CePa reported a rather stable proportion of
differentially expressed pathways across all sample sizes (medians between 4.7% and 14.2%).
Interestingly, there is a trend of decreasing number of DEPs with increasing sample size in
CePa.

Similar observations were made in the analysis of real datasets from the three real data col-
lections. Across all data collections, the highest proportion of DEPs was observed in Clipper
(median: 92.5%), followed by TopologyGSA (median: 73.7%), DEGraph (median: 48.0%) and
TAPPA (median: 36.1%). CePa, SPIA and PRS reported the smallest median proportion of
DEPs (27.9%, 16.5% and 13.9%, respectively). Results for individual disease collections are
shown in (Fig 2B). Although the Gene Overexpression Data Collection comprised of relatively
small datasets (Table 3), multivariable methods still reported a large proportion of DEPs, simi-
lar to the case of generally larger datasets in the Breast Cancer Data Collection. The smallest
dataset (with overexpressed c-Src) had the lowest proportion of DEPs in all methods.

The Breast Cancer Data Collection contained datasets of various microarray platform sizes
(probes representing between 2 780 and 20 389 unique Entrez IDs). For competitive methods
(SPIA, PRS and CePa), the statistical significance of the differential expression of a pathway
depends on the set of genes measured in the experiment. A smaller number of genes outside a
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Fig 2. The effect of sample size. (A) The selected dataset from Breast Cancer Data Collection (denoted as VDX) was reduced to 20 random subsets representing 5%,
10%, ... 95% of its original sample size (while preserving the proportion of samples in the clinical groups) leading to sample sizes from 16 to 326. Differentially expressed
pathways between estrogen receptor positive and negative samples were detected. The lines show the median proportion of significant pathways (p < 0.05) over 20
subsets for each sample size. (B-D) Graphs indicating the percentage of differentially expressed pathways (DEPs) in the respective data collections. k denotes the number
of datasets. See Table 3 for the summary of sample sizes. The datasets from the Breast Cancer Data Collection were divided by platfrom densities into: low-density
platforms (2780-5486 EntrezIDs), medium-density platforms (9041-13091 EntezIDs) and high-density platforms (17779-20389 EntrezIDs).

https://doi.org/10.1371/journal.pone.0191154.9002
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Table 3. Overview of the data collections.

Data Collection Number of datasets Sample size Number of gene IDs

Median Min Max Median Min Max
Gene Overexpression 3 17 17 20 23521 23521 23521
Breast Cancer 27 129 49 856 13 091 2780 20 389
Disease-Control 36 21 8 153 20 535 12 438 20535

https://doi.org/10.1371/journal.pone.0191154.t003

pathway leads to reduced variability of the random sets of DEGs which results in lower proba-
bility of extreme pathway-statistic and, as consequence, higher p-value. Hence, we split the col-
lection into low-, medium- and high- density platform datasets, based on the number of
unique EntrezIDs their probes mapped to (from 2780 to 5486 EntrezIDs for low-density, 9041
to 13091 EntrezIDs for medium-density and 17779 to 20389 EntrezIDs for high-density plat-
forms) (Fig 2C and S1 Fig). Indeed, all the competitive methods reported fewer DEPs in the
datasets from low-density platforms. On the other hand, one self-contained method—
DEGraph also reported fewer DEPs. In DEGraph, each pathway is divided into connected
components which contain only the measured genes. In case of low-density microarray plat-
form, this results in the small size of the individual components which tend to have higher p-
values.

The Disease-Control Data Collection contained small to medium size datasets in which
patients with various diagnoses were compared to healthy controls. The proportion of DEPs
varied greatly between datasets from this collection (Fig 2B). However, when we divided the
datasets into cancer-related and non-cancer-related, all the methods reported more DEPs for
the cancer-related datasets (Fig 2D). We hypothesised that this was a consequence of the larger
number of differentially expressed genes (it is known that tumours have highly deregulated
gene expression in comparison to healthy tissue). The proportion of DEPs as a function of the
number of DEGs is shown in S2 Fig. Indeed, the percentage of DEPs depended on the number
of DEGs in multivariable methods and TAPPA, but not in SPIA, CePa and PRS. Since in ORA
methods (SPIA, PRS, CePa), fixed thresholds were used to identify DEGs, we assessed the
effect of three thresholds (p < 0.05, p < 0.01 and p < 0.001) on the proportion of DEPs (54
Fig). For stricter thresholds (p < 0.01 and p < 0.001), in all methods, the number of DEPs
increased with increasing sample size, as one would expect based on statistical properties of
hypothesis testing. For p < 0.05, however, this trend holds only until a breakpoint in sample
size, which is method specific: between 85-120 samples in CePa, between 222-257 samples in
PRS and between 257-291 samples in SPIA. After the breakpoint, the number of DEPs rapidly
decreases for p < 0.05.

To study the effect of pathway size, we divided pathways into small (<35 nodes) and large
(>35 nodes) (following [29]). S3 Fig shows the median p-value of pathways within each group
as a function of dataset sample size for individual methods. Large pathways achieved lower
median p-values in comparison to small pathways, independently on the dataset sample size,
except PRS. In PRS, we observed the opposite effect starting at 137 (40%) samples. In multivar-
iable methods, median p-values decreased very rapidly with increasing sample size, dropping
below 0.01 at 33 (10%) and 51 (15%) for Clipper and TopologyGSA.

Experiment 2: Type I error rate

For all methods, the observed type I error rate was close to the expected 5% threshold, except
for CePa (12.8%), see Table 4 and S5 Fig.
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Table 4. Type I error rates: For each method the number (N) and the proportion (%) of rejected hypotheses out of
1000 tested is shown.

Method Rejected hypotheses N(%)
SPIA 30 (3.0%)

PRS 38 (3.8%)

Clipper 45 (4.5%)
TopologyGSA 47 (4.7%)
DEGraph 55 (5.5%)

TAPPA 57 (5.7%)

CePa 128 (12.8%)

https://doi.org/10.1371/journal.pone.0191154.t1004

Experiment 3: Effect of mean expression, difference in expression and
topology of a single gene

In this experiment, we studied the effect of group-specific increase of expression of single
genes in three selected pathways (increments of 0.1 to 2 in log2 fold change with step size 0.1
in 200 simulated datasets). The influence of a gene was quantified as a proportion of identified
differentially expressed pathways across all simulations and increments. For simplicity, we
divided the gene influence into five categories: very low influence (0%-20% DEPs), low influ-
ence (20%-40% DEPs), medium influence (40%-60% DEPs), high influence (60%-80% DEPs)
and very high influence (80%-100% DEPs) (S6 Fig), respectively.

An induced change in a single gene had a much stronger influence on the results of multi-
variable methods than on the results of univariable methods. The median proportion of DEPs
(combined across all induced differences) for multivariable methods was 82.5% for Topolo-
gyGSA, 82.3% for Clipper and 42.7% for DEGraph, compared to 29.3% for PRS, 25.9% for
CePa, 15.4% for TAPPA and 12.8% for SPIA.

We further examined the effect of relative change of gene expression between the groups,
the effect of gene mean expression and the effect of gene topology in a pathway (S6 Fig).

Fig 3 shows the proportion of DEPs across all genes in the Non-small cell lung cancer path-
way as a function of the induced change, for each method separately. TopologyGSA and Clip-
per were very sensitive to the increase in the induced log2 fold-change of a gene. The higher
the fold change, the higher the proportion of DEPs. In fact, both methods marked 96% of the
simulations as DEPs at log2FC = 1. In all the other methods, the effect of the increased induced
change was less dramatic, although monotone, except CePa that reached its plateau at the
induced change of 0.6 (28.3%).

The influence of gene topology was in agreement with methods’ algorithms (S6 Fig). In
TopologyGSA and Clipper, all the tested genes had a high or very high influence on the detec-
tion of DEPs, regardless of their topological properties (Table 5). The proportion of DEPs was
instead correlated with mean expression of the individual genes. The mean expression had no
significant effect on the proportion of DEPs in other methods. In DEGraph, the genes with the
highest influence were those without incoming interactions (root nodes). In SPIA, the most
influential genes had none or only neutral (e.g. binding) incoming interactions and many
downstream genes. In PRS, most of the genes had low influence on the pathway detection,
except for RIG-I-like receptor signalling pathway, which contained four genes with medium
influence. One of these genes was a common subunit of two multiprotein complexes. We
observed a correlation of the gene influence with the number of gene interactions in PRS and
TAPPA (Table 5). Although the number of interactions is one of the centralities (see S1 Text,
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Fig 3. Proportion of differentially expressed pathways (DEPs) combined across all genes as function of the induced change. The proportion of
differentially expressed pathways combined across all tested genes in the Non-small cell lung cancer pathway at different induced expression
changes. Each line represents one method. Results were very similar for TopologyGSA and Clipper, and the respective lines are overlapping. Solid
lines refer to pathway topology from graphite package (+GPT), dashed to pathway topology from graphite package without interactions (-GPT)
and dotted to method-specific pathway topology (MSPT).

https://doi.org/10.1371/journal.pone.0191154.g003

section Materials and methods) used in CePa, the most influential genes were the nodes with
the highest betweenness centrality.

Experiment 4: Effect of overexpression of multiple genes

Here, we assessed the combined impact of overexpression of multiple genes (gene sets),
regardless of the possible topological motif. In all methods, the number of DEGs in a pathway
positively correlated with the number of DEPs. Within the same gene set size, the influence of
a gene set increased with the cumulative effect of individual genes as measured in Experiment
3 (S7 Fig).
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Table 5. Spearman’s correlations coefficients between the gene influence and the number of interactions stratified by interaction type.

Pathway
Bacterial invastion of epithelial cells Non-small cell lung cancer RIG-I-like receptor signaling pathway
Interaction type Interaction type Interaction type
Method Incoming Outgoing Both Incoming Outgoing Both Incoming Outgoing Both
TopologyGSA 0.434 0.149 0.368 0.102 -0.123 -0.005 0.413 -0.063 0.239
Clipper 0.437 0.153 0.374 0.103 -0.120 -0.002 0.414 -0.059 0.244
DEGraph -0.399 0.145 -0.264 -0.608 -0.158 -0.446 -0.585 -0.113 -0.477
SPIA -0.153 0.278 0.096 -0.127 0.070 0.023 0.041 0.314 0.208
PRS 0.220 0.861 0.779 0.355 0.826 0.779 0.610 0.713 0.917
CePa 0.325 0.394 0.648 0.373 0.207 0.493 0.563 0.782 0.916
TAPPA 0.161 0.273 0.403 0.543 0.536 0.747 0.653 0.584 0.873

https://doi.org/10.1371/journal.pone.0191154.t1005

Experiment 5: Effect of overexpression of topological motifs

In this experiment, we overexpressed three, four and five genes, respectively, representing one
of the 18 topological motifs present in the Non-small cell lung cancer pathway (see S1 Text).
Similarly to the previous experiments, the proportion of DEPs increased with the induced
change and with the number of genes in the motif.

For the multivariable methods, we did not observe the influence of the motif on the propor-
tion of DEPs when compared to the gene set effect from Experiment 4 (Fig 4). In all univari-
able methods, except SPIA, motif overexpression resulted in the increased proportion of DEPs
in comparison to gene set overexpression. This difference in overexpression was independent
of the number of overexpressed genes for TAPPA but diminished with the increasing number
of overexpressed genes in PRS and CePa. In contrast, motif overexpression resulted in the
decreased proportion of DEPs in SPIA in comparison to gene set overexpression.

The effect of the motifs in the context of previous findings and the motifs’ properties (size,
topology, the sum of effects of individual genes) is shown as a heatmap with information from
Experiment 3 overlaid (S8 Fig, Fig 5). The heatmap shows clustered proportions of DEPs at
different increments of log2 fold-changes (rows) in all tested topological motifs (columns).
The proportion of DEPs increased with the induced change, and this effect separated the ana-
lysed motifs into multiple clusters. We categorised the motifs based on their overall effect (the
proportion of DEPs from all the simulations and induced changes). We were also further inter-
ested to see how the clusters correlated with the size (3, 4 or 5 genes) and the topology of the
motif. For all methods but TopologyGSA and Clipper, we observed a clustering of the motifs
according to motif size (S8 Fig). Since Experiment 4 showed that effect of multiple genes is
directly dependent on the sum of effects of individual genes, we plotted the effect of individual
genes (as measured in Experiment 3) involved in the individual topological motifs in the panel
below the heatmap. Here, the gene-specific influence is indicated by color (white means gene
was not present in the motif). Clearly, in all methods, the impact of topological motif positively
correlated with the impact of individual genes of the motif (S8 Fig).

Experiment 6: Identification of target pathways

In this experiment, for each real dataset we identified a pathway that was related to the disease
or a biological problem and, in an ideal situation, this pathway should be detected as differen-
tially expressed with very low p-value in comparison to other pathways.

During the analysis, we encountered multiple method-specific problems that resulted in the
impossibility to analyse all available pathways. First, TopologyGSA requires the dataset to have
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Fig 4. Comparison of the effect of expression change in a single gene, multiple genes and topological motifs.
Combined influence of single gene, multiple genes and topological motifs on the proportion of differentially expressed
pathways (DEPs) at varying induced expression changes is displayed. Sets of multiple genes and topological motifs are
shown in the dashed and solid lines of the same color, respectively.

https://doi.org/10.1371/journal.pone.0191154.g004

PLOS ONE | https://doi.org/10.1371/journal.pone.0191154  January 25, 2018 12/24


https://doi.org/10.1371/journal.pone.0191154.g004
https://doi.org/10.1371/journal.pone.0191154

o ®
@ : PLOS | ONE A critical comparison of topology-based pathway analysis methods

Proportion of DEPs.

0%  20% 40% 60% 80% 100%

= high (60% - 80% DEPs)
= very high (80% - 100% DEPs)

1028

]
595

Fig 5. Effect of topological motifs in SPIA. Proportions of differentially expressed pathways (DEPs) for individual motifs (columns) at variable induced log2 fold-
changes (rows) are displayed as a heatmap. Color bars on the top show influence of the motif, its size and topology (see S1 Text for details). Note, that colors used for
motif topology are unique only among motifs of the same size. The bottom panel shows the influence of the genes in a representation of a topological motif as discovered
in Experiment 3.

https://doi.org/10.1371/journal.pone.0191154.9005

more samples than the number of genes in the largest clique of the pathway and this condition
was met only by several pathways. For large datasets, such as SUPERTAM_HGU133A from
the Breast Cancer Data Collection (N = 856 expression profiles), we were unable to run Topo-
logyGSA on 80GB RAM machine. DEGraph encountered similar but less frequent problems
due to the singularity of pooled covariance matrices.

S9 and S10 Figs, and Tables 4 and 5 in S1 Text show results of the target pathway p-values
and ranks in the Disease-Control Data Collection and Breast Cancer Data Collection. The
results from the Gene Overexpression Data Collection can be found in S11 Fig. Since target
pathways are unique for each dataset from this collection, they were not suitable for trend
estimation.

Overall, multivariable methods assigned lower p—values and ranks to the target pathways
than univariable methods. In the Disease-Control Data Collection, the target pathway was
tested by TopologyGSA in only ten out of 36 datasets, of which nine times it was reported as
differentially expressed. In contrast, the ranks from the DEGraph method were the highest in
multivariable methods and the second largest in all methods. PRS and CePa reported consis-
tently low median p-values (0.031 and 0.034, respectively) and low median ranks (19.5 and
25.5, respectively). Amongst univariable methods, the highest median p-value and rank of tar-
get pathways were observed in SPIA and TAPPA. In the Breast Cancer Data Collection data-
sets, the aim was to detect differentially expressed pathways between the estrogen receptor
positive (ER+) and estrogen receptor negative (ER-) group. The set of target pathways there-
fore comprised of four pathways with estrogen receptor genes: Endocrine and other factor-reg-
ulated calcium reabsorption, Estrogen signalling pathway, Prolactin signalling pathway and
Thyroid hormone signalling pathway. Since estrogen receptor plays different roles in these
pathways and therefore harbours different topological ‘importance’, results for individual
pathways from topology-based pathway analysis may vary. For all these pathways, all multivar-
iable methods (TopologyGSA, Clipper, DEGraph) again reported very low p-values and ranks.
From the univariable methods, TAPPA returned the lowest median p-values (except Estrogen
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Table 6. Proportion of significant target pathways in the Gene Overexpression Data Collection.

Overexpressed gene in the target pathway

c-Myc

H-Ras

c-Src

https://doi.org/10.1371/journal.pone.0191154.1006

Method

SPIA PRS CePa TAPPA TopologyGSA Clipper DEGraph

7/15 8/15 12/15 10/15 0/0 14/14 3/9
(46.7%) (53.3%) (80%) (66.7%) (100%) (33.3%)

14/40 6/40 16/40 9/40 1/1 39/39 18/23
(35.0%) (15.0%) (40.0%) (22.5%) (100%) (100%) (78.3%)

5/14 3/14 3/14 3/14 0/0 14/14 3/6
(35.7%) (21.4%) (21.4%) (21.4%) (100%) (50%)

signalling pathway) and the highest ranks (except Endocrine and other factor-regulated cal-
cium reabsorption pathway). The lowest median p-values and ranks of all target pathways
amongst remaining univariable methods were observed in CePa. SPIA reports lower p-values
and ranks than PRS only for the Endocrine and other factor-regulated calcium reabsorption
pathway. Estrogen receptor is one of the root nodes and has a medium influence on this path-
way in SPIA (47% DEPs) and only low influence in PRS (22% DEPs). On the other hand, Pro-
lactin signalling pathway is the least significant by SPIA, and the estrogen receptor is a leaf
node in this pathway with very low influence (3.5% DEPs). In the original experiments of the
Gene Overexpression Data Collection, an overexpression of three genes (c-Myc, H-Ras, c-Src)
was induced experimentally via adenoviral infection. The fold change of the perturbed genes
ranged from 2.38 to 5.29 (S1 Text). 15, 40 and 14 target pathways were identified, for c-Myc,
H-Ras and c-Src, respectively. The results of the analysis of this collection are summarized

in Table 6. TopologyGSA was able to analyse only the Bladder cancer pathway, which was
detected as differentially expressed. Clipper identified all target pathways as differentially
expressed. Results of DEGraph, PRS, CePa and TAPPA, varied greatly between the three sets
of pathways, ranging from 21% to 80% target pathways as differentially expressed. All univari-
able methods reported a higher percentage of target pathways as differentially expressed in the
dataset with deregulated c-Myc in comparison to other datasets. When individual target path-
ways were assessed separately, DEGraph and univariate methods agreed on differential expres-
sion of the most biologically relevant pathways (S11 Fig).

Experiment 7: Effect of the exclusion of topological information

To assess the effect of exclusion of topological information, we studied the effect of individ-
ual genes on the proportion of differentially expressed pathways in the simulated datasets.
We hypothesised that, in the non-topological setting, individual genes influence the final
result equally. We applied the non-topological variants of the methods on both simulated
(from Experiment 3) and real (from Experiment 6) datasets and Non-small cell lung cancer
pathway was used as a model pathway for simulated data. Then we quantified the effect of
genes in simulated datasets and computed the corresponding p-values and ranks of target
pathways. The results were compared to the results obtained in Experiment 3 and the Experi-
ment 6 (Fig 3).

The effect of the individual genes in simulated data is shown in S12 Fig. In TopologyGSA
and Clipper, no difference between the topological and non-topological variant of the method
was found. In all other methods, we did observe, in agreement with our hypothesis, the equal
redistribution of the effect of the genes across the pathway in the non-topological variant. For
DEGraph and PRS, the non-topological variant resulted in an overall increase of the individual
gene effects, while in CePa and SPIA, the individual effects of the genes diminished. In the Dis-
ease-Control Data Collection (89 Fig), we observed increased p-values and ranks for target
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pathways in PRS and CePa and decreased p-values and ranks for DEGraph and SPIA. No effect
of exclusion of topological information was found in TAPPA, TopologyGSA and Clipper.
Note that the median p-value of the target pathway was below 0.2 in all methods regardless
pathway topologies. In PRS, the median p-value raised from 0.031 in the topological variant to
0.055 in the non-topological variant. In the Breast Cancer Data Collection (S10 Fig), we
observed the pathway-specific effect of the exclusion of pathway topologies in SPIA where p-
values increased only in the pathway in which estrogen receptor is one of the root nodes
(Endocrine and other factor-regulated calcium reabsorption) and decreased in other pathways.
In all estrogen receptor containing pathways, we observed increased p-values in CePa and
decreased in PRS. No difference was observed in multivariable methods.

Experiment 8: Effect of pre-processing of pathway topologies

To assess the effect of pre-processing of pathway topologies (methods’ original pre-processing
MSPT vs graphite pre-processing +GPT), we first compared effects of the individual genes
in model pathways (Fig 6). The main differences between +GPT and MSPT were in the pre-
processing of multisubunit protein complexes, gene families and interactions related to non-
gene product nodes (e.g. small chemical compounds). These differences had a direct effect on
individual genes by changing their properties or an indirect effect on the genes by altering the
distribution of a particular property in a pathway. No difference in the effects of individual
genes was observed in Clipper. In the DEGraph’s original pathway topology (MSPT) there
were no interactions between subunits of multiprotein complexes. These interactions were
introduced in graphite (S1 Text, [28]) pathway topologies (+GPT). In consequence, the
genes whose products were subunits of multiprotein complexes had a different effect in MSPT
compared to +GPT (see Fig 6, RIG-I-like receptor signalling pathway and Non-small cell lung
cancer pathway). There were no protein complexes in the Bacterial invasion of epithelial cells
pathway, so the gene effects were the same. In PRS, we observed a clear difference in the effect
of individual genes only in the Non-small cell lung cancer, where a group of six genes had
approximately two times higher effect in MSPT compared to +GPT. In this pathway, two
nodes involved each of these genes—either as a member of two different gene families or a sin-
gle node and a member of a gene family. In MSPT of PRS, gene families were processed into
combined nodes (S1 Text), hence possibly increasing the effect of genes present in multiple
nodes. We observed complex differences in gene effects between +GPT and MSPT for CePa.
In CePa’s MSPT, gene families and protein complexes are pre-processed into combined nodes,
thus decreasing their degree centralities (if they interacted with other families or complexes)
or decreasing the total number of nodes in a pathway resulting in the reduced influence of
family members or subunits of protein complexes. At the same time, both the influence and
the degree centrality of the genes interacting with these families was reduced. However, other
genes gained importance as consequence of the different distribution of centralities or pathway
topology. SPIA-specific pre-processing of pathway topologies did not propagate perturbations
of individual genes through as many interaction types (including compound-mediated inter-
actions) as in graphi te. Therefore, in MSPT, the number of genes with high influence was
reduced.

In both the Breast Cancer Data Collection and Disease Control Data Collection, with the
agreement to the individual gene overexpression experiment, we observed increased p-values in
CePa; slightly increased ranks in DEGraph and decreased p-values in PRS and no difference in
p-values in Clipper (S10 Fig). For SPIA, we observed no difference in both p-values and ranks
in agreement with the individual gene overexpression experiment only in the Breast Cancer
Data Collection and decreased p-values and ranks in the Disease Control Data Collection.
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Fig 6. Effect of pre-processing of pathway topologies on simulated data—Overexpression of single gene. Each point represents a single gene. Only genes common
for pathway topologies from graphite package (+GPT) and method-specific pathway topologies (MSPT) are displayed. Points on diagonal represent genes with the
same influence in +GPT and MSPT. Points below (above) diagonal represent genes with higher (lower) influence in MSPT.

https://doi.org/10.1371/journal.pone.0191154.9006
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Table 7. Overall assessment of the compared methods.

Parameter SPIA PRS CePa TAPPA TopologyGSA Clipper DEGraph
Median proportion of DEPs in real datasets | 16.5% 13.9% 27.9% 36.1% 73.7% 92.5% 48.0%
Effect on proportion of DEPs due to

Increasing sample size — — slowly \ / rapidly / rapidly / /
Increasing pathway size T T1 T T T T T

DEGs threshold p < 0.001 1 1 1 NA NA NA NA
DEGs threshold p < 0.01 T T T NA NA NA NA
DEGs threshold p < 0.05 11 Tl T1 NA NA NA NA
Single DEG [% DEPs] 12.8% 29.3% 25.9% 15.4% 82.5% 82.3% 42.7%
Characteristics of the most influential genes

Crutial node property rootnode | connected DEGs | betweenness | degree mean expression | mean expression | root node
Incoming interactions ! - ! 1! - - 1!
Outgoing interactions 1! 1! 1! ] - - -

Mean expression - - - - 1! 1! -
Impacts of individual genes as observed on simulated data

+GPT [% DEPs] 4.2 - 82.6 23.4-44.0 16.9 - 86.4 35-71.2 51.2-94.5 51.2-94.5 4.0-92.6
-GPT vs. +GPT ] 1 | i T T 7

MSPT vs. +GPT 1 7 1 NA NA - T
Preferred scenario for hypotheses generation

Number of DEGs Many Many Many Any Few Few Few
Sample size Any Any Any Any Small Small Small
Pathway of interest Any Any Any Any Small Small Small
Experiment scale Genome Genome Genome Any Any Any Any

— - stable, \ - decrease, /" - increase, | - higher, more, | - lower, less, T| - trend changes at certain point, NA - not applicable, root node - node without incoming

interactions, !! - important, - - not important, | - both effects observed

https://doi.org/10.1371/journal.pone.0191154.t007

Discussion

We presented a series of eight controlled experiments designed to gauge the suitability of a
number of topological pathway analysis methods to various analytical scenarios. Since topo-
logical information can be used in different ways and for different goals, in our study, we

decided to focus on methods that (i) aim to detect differentially expressed pathways between

two groups of interest, (ii) use a priori known pathway structures (topologies) and (iii) model
each pathway separately. We described the performance of the selected methods on both simu-
lated and real datasets.

We studied the methods’ behavior from several perspectives: the sample size, pathway size,
platform density, effect size, number of differentially expressed genes, gene topologies, plat-
form density, gene sets and their topological motifs, the inclusion of topology information in
the method’s algorithm and different strategies for pre-processing of pathway topologies. The
influence of the tested variables was assessed by comparison of the proportion of differentially
expressed pathways, their p-values and ranks.

Table 7 shows the overall evaluation of the compared methods and summarises the most
important observations from our experiments.

In all the compared methods, large pathways (> 35 genes) were assigned lower p-values
than small pathways. Also, as expected, when a pathway contained more differentially
expressed genes it was more often detected as differentially expressed. The number of

PLOS ONE | https://doi.org/10.1371/journal.pone.0191154  January 25, 2018

17/24


https://doi.org/10.1371/journal.pone.0191154.t007
https://doi.org/10.1371/journal.pone.0191154

@° PLOS | ONE

A critical comparison of topology-based pathway analysis methods

differentially expressed genes usually surpassed their topological influence. None of the meth-
ods showed a preference for a particular differentially expressed topological motif.

The most striking difference was found between multivariable and univariable methods.
Multivariable methods (TopologyGSA, Clipper and DEGraph) overall reported larger propor-
tions of differentially expressed pathways in comparison to univariable methods (SPIA, PRS,
CePa and TAPPA). Although all tested multivariable methods are derived from Hotelling’s T*
statistic, they differed significantly in their performance. TopologyGSA and Clipper assigned
very low p-values and ranks to all the target pathways. However, this seems to be the result of
overall low specificity, since they reported many other pathways (if not all) as differentially
expressed. These methods were also sensitive to the increase in the sample and pathway size,
the number of differentially expressed genes and the mean gene expression. The higher the
increase, the lower the p—values and the larger the proportion of differentially expressed path-
ways, independent of the platform density. These findings indicate that in the scenario where
(i) many differentially expressed genes are expected (e.g. cancer-related experiments); (ii) the
dataset contains more than a few tens of samples (> 68 samples in our experiments); (iii) a
pathway contains a gene with at least a subtle random change in the expression, the pathway
will be identified as significant. This behavior agrees with the self-contained nature of the meth-
ods, which is known to have higher sensitivity. However, many differentially expressed path-
ways identified by these methods might be false positives and therefore not useful for selection
of biological hypotheses for further research. Interestingly, in TopologyGSA and Clipper, the
exclusion of the topological information made no difference in the results. Therefore, despite
well-established mathematical background (Graphical Gaussian models), these methods do
not appear to fit the definition of topology-based methods for identification of differentially
expressed pathways.

In contrast, DEGraph detected fewer differentially expressed pathways compared to Topo-
logyGSA and Clipper, suggesting higher specificity. At the same time, in DEGraph the influ-
ence of individual genes was related to the pathway topology. DEGraph was less sensitive to
sample size, pathway size or the number of differentially expressed genes. The performance of
the non-topological variant of DEGraph was similar to the TopologyGSA and Clipper with or
without topology. Different pathway pre-processing strategies had only limited influence on
both DEGraph and Clipper (not assessed for TopologyGSA).

Univariable ORA methods SPIA, PRS and CePa, assigned low p-values only to some of the
target pathways depending on the topological properties of differentially expressed genes in
the pathway. This behaviour suggests higher specificity and stronger dependency on the topo-
logical information. These methods were less sensitive to the effects of sample size, pathway
size, number of DEGs or thresholds used to identify differentially expressed genes. However,
with increasing number of differentially expressed genes in a pathway, the effect of gene topol-
ogy became less important. Due to the competitive nature of SPIA, PRS and CePa, these meth-
ods reported less differentially expressed pathways on low-density platforms. The univariable
methods also exhibited higher sensitivity to the pre-processing of pathway topologies. Hence
they can be considered true representatives of the topology-based pathway methods. Pre-pro-
cessing of protein complexes, gene families and interactions involving non-gene products
(metabolites such as PIP3) was the key factor in methods’ performance and influence of the
individual genes. Although, our results suggest that, for PRS and CePa, the method-specific
pathway pre-processing seams to be more appropriate and should be preferred to graph-
ite’s approach, further research is needed to identify an optimal pre-processing strategy for
the compared methods. For instance, gene family members may be incomplete, and thus the
observed increased influence of a gene which is a member of two different gene families may
not be biologically sustained. Also, members of a gene family are seen as interchangeable
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regarding signal transduction, while each subunit of a protein complex is necessary for com-
plex assembly and biological function. Therefore the unified approach, as used in method-spe-
cific pathway pre-processing, may not be optimal. The TAPPA [11] method stands out with its
unique algorithm—a gene expression profile is being transformed into a pathway-level expres-
sion profile. Pathway-expression profiles were then analysed with traditional statistical meth-
ods (e.g. Mann-Whitney test for identification of differentially expressed pathways between
two groups). As a consequence, this method is suitable also for applications with a complex
experimental design. The sensitivity and specificity of TAPPA seemed to be well balanced.
Amongst univariable methods, it was the most sensitive to sample size and usually identified
most of the differentially expressed pathways. However, the proportion of differentially
expressed pathways was never as high as in TopologyGSA or Clipper. At the same time, the
method performance depended on the topological properties of the deregulated genes.

Guidelines for method selection

The increased sensitivity of multivariable methods (mainly TopologyGSA and Clipper) makes
them ideal candidates for pathway analysis of experiments, where subtle changes in expression
or a small number of differentially expressed genes between two conditions are expected—e.g.
as in the case of tumor samples which contain a significant proportion of non-tumoral tissue
(such as supporting stroma), thus confounding and diminishing measured signal of the gene
expression. Since multivariable methods do not use lists of differentially expressed genes based
on pre-defined thresholds but work with a complete list of the tested genes, they can be applied
even in cases where none or very few genes are significant after statistical testing (for instance
due to small sample size). The results of these methods, however, must be taken with caution
and the significance of a pathway of interest must be interpreted in the context of all the results
to ensure it is not just a consequence of overall low specificity of the method. To control for
low specificity of the result, we recommend using DEGraph.

Univariable methods are not sensitive to the sample size or the number of differentially
expressed genes in the datasets. Their ability to identify particular pathway as differentially
expressed is highly dependent on the topological properties of the deregulated genes, the inclu-
sion of the topological information and the pre-processing of the pathway topologies. Univari-
able methods are recommended in most applications and especially when the biological
hypothesis aims at a pathway where genes of certain topological properties (biological func-
tion) are expected to be affected (see below and Fig 7B). However, since SPIA, PRS and CePa
are ORA methods, they require at least some differentially expressed genes, and their applica-
bility on datasets with very subtle changes in gene expression can be limited (in contrast to
multivariable methods). On the other hand, if the differentially expressed genes occupy in the
pathway the “correct” topological positions, the topological properties of the methods help to
categorize this pathway as significant despite a small overall number of differentially expressed
genes in the pathway. TAPPA, in contrast, being the FCS method, is a good choice for applica-
tions with a limited number of differentially expressed genes overall. Since in TAPPA the most
important genes are those with many interactions, pre-processing of gene families and protein
complexes must be carefully considered as their expansion into individual members or sub-
units may unintentionally increase their effect.

Based on our results we propose some guidelines for optimal method selection based either
on (i) design of the experiment (comparison type, input data type, the platform density, sample
size, expected number of differentially expressed genes)—Fig 7A; or (ii) selected (preferred)
deregulation type—Fig 7B. Note, that the presence of many differentially expressed genes in a
pathway surpasses topological effect of individual genes. Fig 7C shows an example of the most
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Fig 7. Guide to selection of topology-based pathway analysis method. (A) Recommended methods for specific scenarios based on experimental design, available
input data, platform density, sample size and expected number of differentially expressed genes. (B) The most important deregulated genes in particular methods.
Individual methods prefer different genes as the most important for pathway deregulation, and these preferences represent another factor for optimal method
selection. The genes are defined mostly by their topological properties (e.g. number of interactions). Examples of genes must be interpreted within specific pathway
(p53 signalling pathway for p53, Non-small cell lung cancer for others), and specific pathway pre-processing (graphite). (C) An illustrative example of the most
important genes in the Non-small cell lung cancer pathway from KEGG database as available in the graphi te package.

https://doi.org/10.1371/journal.pone.0191154.9007
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influential genes in the Non-small cell lung cancer pathway based on graphite pre-process-
ing of topologies (+GPT). In SPIA, CePa, TAPPA and DEGraph, we colored all the genes with
the highest influence as defined in Experiment 3 for each method. Details of the topological as
well as biological properties of the most influential genes are described in the S1 Text. In Topo-
logyGSA and Clipper, the most influential genes have the highest overall expression (usually
related to the cell cycle regulation [30]). In DEGraph and SPIA, the genes without incoming
interactions have the largest impact. These genes are often represented by ligands, receptors,
or transcription factors (E2F family dissociating from pRB). On the other hand, genes interact-
ing with many other genes (e.g. secondary effectors, such as PIK3CA or KRAS) have the high-
est influence in PRS, CePa and TAPPA.

The observed differences between topological methods should be considered when the
results of pathway analyses are to be compared across experiments in which different methods
were used to detect differentially expressed pathways. Currently, SPIA is the most often cited
method (282 citations from Web of Science Core Collection as of 14 February 2017). The
other compared methods were mainly used in methodological publications, in which the gen-
eral concepts were compared to the new method and only very rarely in applications.

Conclusion

We performed one of the largest studies of topology-based pathway analysis methods pub-
lished to date. In this study, we compared seven methods that aim to detect differentially
expressed pathways from expression data employing a priori known pathway topologies in
their algorithm. The methods were ranked according to their sensitivity to sample and path-
way size, ability to detect target pathways, the proportion of differentially expressed pathways,
benefit from incorporating topological information and sensitivity to different pathway pre-
processing strategies. We also verified type I error rates and described the influence of overex-
pression and topological properties of a single gene or gene sets on the detection of a pathway
as differentially expressed by the selected methods.

We demonstrated that multivariable self-contained methods are very sensitive to the
changes in gene expression within a pathway leading to the uninformative identification of
over 90% pathways as differentially expressed. As a consequence, a significant result can be eas-
ily obtained for a particular pathway. On the other hand, univariable methods (mostly compet-
itive) were less sensitive to subtle changes in gene expression but exhibited stable performance
over a wide range of scenarios and benefited from the inclusion of topological information.

Finally, we proposed guidelines for method selection based on a number of variables con-
nected to experimental design as well as biological hypotheses. Overall, we recommend any of
the multivariable approaches to be used mainly for applications with small sample size and
subtle changes in gene expression, whereas univariable methods should be preferred for
genome-scale applications with large changes in gene expression. The pre-processing strategy
for pathway topologies must be carefully considered for univariable methods, and further
research is required to identify an optimal pre-processing strategy.

Supporting information

S1 Text. Details of the selected methods and used real data collection.
(PDF)

S1 Fig. Effect of the number of Entrez IDs. Proportion of DEPs depending on the number of
Entrez IDs for datasets from Breast Cancer Data Collection. Each point represents one dataset.
(PDF)
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S2 Fig. Effect of the number of DEGs. Proportion of DEPs depending on the number of
DEGs for datasets from Disease-Control Data Collection. Each point represents one dataset.
(PDF)

S3 Fig. Effect of the pathway size.
(PDF)

S4 Fig. Effect of the thresholds used for DEG detection.
(PDF)

S5 Fig. Distribution of p-values from Experiment 2.
(PDF)

S6 Fig. Summarization of the Experiment 3. Dependence of the proportion of DEPs on the
difference in expression induced between groups, the gene mean expression and its postion. In
SPIA, neutral interactions were drawn in grey.

(PDF)

S7 Fig. Effect of expression change in randomly selected multiple genes on the proportion of
differentially expressed pathways. Sets of 2, 3, 4 and 5 genes were randomly selected from
Non-small cell lung cancer pathway. Each circle represents one of those sets. Expression of
genes in the set was modified with increments of 0.1 to 2 with step size 0.1 in 200 simulated data-
sets. Border color indicates number of genes in the set. Vertical axis shows combined influence
of the genes (proportion of differentially expressed pathways across all increments and datasets).
Horizontal axis corresponds to sum of the influence of individual genes. Pie color (from grey to
blue and red) represents the influence of a single gene (see Experiment 3 for details).

(PDF)

S8 Fig. Summarization of the Experiment 5. Heatmaps of the proportion of DEPs for all
compared methods.
(ZIP)

S9 Fig. P-values and ranks of the target pathways—Disease-Control Data Collection
details. Boxplots of p-values and rank of the estrogen receptor-containing pathways in Dis-
ease-Control Data Collection. Ranks are based on p-values. Pathway with the lowest p-value
has rank 1. All pathways with the same p-value recieved same rank. The rank was incremented
by one between subsequent p-values.

(PDF)

$10 Fig. P-values and ranks of the target pathways—Breast Cancer Data Collection details.
Boxplots of p-values and rank of the estrogen receptor-containing pathways in Breast Cancer
Data Collection. Ranks are based on p-values. Pathway with the lowest p-value has rank 1. All
pathways with the same p-value recieved same rank. The rank was incremented by one
between subsequent p-values.

(PDF)

S11 Fig. P-values of the target pathways—Gene Overexpression Data Collection details.
Heatmaps of p-values of the overexpressed oncogene-containing pathways in Gene Overex-
pression Data Collection. Pathways are ordered by the number of methods in which they are
differentially expressed (p < 0.05).

(PDF)

S12 Fig. Effect of individual genes in non-topological variants of the methods. (A) Propor-
tion of differentially expressed pathways for different genes and the difference in expression
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induced between groups. (B) Dependence of the proportion of differentially expressed path-
ways on the difference in the gene position. In the non-topological variants of the methods
(-GPT) we observed reduced proportion of differentially expressed pathways and loss of its
dependence on gene postion in all methods except TopologySGA an Clipper.

(PDF)

Author Contributions

Conceptualization: Ivana Ihnatova, Eva Budinska.

Data curation: Ivana Ihnatova.

Formal analysis: Ivana Thnatova.

Funding acquisition: Vlad Popovici, Eva Budinska.

Investigation: Ivana Ihnatova, Eva Budinska.

Methodology: Ivana Ihnatova, Eva Budinska.

Project administration: Vlad Popovici, Eva Budinska.

Software: Ivana Thnatova.

Supervision: Vlad Popovici, Eva Budinska.

Visualization: Ivana Thnatova, Vlad Popovici, Eva Budinska.

Writing - original draft: Ivana Ihnatova.

Writing - review & editing: Ivana Ihnatova, Vlad Popovici, Eva Budinska.

References

1.

10.

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment
analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings
of the National Academy of Sciences of the United States of America. 2005; 102(43):15545-15550.
https://doi.org/10.1073/pnas.0506580102 PMID: 16199517

Khatri P, Sirota M, Butte AJ. Ten Years of Pathway Analysis: Current Approaches and Outstanding
Challenges. PLoS Comput Biol. 2012; 8(2):€1002375. https://doi.org/10.1371/journal.pcbi.1002375
PMID: 22383865

Emmert-Streib F, Tripathi S, Matos Simoes Rd. Harnessing the complexity of gene expression data
from cancer: from single gene to structural pathway methods. Biology Direct. 2012; 7(1):44. hitps://doi.
org/10.1186/1745-6150-7-44 PMID: 23227854

Garcia-Campos MA, Espinal-Enriquez J, Hernandez-Lemus E. Pathway Analysis: State of the Art.
Frontiers in Physiology. 2015; 6:383. https://doi.org/10.3389/fphys.2015.00383 PMID: 26733877

Bayerlova M, Jung K, Kramer F, Klemm F, Bleckmann A, Bei3barth T. Comparative study on gene set
and pathway topology-based enrichment methods. BMC Bioinformatics. 2015; 16(1):334. https://doi.
org/10.1186/s12859-015-0751-5 PMID: 26489510

Braun R, Shah S. Network Methods for Pathway Analysis of Genomic Data; 2015.

Gu Z, Liu J, Cao K, Zhang J, Wang J. Centrality-based pathway enrichment: a systematic approach for
finding significant pathways dominated by key genes. BMC Systems Biology. 2012; 6(1):56. https://doi.
org/10.1186/1752-0509-6-56 PMID: 22672776

Mitrea C, Taghavi Z, Bokanizad B, Hanoudi S, Tagett R, Donato M, et al. Methods and approaches in
the topology-based analysis of biological pathways. Frontiers in Physiology. 2013; 4:278. https://doi.
org/10.3389/fphys.2013.00278 PMID: 24133454

Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim Js, et al. A novel signaling pathway impact
analysis. Bioinformatics. 2009; 25(1):75-82. https://doi.org/10.1093/bioinformatics/btn577 PMID:
18990722

Al-Haj Ibrahim M, Jassim S, Cawthorne MA, Langlands K. A Topology-Based Score for Pathway
Enrichment. J Comput Biol. 2012;.

PLOS ONE | https://doi.org/10.1371/journal.pone.0191154  January 25, 2018 23/24


https://doi.org/10.1073/pnas.0506580102
http://www.ncbi.nlm.nih.gov/pubmed/16199517
https://doi.org/10.1371/journal.pcbi.1002375
http://www.ncbi.nlm.nih.gov/pubmed/22383865
https://doi.org/10.1186/1745-6150-7-44
https://doi.org/10.1186/1745-6150-7-44
http://www.ncbi.nlm.nih.gov/pubmed/23227854
https://doi.org/10.3389/fphys.2015.00383
http://www.ncbi.nlm.nih.gov/pubmed/26733877
https://doi.org/10.1186/s12859-015-0751-5
https://doi.org/10.1186/s12859-015-0751-5
http://www.ncbi.nlm.nih.gov/pubmed/26489510
https://doi.org/10.1186/1752-0509-6-56
https://doi.org/10.1186/1752-0509-6-56
http://www.ncbi.nlm.nih.gov/pubmed/22672776
https://doi.org/10.3389/fphys.2013.00278
https://doi.org/10.3389/fphys.2013.00278
http://www.ncbi.nlm.nih.gov/pubmed/24133454
https://doi.org/10.1093/bioinformatics/btn577
http://www.ncbi.nlm.nih.gov/pubmed/18990722
https://doi.org/10.1371/journal.pone.0191154

@° PLOS | ONE

A critical comparison of topology-based pathway analysis methods

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

Gao S, Wang X. TAPPA: topological analysis of pathway phenotype association. Bioinformatics. 2007;
23(22):3100-3102. https://doi.org/10.1093/bicinformatics/btm460 PMID: 17890270

Massa M, Chiogna M, Romualdi C. Gene set analysis exploiting the topology of a pathway. BMC Sys-
tems Biology. 2010; 4(1):121. https://doi.org/10.1186/1752-0509-4-121 PMID: 20809931

Martini P, Sales G, Massa MS, Chiogna M, Romualdi C. Along signal paths: an empirical gene set
approach exploiting pathway topology. Nucleic Acids Research. 2012; https://doi.org/10.1093/nar/
gks866 PMID: 23002139

Jacob L, Neuvial P, Dudoit S. Gains in Power from Structured Two-Sample Tests of Means on Graphs.
ArXiv e-prints. 2010;.

Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microar-
ray experiments. Statistical applications in genetics and molecular biology. 2004; 3(1). https://doi.org/
10.2202/1544-6115.1027 PMID: 16646809

R Core Team. R: A Language and Environment for Statistical Computing; 2014. Available from: http://
www.R-project.org/.

Huber W, Carey J V, Gentleman R, et al. Orchestrating high-throughput genomic analysis with Biocon-
ductor. Nature Methods. 2015; 12(2):115-121. https://doi.org/10.1038/nmeth.3252 PMID: 25633503

Sales G, Calura E, Romualdi C. graphite: GRAPH Interaction from pathway Topological Environment;
2016.

Ilhnatova |, Budinska E. ToOPASeq: an R package for topology-based pathway analysis of microarray
and RNA-Seq data. BMC Bioinformatics. 2015; 16(1):350. https://doi.org/10.1186/s12859-015-0763-1
PMID: 26514335

Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, et al. A systems biology approach for path-
way level analysis. Genome Research. 2007; 17(10):000. https://doi.org/10.1101/gr.6202607

Khatri P, Draghici S, Tarca AL, Hassan SS, Romero R. A system biology approach for the steady-state
analysis of gene signaling networks. In: Proceedings of the Congress on pattern recognition 12th Iber-
oamerican conference on Progress in pattern recognition, image analysis and applications. CIARP’07.
Berlin, Heidelberg: Springer-Verlag; 2007. p. 32—41. Available from: http:/dl.acm.org/citation.cfm?id=

1782914.1782919.

Junker BH, Schreiber F. Analysis of Biological Networks. Wiley Series in Bioinformatics. Wiley; 2011.
Available from: https://books.google.cz/books?id=YeXLbClh1SIC.

Kim JW, Mori S, Nevins JR. Myc-Induced MicroRNAs Integrate Myc-Mediated Cell Proliferation and
Cell Fate. Cancer Research. 2010; 70(12):4820-4828. https://doi.org/10.1158/0008-5472.CAN-10-
0659 PMID: 20516112

Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, et al. Oncogenic pathway signatures in human
cancers as a guide to targeted therapies. Nature. 2006; 439(7074):353—7. https://doi.org/10.1038/
nature04296 PMID: 16273092

Haibe-Kains B, Desmedt C, Loi S, Culhane AC, Bontempi G, Quackenbush J, et al. A three-gene model
to robustly identify breast cancer molecular subtypes. Journal of the National Cancer Institute. 2012;
104(4):311-325. https://doi.org/10.1093/jnci/djr545 PMID: 22262870

Bhatti G, Tarca AL. KEGGdzPathwaysGEO: KEGG Disease Datasets from GEO; 2012.
Bhatti G. KEGGandMetacoreDzPathwaysGEO: Disease Datasets from GEO; 2014.

Sales G, Calura E, Cavalieri D, Romualdi C. graphite—a Bioconductor package to convert pathway
topology to gene network. BMC Bioinformatics. 2012; 13(1):20. https://doi.org/10.1186/1471-2105-13-
20 PMID: 22292714

Tripathi S, Emmert-Streib F. Assessment Method for a Power Analysis to Identify Differentially
Expressed Pathways. PLOS ONE. 2012; 7(5):1-13. https://doi.org/10.1371/journal.pone.0037510

Karlin S, Mrazek J, Campbell A, Kaiser D. Characterizations of Highly Expressed Genes of Four Fast-
Growing Bacteria. J Bacteriol. 2001; 183(17):5025-5040. https://doi.org/10.1128/JB.183.17.5025-
5040.2001 PMID: 11489855

PLOS ONE | https://doi.org/10.1371/journal.pone.0191154  January 25, 2018 24/24


https://doi.org/10.1093/bioinformatics/btm460
http://www.ncbi.nlm.nih.gov/pubmed/17890270
https://doi.org/10.1186/1752-0509-4-121
http://www.ncbi.nlm.nih.gov/pubmed/20809931
https://doi.org/10.1093/nar/gks866
https://doi.org/10.1093/nar/gks866
http://www.ncbi.nlm.nih.gov/pubmed/23002139
https://doi.org/10.2202/1544-6115.1027
https://doi.org/10.2202/1544-6115.1027
http://www.ncbi.nlm.nih.gov/pubmed/16646809
http://www.R-project.org/
http://www.R-project.org/
https://doi.org/10.1038/nmeth.3252
http://www.ncbi.nlm.nih.gov/pubmed/25633503
https://doi.org/10.1186/s12859-015-0763-1
http://www.ncbi.nlm.nih.gov/pubmed/26514335
https://doi.org/10.1101/gr.6202607
http://dl.acm.org/citation.cfm?id=1782914.1782919
http://dl.acm.org/citation.cfm?id=1782914.1782919
https://books.google.cz/books?id=YeXLbClh1SIC
https://doi.org/10.1158/0008-5472.CAN-10-0659
https://doi.org/10.1158/0008-5472.CAN-10-0659
http://www.ncbi.nlm.nih.gov/pubmed/20516112
https://doi.org/10.1038/nature04296
https://doi.org/10.1038/nature04296
http://www.ncbi.nlm.nih.gov/pubmed/16273092
https://doi.org/10.1093/jnci/djr545
http://www.ncbi.nlm.nih.gov/pubmed/22262870
https://doi.org/10.1186/1471-2105-13-20
https://doi.org/10.1186/1471-2105-13-20
http://www.ncbi.nlm.nih.gov/pubmed/22292714
https://doi.org/10.1371/journal.pone.0037510
https://doi.org/10.1128/JB.183.17.5025-5040.2001
https://doi.org/10.1128/JB.183.17.5025-5040.2001
http://www.ncbi.nlm.nih.gov/pubmed/11489855
https://doi.org/10.1371/journal.pone.0191154

[5] Xie T, D' Ario G, Lamb JR, Martin E, Wang K, Tejpar S, Delorenzi M, Bosman FT, Roth
AD, Yan P, Bougel S, Di Narzo AF, Popovici V, Budinska E, Mao M, Weinrich SL, Rejto
PA, Hodgson JG. A comprehensive characterization of genome-wide copy number
aberrations in colorectal cancer reveals novel oncogenes and patterns of alterations. PLoS
One. 2012;7(7):¢42001. doi: 10.1371/journal.pone.0042001. Epub 2012 Jul 31. PMID:
22860045; PMCID: PMC3409212.

73



© pLos one

OPEN 8 ACCESS Freely available online

A Comprehensive Characterization of Genome-Wide
Copy Number Aberrations in Colorectal Cancer Reveals
Novel Oncogenes and Patterns of Alterations

Tao Xie'*, Giovanni d’ Ario?, John R. Lamb’, Eric Martin', Kai Wang’, Sabine Tejpar®, Mauro Delorenzi**,

Fred T. Bosman® Arnaud D. Roth®, Pu Yan?, Stephanie Bougel®, Antonio Fabio Di Narzo?, Vlad Popovici?,
Eva Budinska?, Mao Mao"', Scott L. Weinrich’, Paul A. Rejto’, J. Graeme Hodgson'*

10ncology Research, Pfizer Worldwide Research and Development, San Diego, California, United States of America, 2 Swiss Institute of Bioinformatics, Lausanne,
Switzerland, 3 University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium, 4 Lausanne University Medical Center, Lausanne, Switzerland, 5 Geneva
University Hospital, Geneva, Switzerland

Abstract

To develop a comprehensive overview of copy number aberrations (CNAs) in stage-ll/lll colorectal cancer (CRC), we
characterized 302 tumors from the PETACC-3 clinical trial. Microsatellite-stable (MSS) samples (n=269) had 66 minimal
common CNA regions, with frequent gains on 20 q (72.5%), 7 (41.8%), 8 q (33.1%) and 13 q (51.0%) and losses on 18
(58.6%), 4 q (26%) and 21 g (21.6%). MSS tumors have significantly more CNAs than microsatellite-instable (MSI) tumors:
within the MSI tumors a novel deletion of the tumor suppressor WWOX at 16 q23.1 was identified (p<<0.01). Focal
aberrations identified by the GISTIC method confirmed amplifications of oncogenes including EGFR, ERBB2, CCND1, MET,
and MYC, and deletions of tumor suppressors including TP53, APC, and SMAD4, and gene expression was highly concordant
with copy number aberration for these genes. Novel amplicons included putative oncogenes such as WNK1 and HNF4A,
which also showed high concordance between copy number and expression. Survival analysis associated a specific patient
segment featured by chromosome 20 g gains to an improved overall survival, which might be due to higher expression of
genes such as EEF1B2 and PTK6. The CNA clustering also grouped tumors characterized by a poor prognosis BRAF-mutant-
like signature derived from mRNA data from this cohort. We further revealed non-random correlation between CNAs among
unlinked loci, including positive correlation between 20 g gain and 8 q gain, and 20 g gain and chromosome 18 loss,
consistent with co-selection of these CNAs. These results reinforce the non-random nature of somatic CNAs in stage-II/IlI
CRC and highlight loci and genes that may play an important role in driving the development and outcome of this disease.
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Introduction genome-wide somatic CNAs in CRC
) [6,7,8,9,10,11,12,13,14,15,16,17,18], some of which have been
Colorectal cancer (CRC) ranks second to lung cancer in both linked to clinical outcome or metastatic progression

incidence and mortality in developed countries [1]. It is
characterized by highly complex patterns of somatic genetic
alterations of oncogenes and tumor suppressors that drive

[19,20,21,22,23,24]. However, many of these studies have been
limited by modest sample size, low resolution assays, or lack of
associated clinical annotation, particularly for early-stage (II/III)

initiation and progression [2,3,4]. Understanding the cellular
and molecular mechanisms by which these genetic changes
facilitate colon cancer formation is critical for development of
targeted therapeutic strategies aimed at controlling disease
progression while minimizing toxic side effects.

One well-established genetic mechanism by which cancer cells
alter the activity of oncogenes and tumor suppressors is through
changes in gene dosage. Detailed characterization of DNA copy
number aberrations (CNAs) have helped identify important
oncogenes including ERBB2 and EGFR, as well as tumor
suppressors such as TP53 [5]. Numerous studies have documented

@ PLoS ONE | www.plosone.org

colon cancer. Consequently, a comprehensive overview of CNAs
and their association with outcome in stage II/1III colon cancer has
not been developed.

We surveyed somatic CNAs in a collection of 302 stage II/1II
colon cancers derived from the Pan-European Trials in Adjuvant
Colon Cancer (PETACC)-3 trial, a large randomized phase III
assessment of the role of irinotecan added to fluorouracil (FU)/
leucovorin (FA) as adjuvant treatment for colon cancer [25]. The
results presented herein explore the relationship between CNA,
mRNA [26] and outcome, and contribute to a comprehensive
molecular overview of stage-II/III colon cancer, which is

July 2012 | Volume 7 | Issue 7 | e42001



paramount for refining patient classification and effective treat-
ment.

Materials and Methods
Clinical and mRNA Data for PETACC-3 Patients

All stage II/III colon cancer patients included in this study were
derived from the PETACC-3 clinical trial [25], with at least 5
years of clinical follow-up for each patient. The age, gender, stage,
MSI (microsatellite-instable) as well as BRAF and KRAS mutation
status of the patient population are listed in Table S1. mRNA
expression data was generated on the ALMAC Colorectal Cancer
DSA platform (Craigavon, Northern Ireland), as reported
previously [26]. Patient and ethics approval for this study was
obtained from the PETACC-3 Translational Research Working
Party (PTRW).

Molecular Inversion Probe Data Generation

DNA extractions were performed on macrodissected formalin-
fixed, paraffin-embedded (FFPE) tumor tissue derived from a
single 5 uM slide from 835 patient samples. Tumor tissue within
cach section was identified and labeled by a qualified pathologist
(F. Bosman). For normal controls, DNA was extracted from
samples with sufficient amounts of histopathologically normal
adjacent tissue well away from the tumor margins. DNA was
quantified using the picogreen assay. For samples that yielded less
than the recommended input DNA amount (75 ng), all DNA was
carried forward into the Molecular Inversion Probe (MIP)
amplification, labelling, and hybridization protocols using Affyme-
trix’s OncoScan V1.0 FFPE Express services (Affymetrix, CA).
Samples that failed PCR amplification or displayed a Median
Average Pairwise Difference (MAPD) >0.6 after hybridization
were removed from the final analysis, resulting in 302 tumor
samples along with 44 adjacent normal samples as the normal
baseline comparator. Typically samples below 20 ng of input
DNA failed the MIP amplification cutoff and were not carried
forward to array hybridization. Samples with at least 75 ng of
input DNA universally yielded high quality copy number data
(MAPD<0.6). Results varied for input DNA amounts of 20—
75 ng, where the MAPD>0.6 filter served to eliminate excessively
noisy samples.

Copy Number Data Analysis

Copy number data was analyzed with the Nexus Copy Number
6.0 software (Biodiscovery, Inc., CA, USA). The raw copy number
data for each probe provided by Affymetrix was smoothed by a
quadratic correction provided by NEXUS and centered using
diploid regions. CNA frequency comparisons amongst sample
groups (e.g. MSS versus MSI; stage-II versus stage-III) was
performed using NEXUS default thresholds of >15% difference
and significance p<0.01 (Fisher’s exact test). To generate copy
number segments and minimal common regions (MCRs), we
applied a modified version of the Circular Binary Segmentation
(CBS) algorithm [27] called “Rank Segmentation” in NEXUS.
The p-value cutoff for CBS was 1.0E-6, and segments were
assigned to 1 of 5 bins: amplified (>3.8 copies), gained (2.3 to 3.8
copies), unchanged (1.7 to 2.3 copies), deleted (0.5 to 1.7 copies) or
homozygously deleted (<0.5 copies). For MCR frequency
significance testing, we used a p-value cutoft of <0.01 from the
statistical Significance Testing for Aberrant Copy number (STAC)
method [28]. Hierarchical clustering of CNA was performed in
NEXUS too (complete linkage, sex chromosomes ignored). To
detect focal amplifications, we applied GISTIC (Genomic
Identification of Significant Targets in Cancer) version 2.0 [29]
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using a Q-value cutoff <0.25. Genes reported in GISTIC2
amplification peaks were further examined if they are enriched in
any biological pathways. We used canonical pathway database
provided by MSigDB [30]. Pathway gene sets with less than 10
members or greater than 500 members were excluded. Fisher’s
exact test was used to access if those genes are over-represented.
FDR was calculated based on 100 permutations where random
sets of genes of same size were tested. We also used Fisher’s exact
test to see if frequencies of certain CNAs differ among patient
groups (stage II vs. III, MSI vs. MSS etc). Survival analysis was
performed using the Kaplan-Meier method with a p value (log-
rank test) cutoff of <0.01. For analysis of CNA/CNA correlations,
the Pearson correlation was computed at the gene level for all pairs
of genes as described previously [31]. To derive gene level
summaries from the copy number data, we assigned the copy
number values from the segment(s) overlapping each gene: when
there were multiple segments within the gene boundary, we
averaged the copy numbers from those segments. All genome-
based data reported in this manuscript are based on NCBI build
36 (hgl8) of the human genome.

Expression Data Analysis

Gene expression data from the PETACC-3 patients was
reported previously [26]. We matched it with gene level copy
number data by ENTREZ ID. Copy number and gene expression
data were simultancously available for 213 of the 269 MSS
patients with available CNA data. To test cis-correlation between
a gene’s copy number and its own mRNA expression level across
tumors, we categorized patients according to their aberration
status (amplification, gain, no-change, loss or homozygous
deletion) associated to the expression values of probe sets mapping
to the same gene.

Results

Copy Number Aberrations and Microsatellite Instability

33 of the 302 samples in our analysis were microsatellite instable
(MSI): consistent with previous studies [19,32], the average
number of CNAs in MSI tumors (10.2%6.5) was significantly
smaller (p<<0.01, two sample t-test) than the average number of
CNAs in microsatellite stable (MSS) tumors (33.2%17.6). Never-
theless, two focal regions were deleted significantly more
frequently in MSI samples: chr16q23.1 (chr16:77,231,391—
77,261,567 bp) in 24.2% of MSI samples vs. 7.1% of MSS
samples (p<<0.01), and chr20q11.1 (chr20:28,118,678-28,244,164)
in 24.4% of MSI samples vs. 8.9% in MSS samples (p<<0.01).
Interestingly, the only gene contained within the 16 ¢23.1 locus is
the WWOX tumor suppressor, an inhibitor of the WNT/beta-
catenin pathway [33], which is frequently activated in colon
cancer.

Recurrent CNAs, Novel Oncogenes and Affected
Pathways

Given the relatively low CNA prevalence in MSI tumors, we
focused our analyses on the 269 MSS tumors. As has been
reported previously [7,8,9,10,11,12,13,14,15,16,17], the frequen-
cies of copy number gains and losses across the genome were not
randomly distributed (Figure 1A), with CNAs ranging from single
copy gains and losses of broad chromosomal regions, to focal
homozygous deletions and high-level amplifications (Figure 2).
The most frequent regions of gain encompassed chromosomal
regions 7 p, 8 q, 13 q, and 20 g, and the most frequent regions of
loss encompassed 8 p, 17 p, and 18 q (Figure 1A).
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doi:10.1371/journal.pone.0042001.g001

To gain further insight, we summarized recurrent chromosomal
gains and losses into Minimal Common Regions (MCRs) using
Significant Testing of Aberrant Copy Number (STAC) [28], and
GISTIC [29] to highlight candidate oncogenes in the MCRs
based on the focality and amplitude of copy number change. A
total of 66 MCRs were identified at frequencies above 10%
(Table S2): there were 25 MCRs of gain ranging from 251 Kb to
104 Mb, and 41 MCRs of loss ranging from 286 kb to 138 Mb.
GISTIC helped to refine the MCRs to loci and genes of particular
significance (T'able 83). Many of the significant peaks identified
by GISTIC contained established oncogenes including CCNDI,
CDX2, EGFR, ERBB2, MET, and MYC (Figure 1B), along
with tumor suppressors such as APC, SMAD4, and TP53. Several
of the oncogenic peaks were driven by high-amplitude focal events
in a subset of tumors (Figure 2), and these focal amplifications led
to significant increases in mRNA expression for several of these

@ PLoS ONE | www.plosone.org

genes. Highly significant GISTIC peaks not associated with well-
established oncogenes or tumor suppressors include 12 p13.33
(Figure 2E, F) and 20 ql13.12 (Figure 2G, H), which had
recurrent high-magnitude focal amplifications, as well as
14 q32.31 which, although not highly amplified, had gains of
sufficient recurrence and focality as to render a highly significant
GISTIC Q-value (Figure 1B, Table $3). With the GISTIC
amplicon data, we summarize 114 candidate cancer drivers in
Table S4, which include twelve (10%) established oncogenes such
as MYC, KRAS, and MET. Putative oncogenes including WNK1
(Figure 3A) and HNI4A (Figure 3B) have Q-score, amplified
frequency, and cis-acting effects on mRINA that are comparable to
established oncogenes (Figure S1). Our analysis has narrowed
more than 6,000 genes from MCR regions of the genome to a
manageable number of about 100 for further experimental
validation.
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To further search for patterns of affected pathway alterations,
we mapped the list of genes amplified in CRC (Table S4) onto
canonical molecular signaling pathways and cellular processes.
Table 1 shows top canonical pathways possibly affected by the
amplified genes. Cell cycle is one of the most enriched pathways
affected by somatic CNA involving genes such as CCND1, MYC,
TFDP1 and YWHAZ. KEGG ‘“Pathways in Cancer” underlies
the broad spectrum effect of somatic CNAs in targeting multiple
key pathways in cancer simultaneously. More specifically, we also
identified individual cancer-related pathways that are significantly
over-represented among cis-acting genes driven by somatic CNAs,
including ERBB signaling pathway and MAPK kinase signaling
pathway. Taken together, these results suggest that these somatic
CNAs encode novel oncogenic driver genes and potential
therapeutic targets in colon cancer.

CNA Clustering and Non-random CNA Correlations in
CRC

We performed unsupervised hierarchical clustering of the global
CNA data and identified three major clusters. Though we didn’t
find significant associations to age, gender, stage or KRAS
mutation status, we observed that BRAF wild type tumors were
significantly enriched in the largest cluster and BRAF mutants in
one of the smaller clusters (p<<0.01). Previously we [26] developed
a BRAF-mutant gene expression signature from the PETACC-3
cohort and studied its prognostic implications. Among 213 MSS

@ PLoS ONE | www.plosone.org

patients with mRNA expression data available, the signature
identified 37 “BRAFm-like”” samples (including 8 BRAF mutants)
as well as 176 “non-BRAFm-like” samples. We re-ran clustering
analysis on those 213 samples (Figure 4A), and found very
significant enrichment of “non-BRAFm-like” samples (p<<0.01) in
the largest cluster (cluster 2) and “BRAFm-like”” samples in cluster
1 (P<<0.01, Table 2). Compared to cluster 2, cluster 1 shows
much lower frequencies of amplification/deletion events, especial-
ly on chrl3 q, 14 q, 18 q and 20 q (Figure 4B). A closer look
reveals that cluster 1 is completely depleted from CNAs at chr20
while 95% of cluster 2 samples had chr20 amplified. These results
corroborate with the observation of relative lower expression of
chr20 genes in BRAFm-like with respect to the rest of the BRAFwt
samples [26].

We previously reported that in cell lines CNAs at unlinked loci
were frequently correlated to each other and that such correlations
were likely the result of selection [31]. To assess whether a similar
phenomenon was evident in clinical stage II/III MSS colon
cancer, we conducted pair-wise correlations of copy number for all
genes (~22 k) across the genome. As expected, adjacent (linked)
genes were highly correlated (Figure 5A, close to diagonal). At a
higher level some chromosome arms became unlinked (e.g. chrlp
vs. 1 g, 10p vs. 10 q) or anti-correlated (e.g. chr8 p vs. 8 g). In
addition, there were numerous correlations between unlinked loci
(Figure 5A, off-diagonal), suggesting co-selection of these genomic
regions. For example, chromosome 8 p losses were correlated to
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losses of chromosomes 17 p and 18, along with gain of
chromosome 20 q. Chromosome 13 gains were correlated to
chromosome 14 losses. The distribution of gene-gene associations
was significantly different than a randomization of the CNV data
(Figure 5B). Similar to what was found in other cancer settings
[31,34] there was a scale-free structure where a few genes were
highly correlated to many other genes, while most genes correlated
to only a few genes. This suggests that a small number of DNA loci
act as hubs in a highly nonrandom hierarchical structure.

Relationship of CNA to Stage and Outcome

To identify individual CNAs that associate with tumor stage, we
compared CNA frequencies between stage II (n = 30) and stage 111
MSS samples (n =239). While both groups had similar patterns of
CNA, a deletion on chromosome 3pl4.2 had significantly
(p<<0.01) higher frequency in stage III tumors (24.3%) compared

to stage II tumors (3.3%). This locus encodes FHIT, a candidate
tumor suppressor and apoptotic regulator in colorectal cancer
[35], and the higher frequency of deletion in stage III tumors
suggests that loss of FHIT function may contribute to the
progression of colon cancer from a lower to higher stage disease.

The large set of stage II/III MSS colon cancer samples with
associated time-to-relapse, recurrence-free-survival (RFS) and
overall survival (OS) afforded a unique opportunity to identify
CNAs associated with outcome. Using Kaplan-Meier analysis, we
first investigated whether the ch20q amplification revealed by
sample clustering described previously lead to statistically signif-
icant differences in survival probability. A gained MCR on
chromosome 20 q11.21-q13.33 (chr20:29,297,270—
62,435,964 bp) was significantly associated with improved OS in
stage IIT tumors (p<<0.01). GISTIC identified one amplicon in this
MCR on 20q13.33 (chr20:61,440,621-61,778,204 bp) which was

@ PLoS ONE | www.plosone.org

Table 1. Top canonical pathways possibly affected by the amplified genes.

Term P-value FDR* Fold enrichment % tumor amplified
KEGG_ADHERENS_JUNCTION 1.79E-04 4.50E-03 14.37 11.2%
KEGG_CELL_CYCLE 1.35E-03 2.01E-02 8.42 10.4%
KEGG_PATHWAYS_IN_CANCER 1.44E-03 2.32E-02 493 9.7%
KEGG_ERBB_SIGNALING_PATHWAY 3.16E-04 5.83E-03 12.39 8.2%
SIG_PIP3_SIGNALING_IN_CARDIAC_MYOCTES 1.68E-03 2.42E-02 12.83 6.3%
BIOCARTA_TEL_PATHWAY 3.90E-05 2.13E-03 44.90 5.6%
KEGG_AXON_GUIDANCE 1.24E-02 7.48E-02 6.27 5.6%
KEGG_MAPK_SIGNALING_PATHWAY 1.77E-02 8.82E-02 4.04 5.6%
*FDR is based on was calculated based on 100 permutations where random sets of genes of same size were tested.
doi:10.1371/journal.pone.0042001.t001
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also significantly associated with improved OS. This region of
approximately 300 kb contains one interesting genes such as
EEF1A2 and PTK6. Anand et al. reported [36] EEF1A2’s over-
expression in about 30% of ovarian tumors and some established
ovarian cancer cells. However, high EEFIA2 protein expression
was associated with significantly increased 20-year survival
probability in women with serous ovarian tumors [37], or in
primary breast tumors, and this protective effect is thought to be

Table 2. Unsupervised hierarchical clustering indentified
three major CNA clusters.

BRAFmM- non-
Cluster samples like BRAF-likeBRAFm BRAFwt missing
1 34 16* 18 4* 27 3
2 153 12 141* 2 144* 7
3 26 9 17 2 22 2
Subtotal 213 37 176 8 193 12

*indicates significant over-representation in the category.
doi:10.1371/journal.pone.0042001.t002

@ PLoS ONE | www.plosone.org

due to EEF1A2’s high expression in reducing the aggressiveness
[38]. PTK6 was also reported [39] as positive associated to
metastases-free survival in breast cancer; and shows strong cis
CN/mRNA correlation in our analysis (Table S4). Here the CNA
data suggest that amplification of the 20 q13.33 locus could be a
significant prognostic marker of CRC cancer.

Besides chr20q amplification, we applied Kaplan-Meier analysis
to assess the relationship of all other MCRs and GISTIC peaks
with RFS and OS. There were no significant associations between
MCRs or GISTIC peaks versus OS or RIS for stage II tumors,
possibly reflecting the limited number of samples in this group
(n=30). However, a deletion on chromosome 10 p (Chrl0:0—-
10,743,764 bp) was significantly associated with poor RFS in stage
IIT tumors alone (p<0.01) or stage II/III tumors combined
(p<<0.01), as well as poor OS in stage II/IIl tumors combined
(p<<0.01).  Similarly, a deleted MCR on 19 pl3.12
(chr19:14,425,490-15,580,441 bp) was significantly associated
with OS (p<<0.01) in stage II/III tumors combined (Figure S2).

Discussion

The main goals of this study were to develop a comprehensive
overview of copy number aberrations (CNAs) and their associated

July 2012 | Volume 7 | Issue 7 | e42001



Copy Number Aberrations in Colorectal Cancer

A 1 2 3 4 5 ] 7 g 10 11 12 1314 15 16
== T = ok b
m [ o g -
= . 17
' [ | el I "
=
| M
I.. s F 14
£ | . S 13
t T 12
i ] i
| 11
| me l___..-
O E |
: . TRt " = |
LT
] - &
_ |
T i : i
" B
|_ Al
e L - ' 1
i i
H
markers ordered by chromosomal locations
B 3
10
5 T A
C 2 \'\‘_ A 7_)“‘ II||
3 107} T
O
@
-3
o
—h
©« 1
© 10 }
3
®
w
100 0 I1 I.73 3
10 10 10 10

@ PLoS ONE | www.plosone.org

number of correlated genes

July 2012 | Volume 7 | Issue 7 | e42001



Copy Number Aberrations in Colorectal Cancer

Figure 5. Pair-wise DNA/DNA correlations reveal significant associations between unlinked loci. (A) Pair-wise correlations computed
from gene copy number are ordered by chromosomal positions through the genome on the X and Y axes, with red indicating a positive correlation
and blue indicating a negative correlation. The red diagonal represents the correlation of a gene with itself. The lower right and upper left portions of
the graph represent mirror images of each other showing the copy number correlations of unlinked loci. (B) Log/log plots for significant gene/gene

correlations (|R|=0.3).
doi:10.1371/journal.pone.0042001.9005

genes in stage II/III colon cancer, to elucidate the underlying
biology, and to associate CNAs with outcome. Regions of
recurrent and focal CNA identified in these tumors highlight
genomic regions most likely to encode oncogenes and tumor
suppressors. Lstablished oncogenes identified in this study that
represent positive controls include MYC, CDX2, EGFR, MET,
ERBB2, and CCNDI.

The most prominent novel amplicons identified in this study
include 12 pl13.33 and multiple loci on 20 q (20 ql1.21,
20 q13.12, 20 q13.31). The 12 p13.33 amplicon encodes the
intriguing candidate WNKI1, a member of the WNK family of
serine/threonine kinases which affect MAPK signaling and a
variety of cancer hallmarks including cell cycle progression,
evasion of apoptosis, invasion and metastasis, and metabolic
adaptation [40]. The complex pattern of gains and amplification
on chromosome 20 q suggest multiple oncogenic drivers on this
chromosome arm, consistent with observations in breast tumors
[41]and other cancer types. The 20 q13.12 amplicon, which was
observed in multiple tumors (Figure 2G, 2H) and is the most
significant GISTIC peak on 20 q, encodes 11 genes, none of
which have been unequivocally described as oncogenic drivers in
colon cancer. Nonetheless, the reported functions of some of these
genes suggest that further investigation is warranted. For example,
the transcription factor HNF4A controls epithelial cell polarity and
promotes gut neoplasia in mice [42]. WISP2 (WNT1 Inducible
Signaling Pathway protein 2/CCND5) regulates the activity of the
transforming growth factor a (T'GFa) signaling pathway and
expression of genes associated with the epithelial-to-mesenchymal
transition [43]. The peak at 20 q13.31 encodes BMP7, a member
of the TGFa superfamily of proteins whose overexpression in
colorectal cancer significantly correlates with markers of patho-
logical aggressiveness such as liver metastasis and is an indepen-
dent prognostic factor of overall survival [44]. Functional
characterization of these and other candidate oncogenes in colon
cancer cell culture, patient-derived xenografts, or genetically
engineered mouse models will help elucidate potential functional
implications. Pathway analysis presented previously provides not
only a better understanding of the possible biological context of
candidate CNA drivers but also help to infer other genes on the
altered pathway for which therapeutic options may be available.
On the other hand, survival analysis shows improved overall
survival for the sample segment with chr20 q13.33 amplification.
This association contrasts with findings of another group who
reported amplification of 20 q13 is indicating worse overall
survival in sporadic colorectal cancers [45]. The exact basis for
this discrepancy with our findings for is not clear, although the
analyses of Aust et al. were on a substantially smaller cohort (120
samples).

Our analyses of associations between CNA and outcome in this
set of stage II/III colon cancers revealed three loci that were
significantly associated with overall survival (OS) or recurrence
free survival (RFS). Deletion of the distal tip of chromosome 10 p
(10 p15.3-p14) was associated with poor OS and RFS, while an
interstitial deletion of chromosome 19 p (19 p13.12) was associ-
ated with poor OS, and gain of 20 q was associated with
significantly better OS in stage III tumors. While 10 p deletions,
19 p deletions, and 20 q gains have been previously reported in

@ PLoS ONE | www.plosone.org

stage II/III colon cancers [16], none of these loci have been
previously linked to outcome in these tumors. Conversely, we did
not observe significant associations of outcome to previously
reported CNAs such as deletion of 16 p13.2 in stage II/III colon
cancer [46], or deletion of 5 q34 and gain of 13 ¢22.1 in stage II
tumors [17]. One potential explanation for these apparent
discrepancies may relate to the limited power of the respective
studies. For stage III MSS tumors, our results represent analyses of
markedly higher sample numbers (n = 239) compared to published
work (for e.g. 31 stage III tumors in [46]). For stage II MSS
tumors, our sample set is underpowered, representing 30 samples
compared to 41 [46] and 39 [17] tumors in earlier studies. These
results emphasize the need for comprehensive analyses of large
collections of clinically annotated tumor samples such as the stage
IIT MSS tumor set described in this work.

We also reported here a significant non-random correlation of
unlinked DNA loci with a scale-free structure in stage II/1II colon
cancer. These highly connected structures suggest a cycle of
random changes in copy number followed by selection of a subset
of changes that confer a selective advantage to tumor initiation
and progression. While this is a long standing idea in cancer,
correlation between unlinked loci suggests that highly ordered
structures can emerge, potentially focused around biological
functions of importance to the tumor. Future analyses could assess
the effect of unlinked copy number correlations on gene
expression, including enrichment of pathways and networks, and
determining if the mRNA controlled by a pair of correlated loci
overlap, where an independent effect of each loci was observable.
This would identify pathways that were selectively altered during
tumorigenesis and which therefore may represent new targetable
functions.
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Background: Differences exist between the proximal and distal colon in terms of developmental origin, exposure to pat-
terning genes, environmental mutagens, and gut flora. Little is known on how these differences may affect mechanisms of
tumorigenesis, side-specific therapy response or prognosis. We explored systematic differences in pathway activation
and their clinical implications.
Materials and methods: Detailed clinicopathological data for 3045 colon carcinoma patients enrolled in the PETACC3
adjuvant chemotherapy trial were available for analysis. A subset of 1404 samples had molecular data, including gene ex-
pression and DNA copy number profiles for 589 and 199 samples, respectively. In addition, 413 colon adenocarcinoma
from TCGA collection were also analyzed. Tumor side-effect on anti-epidermal growth factor receptor (EGFR) therapy
was assessed in a cohort of 325 metastatic patients. Outcome variables considered were relapse-free survival and
survival after relapse (SAR).
Results: Proximal carcinomas were more often mucinous, microsatellite instable (MSI)-high, mutated in key tumorigenic
pathways, expressed a B-Raf proto-oncogene, serine/threonine kinase (BRAF)-like and a serrated pathway signature, re-
gardless of histological type. Distal carcinomas were more often chromosome instable and EGFR or human epidermal
growth factor receptor 2 (HER2) amplified, and more frequently overexpressed epiregulin. While risk of relapse was not
different per side, SAR was much poorer for proximal than for distal stage Ill carcinomas in a multivariable model including
BRAF mutation status [N =285; HR 1.95, 95% Cl (1.6-2.4), P <0.001]. Only patients with metastases from a distal car-
cinoma responded to anti-EGFR therapy, in line with the predictions of our pathway enrichment analysis.

Conclusions: Colorectal carcinoma side is associated with differences in key molecular features, some immediately
druggable, with important prognostic effects which are maintained in metastatic lesions. Although within side significant
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molecular heterogeneity remains, our findings justify stratification of patients by side for retrospective and prospective

analyses of drug efficacy and prognosis.

Key words: colon cancer, expression profiling, mutations, oncogenic pathways, survival

introduction

Current understanding of molecular mechanisms involved in
colorectal cancer (CRC) supports three main molecular path-
ways. The almost classical chromosomal instability (CIN)
pathway is based on the seminal publication of Vogelstein and
contains most of the kirsten rat sarcoma viral oncogene
homolog (KRAS) mutated CRCs. The mismatch repair deficient
or microsatellite instable (MSI) pathway was discovered through
elucidation of the gene mutations responsible for Lynch syn-
drome and is characterized by a hypermutating state and fre-
quent B-Raf proto-oncogene, serine/threonine kinase (BRAF)
V600E mutation. The CpG island methylator phenotype
(CIMP) pathway goes along with the occurrence of serrated pre-
cursor lesions and is also strongly related to the MSI pathway,
notably through frequent methylation of the mutL homolog 1
promoter, which confers MSI-high status [1]. The pathways are
sufficiently distinct to be conceptually valid, but they also signifi-
cantly overlap. This makes the development of new molecular
modalities of classification of CRC a complex task [2].

Different approaches toward molecular classification have been
undertaken, based on gene expression profiles and the TCGA
whole-genome sequencing effort. We and others have proposed
gene expression-based molecular subgroups [3-6] that share
(groups of) molecular characteristics while maintaining significant
intragroup heterogeneity. Typical examples are the segregation of
clinically significant subgroups such as those BRAF-mutated or
expressing a BRAF-mutated gene expression signature [7] and
MSI or expressing an MSI-like signature [8]. Signatures and sub-
groups identified by them intend to define patient categories for
which treatment needs and/or response to treatment may differ.

The systematic attempt toward subclassification is epitomized
in the TNM staging approach and stage grouping as its deriva-
tive. Anatomic characteristics related to tumor spread still
dictate to a large extent, even in this era of molecular scrutiny,
how a patient will be treated. Strikingly, tumor side in terms of
proximal or distal colon has gained in prominence in recent
years. Initially, this was recognized mostly through the strong
preference for the proximal colon for cancers associated with
the Lynch syndrome. This paved the way toward the recognition
that proximal carcinomas are more often MSI, BRAF-mutated
and express the CIMP phenotype [9, 10]. This might be related
to differences in biology between the proximal and distal colon,
with potentially significant impact on tumorigenesis in these re-
spective sides. However, little is known about the mechanisms
responsible for such tumor heterogeneity. One distinctive fea-
ture is represented by their embryonic derivation, which is the
midgut and the hindgut for the proximal and distal colon,
respectively. The pathways involved in the development of these
segments have been extensively explored and should be taken
into consideration when the biology of their derived cancers is
considered. Additionally, the differences in luminal content and
bacterial flora between the left and right colon may influence
oncogenesis [11]. Therefore, tumor location is a major source

of biological heterogeneity, potentially with prognostic and pre-
dictive implications in view of the fact that the mortality rate is
higher in proximal than in distal colon cancer (CC) [12-15].

We hypothesized that the carcinogenic pathway is different
between proximal and distal colon tumors, and that this would
be reflected in size-associated differences in the molecular char-
acteristics of the tumors. This might have profound prognostic
and therapeutic implications. We tested this by comparing clini-
copathological and molecular characteristics of carcinomas in
the proximal versus distal colon in two large CC cohorts.

materials and methods

patients

Clinicopathological data were available for a cohort of 3045 CC patients en-
rolled in the PETACC3 adjuvant chemotherapy trial. A subset of those
patients had molecular data (N=1404), including BRAF, KRAS, and
PIK3CA mutation status, MSI status, and 18q arm loss of heterozygosity
(LOS). Parallel gene expression (N =589) and DNA copy number profiles
(N=199) were also available [16, 17]. Clinicopathological (N=413) and
molecular information (somatic mutations N =199, RNAseq N =325) for
additional CC patients were obtained from the TCGA data portal (https:/
tcga-data.nci.nih.gov/tcga/) [18].

Gene expression profiles of 84 normal colon samples were derived from
four datasets (TCGA CC, GSE14333, GSE8671, and GSE41258).

To assess tumor side-effect on response to anti-epidermal growth factor
receptor (EGFR) therapy, we studied a cohort of 435 chemorefractory meta-
static CRC patients [19].

Tumors located in the splenic flexure, descending colon, and sigmoid
colon were defined as proximal, while cecum, ascending, and hepatic flexure
were classified as distal. Intraperitoneal rectum and distal rectum were
excluded from the analysis. Transverse CCs (for the lack of clarity as to the
exact location) were included exclusively when assessing feature distribution
along the bowel. Further information is given in supplementary Materials
and Methods, available at Annals of Oncology online.

statistical analysis

Gene expression and copy number data analyses were processed as described
elsewhere [3, 16]. Biological interpretation was carried out using tools and
signatures described in supplementary Materials and Methods, available at
Annals of Oncology online. We applied a Bayesian model selection approach
to test if variables could be explained better by a flat, dichotomous, or a
continuum model of variation along the bowel.

We assessed differences in the distribution of categorical variables with
Fisher’s test or Pearson’s y? test, as indicated. We used the Cox proportional
hazards model to assess the association of tumor side with time-to-event end
points and Kaplan-Meier method for figures.

results

The frequency distribution of the clinicopathological features
along the bowel was analyzed using the PETACC3 and TCGA
cohorts. Proximal carcinomas were associated with higher age,
node-negative stage, high grade, and mucinous differentiation
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(supplementary Table S1 and S2, available at Annals of Oncology
online). Furthermore, proximal carcinomas disseminated more
often to the abdominal viscera and lymph nodes, whereas distal
carcinomas had a higher frequency of liver and chest metastases.
Concerning the distributions of the variables along the bowel,
including, for this, the transverse colon (supplementary Table S3
and S$4, available at Annals of Oncology online) most of them
favored a biphasic model, with the exception of MSI in the
PETACC3 dataset which showed a gradual distribution. Based
on these findings, we explored the molecular bases of such dif-
ferences starting from the colon normal mucosa.

Gene expression profiles of 84 normal samples (34 proxi-
mal and 50 distal) collected from four public datasets were ana-
lyzed to assess the effect on gene expression in normal mucosa
based on their location. In a meta-analytical approach including
colon side as a predictor, we identified 351 genes differentially
expressed—157 overexpressed in the proximal and 194 in the
distal colon (supplementary Table S5, available at Annals of
Oncology online). Notably, the expression of some HOX genes
involved in colon development (HOXC6, HOXB6, and HOXB13)
as well as of the EGFR ligand epiregulin (EREG) was different
according to side. Gene set enrichment analysis using DAVID
evidenced that genes overexpressed in the proximal colon were
associated with an inflammatory response and drug metabolism
(notably of cytochrome P450 superfamily—supplementary
Table S6, available at Annals of Oncology online).
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Difference in gene expression between proximal and distal
tumors was explored in 589 CC samples (211 proximal and 378
distal) from the PETACCS3 dataset, using a linear model controlling
for potential confounders such as BRAF and KRAS mutation
status and MSI. After correction for multiple testing, 576 genes
were found differentially expressed (158 genes up-regulated in
proximal and 418 in distal carcinomas—supplementary Table S7,
available at Annals of Oncology online), showing mainly a
biphasic midgut/hindgut pattern, as for the clinicopathological
features. Overall, gene expression fold-changes between the two
sides were small in magnitude.

Only 20 genes (including two HOX genes—HOXC6 and
HOXB13) were found to be in common with the 351 genes
found differentially expressed in the normal colon. Notably,
within the group of BRAF-mutated carcinomas (which are
mostly proximal), no differences were found between proximal
and distal carcinomas (data not shown).

To elucidate if tumor side influences the type of pathways
exploited by tumor cells to promote and sustain CC tumori-
genesis, we selected a set of gene signatures representing the
main biological processes involved in CC (details in supple-
mentary Table S8, available at Annals of Oncology online). The
level of those signatures was compared between sides in 589
CC from the PETACC3 dataset and 325 from the TCGA
dataset and results combined meta-analytically. Figure 1 sum-
marizes the strength and direction of the association between
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Figure 1. Barplot showing signed statistic of the association between gene signatures and tumor side observed in 589 CRC from the PETACC3 and 325 from
the TCGA datasets. (A) The analysis was carried out considering all the patients, (B) or focusing on MSS, BRAF, and KRAS wild-type tumors. Association of
the gene signatures with tumor location was assessed separately within each dataset using a linear model. Results were combined using Fisher’s method. Blue
bars represent levels of significance after adjustment for multiple testing [P < 0.05 after Bonferroni correction for all patients (A) and false discovery rate (FDR)
<0.25 after Benjamini-Hochberg procedure when considering MSS, BRAF, and KRAS wild-type tumors (B)].
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the signatures and tumor side considering all samples or focus-
ing exclusively on microsatellite stable (MSS), BRAF, and
KRAS wild-type patients. BRAF-like, MSI-like, and serrated
adenoma signatures showed the strongest bias between sides,
suggesting that these are the most prevalent signatures distin-
guishing proximal from distal tumors. Notably, this difference
is also observed in the set of MSS, KRAS, and BRAF wild-type
tumors (supplementary Figure S1, available at Annals of
Oncology online). In the whole patient cohort, we also found a
significant positive association between proximal tumors and
T-cell activation, JAK-STAT, angiogenesis, apoptosis, RAS,
and mitogen-activated protein kinase (MAPK) activation. In
contrast, distal carcinomas were associated with WNT, MYC,
and SCR activation as well as the presence of intestinal stem
cells. Notably, distal MSS and BRAF and KRAS wild-type
carcinomas were also associated with human epidermal
growth factor receptor 2 (HER2) and EGFR activation signal-
ing, which parallels the observation that EREG (EGF ligand)
was among the most overexpressed genes in distal carcinomas.

Copy number variation (CNV) analysis was carried out on a
subset of 199 patients (127 distal and 72 proximal) from
the PETACC3 study. Distal carcinomas showed a significantly
higher proportion of CIN+ patients (57%) than proximal
carcinomas (40%) (y* test, P=0.029), as well as a higher
number of amplification/deletions (supplementary Figure S2,
available at Annals of Oncology online). Regions on chromo-
somes 10, 11, 14, 18, and 20 were altered with different fre-
quency (supplementary Table S9 and Figure S3 and S4, available
at Annals of Oncology online). Notably, gain of 20q and loss of
18q were found significantly more often in distal carcinomas
(supplementary Figure S2 and Table S1, available at Annals of
Oncology online), which corroborate overexpressed in distal
tumors of a significant proportion (20%) of genes located on
20q (Fisher’s test, P < 0.0001).

Chromosomal regions hosting receptor tyrosine kinases were
more often amplified in distal (60/127, 47%) than in proximal
(23/72; 32%) carcinomas, including the ErbB family members
HER2 and EGFR (16/127 versus 1/72, Fisher’s test P <0.001;
supplementary Figure S5, available at Amnals of Oncology
online).

Mutation frequency was analyzed in 199 tumors (78 distal and
121 proximal) from the TCGA CC collection. As previously
described [18], mutations were more frequent in MSI-high than
in MSS carcinomas (data not shown). However, in proximal MSS
carcinomas, the number of deleterious mutations was higher
than in distal MSS carcinomas (supplementary Figure S6, avail-
able at Annals of Oncology online), even after removing all hyper-
mutant tumors (non-silent mutation rate >450). A similar trend
was also observed when considering only oncogenes, indicating
that the higher mutation rate was potentially an important
feature of proximal tumors beyond the MSI/hypermutated status.

This was confirmed by the observation that important sig-
naling pathways such as MAPK, ErbB, TGF-beta, and insulin
signaling pathways were found more frequently mutated in pro-
ximal than in distal carcinomas (supplementary Table S10,
available at Annals of Oncology online). As supportive evidence,
we found a similar mutation bias in the PETACC3 dataset for
oncogenes, such as BRAF, KRAS, and PIK3Ca (supplementary
Table S1, available at Annals of Oncology online).

Annals of Oncology

We explored the association of tumor side with relapse-free
survival (RFS) and survival after relapse (SAR) in the PETACC3
cohort. Surprisingly, stage II proximal carcinomas relapsed
significantly less frequently than those in the distal colon (sup-
plementary Figure S7, available at Annals of Oncology online).
However, this appeared to be entirely due to the MSI popula-
tion (mostly proximal), as this was no longer found when only
MSS carcinomas were considered. For stage III patients, no
effect of side was found on RFS (supplementary Figure S8,
available at Annals of Oncology online). Multivariable analysis
confirmed that side is not an independent prognostic factor for
RES (supplementary Table S11, available at Annals of Oncology
online).

In contrast, when stage III patients with a proximal carcinoma
became metastatic, they had a significantly worse survival than
those with a metastatic distal carcinoma [HR 1.97, 95% CI (1.6—
2.3), P<0.001; supplementary Figure S7, available at Annals of
Oncology online]. Multivariable analysis showed that this effect
was independent of MSI and KRAS or BRAF mutation status
[HR 1.7, 95% CI (1.3-2.4), P < 0.001; supplementary Table S11,
available at Annals of Oncology online]. The BRAF signature
score, which is higher in proximal carcinomas and itself highly
prognostic for SAR [7], outcompeted side in a multivariable
model (data not shown), although in the non-BRAF mutant-
like subset side was still a significant factor (supplementary
Figure S8, available at Annals of Oncology online).

In the smaller stage II proximal carcinoma cohort, we also
observed a trend toward poorer outcome. This was confirmed in
an independent untreated population (supplementary Figure S8,
available at Annals of Oncology online).

In view of our finding that, in distal tumors, the frequency of
amplification of ErbB family members is higher and the activa-
tion of EGFR signaling stronger, we explored if EGFR inhibitor
efficacy is affected by tumor side. To this end, we studied 435
metastatic chemorefractory patients (126 or 29% proximal and
309 or 71% distal), of whom 207 were KRAS and BRAF wild-
type (WT2) and had been treated with cetuximab combined
with chemotherapy [19].

Overall, in univariable models, patients with a distal carcin-
oma showed better progression-free survival [PFS; 21 weeks
(95% CI 19-24 weeks)] than those with a proximal carcinoma
[13 weeks (95% CI 11-17 weeks); P <0.001; supplementary
Figure S9, available at Annals of Oncology online]. This was
largely due to patients with a WT2 carcinoma, of whom the
median PFS was 18 weeks in case of a proximal carcinoma (95%
CI 11-31 weeks) but 30 weeks in case of a distal carcinoma
(95% CI 26-34 weeks, P=0.02). In contrast, KRAS or BRAF-
mutated carcinomas did not show any difference in outcome
according to side (data not shown).

discussion

It is now clear that CRC is a molecularly heterogeneous disease
[3-6], and that this heterogeneity should be used to stratify
patients for optimal response to current and novel therapeutic
strategies. We confirm the emerging notion that a significant
part of this heterogeneity is captured by the anatomic location
of the tumor. However, we were not able to confirm that those
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changes occur gradually along the bowel, as previously hypothe-
sized [10].

We found differences in gene expression between the prox-
imal and distal normal colon, which mostly overlapped with
those found by LaPointe et al. [20], but which did not emerge
as significant in the differences between proximal and distal
carcinomas.

We confirm that proximal tumors are more often MSI and
hypermutated, which is at least in part due to their deficient
DNA mismatch repair status. However, in both the PETACC3
and TCGA series, even non-hypermutant proximal MSS carcin-
omas harbor more potentially deleterious mutations, including
mutations of KRAS, BRAF, and PIK3Ca. We observed a higher
frequency of BRAF-mutated, BRAF score, and serrated signature
expressing proximal carcinomas, as was also found in mouse
models recapitulating human BRAF"*°" mutated serrated lesions
with an MSI phenotype [21]. Proximal carcinomas, often charac-
teristically mucinous, densely infiltrated with tumor-infiltrating
lymphocytes, and with activated MAPK signaling, might develop
from precursor lesions driven by pathways which are associated
with side-specific cellular characteristics, such as tolerance to DNA
repair defects and to oncogenic stress. In addition, environmen-
tal factors like bacterial toxins or mutagenic CYP450

metabolites, which increase the mutation rate, may contribute
to the specific characteristics of these cancers [11].

In contrast, distal carcinomas characteristically harbor nu-
merous large chromosomal alterations (notably gain of 20q and
loss of 18q), for which the responsible mechanisms are not fully
understood. Loss of 18q [22] as well as activation of EGF signal-
ing, which induce the expression of AURKA [23], might be
implicated. We found HERI and HER2, directly druggable
targets, amplified in 12% of distal carcinomas (9% of which
wild-type for KRAS and BRAF) and gene expression evidence of
activation of the EGFR pathway largely restricted to the distal
colon. The observation that, in the adenomatous polyposis coli
mouse model, the disruption of the pan-ErbB-negative regulator
LRIG1 predominantly induces distal neoplasms [24] supports
the hypothesis of an important contribution of EGF signaling to
distal colon carcinogenesis.

These differences in mutation rate and genomic instability
between the two colon sides are striking and need to be better
understood both in terms of their bearing on prognosis as well as
response to DNA repair targeting chemotherapies. Multivariable
analyses, containing all major known risk factors including
BRAF and KRAS mutations, showed that side is an independent
prognostic factor for SAR. Furthermore, BRAF mutant or BRAF-
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Figure 3. Summary of the main biological and clinical findings. SAR, survival after relapse; MSAR, median survival after relapse; y, year.

like distal carcinomas have poorer SAR and RFS [7]. We hy-
pothesize that metastases of proximal colon carcinomas have an
increased mutation rate and higher cellular plasticity, potentially
exacerbated by the effects of chemotherapy, with as a potential
consequence a deleterious effect of (neo)adjuvant therapy. The
combination of hypermethylation and a hypermutant state may
induce, in metastases of proximal carcinomas, resistance to the
current, mostly 5-fluorouracil-based, chemotherapeutic regimens.
Our current working hypothesis is that proximal carcinomas have
a poor prognosis under current best care, which should be
confirmed by reanalysis by tumor side of all major CRC trials.
Efficacious treatment of proximal carcinomas might require com-
pletely different drug regimens.

Our observations of an active EGFR signaling in distal car-
cinomas also suggest that those tumors benefit significantly
more from anti-EGFR agents than proximal carcinomas, which
was supported by our results obtained from a single-arm study.
This finding also emerged recently from the NCIC-CTG-
CO.17 reanalysis of cetuximab monotherapy versus best sup-
portive care and emphasizes that benefit is restricted to proximal
carcinomas [25].

In summary, the molecular and clinical characteristics of
proximal and distal colon carcinomas are significantly different
(as is summarized in Figures 2 and 3) and show to go beyond
the simple MSI-MSS grouping. It remains to be seen if the
findings hold also in advanced diseases, under-represented in
our study. Tumor location is yet another simplistic subdivision
of CRC, but it does go along with significant and characteristic
molecular heterogeneity based on differences in biology, which
is potentially highly relevant for therapeutic decision-making.
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Fourfold increased detection of Lynch syndrome
by raising age limit for tumour genetic testing from

50 to 70 years is cost-effective
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Background: Recognising colorectal cancer (CRC) patients with Lynch syndrome (LS) can increase life expectancy of
these patients and their close relatives. To improve identification of this under-diagnosed disease, experts suggested
raising the age limit for CRC tumour genetic testing from 50 to 70 years. The present study evaluates the efficacy and
cost-effectiveness of this strategy.
Methods: Probabilistic efficacy and cost-effectiveness analyses were carried out comparing tumour genetic testing of
CRC diagnosed at age 70 or below (experimental strategy) versus CRC diagnosed at age 50 or below (current practice).
The proportions of LS patients identified and cost-effectiveness including cascade screening of relatives, were calculated
by decision analytic models based on real-life data.
Results: Using the experimental strategy, four times more LS patients can be identified among CRC patients when com-
pared with current practice. Both the costs to detect one LS patient (€9437/carrier versus €4837/carrier), and the
number needed to test for detecting one LS patient (42 versus 19) doubled. When family cascade screening was
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Distal and proximal colon cancers differ in terms
of molecular, pathological, and clinical features
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been corrected below. The authors apologize for the errors.

abstract-results

Proximal carcinomas were more often mucinous, microsatellite
instable (MSI)-high, mutated in key tumorigenic pathways,
expressed a B-Raf proto-oncogene, serine/threonine kinase
(BRAF)-like and a serrated pathway signature, regardless of
histological type. Distal carcinomas were more often chromo-
some instable and EGFR or human epidermal growth factor re-
ceptor 2 (HER2) amplified, and more frequently overexpressed
epiregulin. While risk of relapse was not different per side, SAR
was much poorer for proximal than for distal stage III carcin-
omas in a multivariable model including BRAF mutation status
[N =285; HR 1.95, 95% CI (1.6-2.4), P <0.001]. Only patients
with metastases from a distal carcinoma responded to anti-
EGEFR therapy, in line with the predictions of our pathway en-
richment analysis.

materials and methods

patients

Clinicopathological data were available for a cohort of 3045 CC patients
enrolled in the PETACC3 adjuvant chemotherapy trial. A subset of those
patients had molecular data (N = 1404), including BRAF, KRAS, and PIK3CA
mutation status, MSI status, and 18q arm loss of heterozygosity (LOS). Parallel
gene expression (N =589) and DNA copy number profiles (N = 199) were also
available [16, 17]. Clinicopathological (N =413) and molecular information
(somatic mutations N = 199, RNAseq N = 325) for additional CC patients were
obtained from the TCGA data portal (https:/tcga-data.nci.nih.gov/tcga/) [18].

Gene expression profiles of 84 normal colon samples were derived from four
datasets (TCGA CC, GSE14333, GSE8671, and GSE41258). To assess tumor
side-effect on response to anti-epidermal growth factor receptor (EGFR) therapy,
we studied a cohort of 435 chemorefractory metastatic CRC patients [19].

Tumors located in the splenic flexure, descending colon, and sigmoid
colon were defined as distal, while cecum, ascending, and hepatic flexure
were classified as proximal. Intraperitoneal rectum and distal rectum were
excluded from the analysis. Transverse CCs (for the lack of clarity as to the
exact location) were included exclusively when assessing feature distribution
along the bowel. Further information is given in supplementary Materials
and Methods, available at Annals of Oncology online.
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Population of Patients With Colon Cancer
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See accompanying editorial on page 1255; listen to the podcast by Dr Meyerhardt at
www.jco.org/podcasts

Purpose
Our purpose was development and assessment of a BRAF-mutant gene expression signature for
colon cancer (CC) and the study of its prognostic implications.

Materials and Methods

A set of 668 stage Il and lll CC samples from the PETACC-3 (Pan-European Trails in Alimentary Tract
Cancers) clinical trial were used to assess differential gene expression between ¢.1799T>A (p.V600E)
BRAF mutant and non-BRAF, non-KRAS mutant cancers (double wild type) and to construct a gene
expression—based classifier for detecting BRAF mutant samples with high sensitivity. The classifier was
validated in independent data sets, and survival rates were compared between classifier positive and
negative tumors.

Results

A 64 gene-based classifier was developed with 96% sensitivity and 86% specificity for detecting
BRAF mutant tumors in PETACC-3 and independent samples. A subpopulation of BRAF wild-type
patients (30% of KRAS mutants, 13% of double wild type) showed a gene expression pattern and
had poor overall survival and survival after relapse, similar to those observed in BRAF-mutant
patients. Thus they form a distinct prognostic subgroup within their mutation class.

Conclusion
A characteristic pattern of gene expression is associated with and accurately predicts BRAF

mutation status and, in addition, identifies a population of BRAF mutated-like KRAS mutants and
double wild-type patients with similarly poor prognosis. This suggests a commmon biology between
these tumors and provides a novel classification tool for cancers, adding prognostic and biologic
information that is not captured by the mutation status alone. These results may guide therapeutic
strategies for this patient segment and may help in population stratification for clinical trials.

J Clin Oncol 30:1288-1295. © 2012 by American Society of Clinical Oncology

kinase activation in BRAF-mutant (BRAFm) colon
cancer.*” Unlike the majority of KRAS-mutant

Activation of the KRAS/BRAF/MEK/ERK cascade is
believed to occur frequently in colorectal (CRC)
cancer on the basis of the observed 40% incidence of
KRAS mutations and 10% to 15% incidence of
BRAF mutations.'* KRAS and BRAF mutations oc-
cur in a mutually exclusive pattern in CRC, which
has long been interpreted as a sign of functional
redundancy. However, these mutations occur in dif-
ferent histopathologic subtypes of CRC,>® and we
recently showed” that the prognosis of patients with
KRAS and BRAF mutant metastatic CRC is quite
different, with a clearly worse prognosis for BRAF-
mutant disease. It has been suggested this could be
due to higher levels of mitogen-activated protein

1288 © 2012 by American Society of Clinical Oncology
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(KRASm) CRCs, BRAFm metastatic CRCs do not
respond to any current chemotherapy, and the out-
come of patients with BRAFm CRC is similar to that
of untreated patients.

Our main objective was to better unders-
tand the underlying biology of BRAFm CRCs as
captured by gene expression. We developed a
BRAFm gene signature that allowed an accurate
identification of BRAFm samples, and which,
when applied to BRAF wild-type samples, identi-
fied additional colon cancer (CC) samples that
manifested a similar gene expression pattern. Al-
though a substantial amount of work has been
dedicated to the development of BRAFm gene

joarSAtieishyoalikjrdl Tneolbyrakh 1GDI826sE20k.



Identification of BRAF-Like Patients

expression signatures in melanoma,'"'? to the best of our knowledge,

there is no such published work in the CC context. Taking advantage
of a large series of tumors with gene expression and mutation data
from the PETACC-3 (Pan-European Trails in Alimentary Tract
Cancers) clinical trial,'> we studied the genes differentially ex-
pressed between ¢.1799T>A (p.V600E) BRAFm and double-wild-
type (WT2) tumors, defined as non-BRAF mutant, non-KRAS
mutant. We purposely excluded the KRASm tumors from this com-
parison because it was unclear whether KRASm carcinomas had over-
lapping biology with BRAFm. Next, we built a classifier able to
recognize with high sensitivity BRAFm CCs in our own and external
data sets.

When the BRAF classifier was applied to the whole population, it
identified a BRAF wild-type subpopulation, with similar gene expres-
sion and prognostic characteristics. Approximately 62% of these
BRAFm-like tumors were KRASm (30% of all KRASm were BRAFm-
like), with the rest being WT2 (13% of all WT2). In our data, the BRAFm-
like population represented 18% of CCs. This intriguing finding
suggests a common biology between these tumors, not predicted by
the mutation status. The results obtained show that our current clas-
sifications of tumors as KRAS- or BRAF-mutant or mitogen-activated
protein kinase—active versus nonactive are inadequate to capture the
whole underlying biology and clinical behavior.

Tumor Samples and Data Preparation

Within the PETACC-3 clinical trial,'®> formalin-fixed paraffin-
embedded tissue blocks were collected after cancer diagnosis and indepen-
dently of future research plans, and DNA was extracted from 1,404
microdissected tissue sections. The analysis of KRAS exon 2 and BRAF
exon 15 was performed by allele-specific real-time polymerase chain reac-
tion.” The mutation status has been confirmed for all samples by a second
analysis, using Sequenom.'* RNA of sufficient quantity and quality was ex-
tracted from 895 samples, and gene expressions were measured on the AL-
MAC Colorectal Cancer DSA platform (Craigavon, Northern Ireland)—a
customized Affymetrix chip with 61,528 probe sets mapping to 15,920 unique
Entrez Gene IDs—in two phases (phase 1: n = 322, phase 2: n = 573). In total,
688 unique samples passed the final quality control (phase 1: n = 265 [82.3%],
phase 2: n = 423 [73.8%]) and were used in subsequent analysis (Data Sup-
plement). Of this series of CCs, 257 (37.4%) were KRAS mutated, whereas
BRAF mutation was detected in 47 (6.8%) of the cases (Data Supplement).

The stage IIT subset included all samples for which profile data could be
obtained and is thus representative of the clinical population of the trial. The
stage II subset included all patients with relapse for whom profile data could be
obtained and is thus also representative of this group, whereas from the
nonrelapsing patients, a randomly selected population was profiled.

Three additional independent data sets'>™'” were used for validation of
the signature, whereas a fourth data set,'® with available survival information,
was used for validating the prognostic value of the signature.

Statistical Analysis

PETACC-3 gene expression data were retrospectively analyzed to derive
the BRAF gene signature discriminating between ¢.1799T>A (p.V600E)
BRAFm and double-wild-type (WT2; BRAF and KRAS wild-type) tumors.
Samples with missing mutation information (n = 39) were discarded from the
gene signature development, but were included later in the survival analysis.

Gene expression data were normalized using RMA (Robust Microchip
Average)'® and summarized at the gene level by choosing the probe set with the
highest standard deviation as a representative of each gene, in each data
set individually.

Differentially expressed genes were obtained by fitting multivariate linear
models (using LIMMAZ®® package) to probe set-level data to fully exploit the

WwWW.jco.org

potential of the platform. To account for known association between micro-
satellite instability-high (MSI-H), BRAFm, and right-sided tumors,’ the linear
model for the whole population included factors for BRAF mutation, MSI
status, and tumor site (all binary variables). For the microsatellite stable (MSS)
subpopulation, the model included only the BRAF mutation status and tumor
site. The false discovery rate was controlled by Benjamini-Hochberg proce-
dure?! and required to be at most 1%, whereas the minimum absolute log-fold
change was 0.585 (= log2 1.5). As the MSI-H subpopulation was small and
consisted only of right-sided samples, the differentially expressed genes were
derived by comparing BRAFm and WT2 only in the right colon, with a false
discovery rate less than 25% and no constraint on the fold change.

For signature generation, an adapted version of the top scoring pairs
algorithm®? (multiple top scoring pairs [mTSP]; Data Supplement) was used,
resulting in gene pairs deemed as the most informative in the process of
classifier construction. The final classification model consisted of two groups
of genes (G1 and G2), and the prediction was made comparing the averages of
these groups: If, for a given sample, the average of G1 was smaller than the
average of G2, then the sample was predicted to be BRAFm, otherwise WT?2.

We also defined a BRAF score (BS) as the difference between the average
expression of G2 genes and the average expression of G1 genes (from the
mTSP model) and used it to analyze the stratification for different threshold
values (a threshold of 0 leading to the original decision rule). An alternative
threshold for the BRAF score was obtained as the value that maximized
Matthews correlation coefficient*® on the PETACC-3 data set.

The performance of the classifier was estimated by repeated (10 times)
stratified five-fold cross-validation, following the MAQC-II guidelines,24 and
measured in terms of sensitivity, specificity, and error rate. The final BRAF
classifier was built from all BRAFm and WT2 samples in the PETACC-3 data
set and then applied to the full PETACC-3 data set (including KRASm) and
independent validation sets for the analysis of stratification of the population
(Data Supplement). Because the stage II subgroup of PETACC-3 is smaller and
not fully representative, the analysis of the prognostic value of the signature is
focused on stage III subgroup. However, results for both stages are given
(Data Supplement).

The association between predicted class and survival outcomes was
tested using Cox proportional hazard models (log-likelihood test) and log-
rank test for dichotomous variables. Three survival outcomes have been con-
sidered: overall survival, relapse-free survival and survival after relapse. Fisher’s
exact test was used for testing differences in proportions in contingency tables.

BRAFm: Characteristic Genes and Classifier

In the PETACC-3 data set, we identified 314 differentially ex-
pressed probe sets between BRAFm and WT2 (see Materials and
Methods for details), mapping to 223 unique EntrezGene IDs. Top 50
differentially expressed probe sets are given in Table 1, with the full
table given in the Data Supplement. We also derived lists of differen-
tially expressed genes for the MSI-H and MSS tumors separately
(Data Supplement).

Using the technique of mTSP, a 32-gene pair BRAFm signature
(Table 2) was obtained by training on the ¢.1799T>A (p.V600E)
BRAFm and WT?2 samples, considering all genes, whether or not they
were previously identified to be differentially expressed. Its perfor-
mance was estimated at a sensitivity of 95.8% and a specificity of
86.5% (Table 3). Fifty of the 64 genes of the signature were among the
223 differentially expressed genes (Data Supplement).

BRAFm-Like Tumors

To make the distinction between the true and classifier-predicted
mutation status, we prefix the predictions by “pred-": pred-BRAFm
denotes the samples predicted to be BRAFm, whereas pred-BRAFwt
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Table 1. Top 50 Differentially Expressed Probe Sets Between ¢.1799T>A (p.V600E) BRAFm and WT2

Probe Set ID Gene Symbol Entrez GenelD LFC Official Full Name

ADXCRPD.7995.C1_x_at AQP5 362 —-291 Aquaporin 5

ADXCRIH.384.C1_s_at REG4 83998 -2.80 Regenerating islet-derived family, member 4

ADXCRAG_BC014461_x_at CDX2 1045 2.02 Caudal type homeobox 2

ADXCRAG_BC014461_at CDX2 1045 1.97 Caudal type homeobox 2

ADXCRPD.10572.C1_at HSF5 124535 1.70 Heat shock transcription factor family member 5

ADXCRAG_AK024491_s_at SOX8 30812 -1.95 SRY (sex determining region Y)-box 8

ADXCRSS.Hs#52988180_at HSF5 124535 2.02 Heat shock transcription factor family member 5

ADXCRPD.7687.C1_at TMA4SF4 7104 -1.70 Transmembrane 4 L six family member 4

ADXCRAG_M14335_s_at 5 2153 -1.18 Coagulation factor V (proaccelerin, labile factor)

ADXCRAG_AJ250717_s_at CTSE 1510 —2.62 Cathepsin E

ADXCRAG_AJ132099_s_at VNN1 8876 -0.93 Vanin 1

ADXCRAD_NM_025113_s_at C130rf18 80183 1.77 Chromosome 13 open reading frame 18

ADXCRAG_NM_182510_s_at LOC146336 146336 =133 Hypothetical LOC146336

ADXCRAG_BC028581_s_at PIWIL1 9271 -0.72 Piwi-like 1 (Drosophila)

ADXCRAD_BX094012_s_at SOX13 9580 -0.72 SRY (sex determining region Y)-box 13

ADXCRPDRC.4289.C1_at RNF43 54894 1.38 Ring finger protein 43

ADXCRPD.10016.C1_at SATB2 23314 1.82 SATB homeobox 2

ADXCRPDRC.8321.C1_s_at TFCP2L1 29842 1.26 Transcription factor CP2-like 1

ADXCRIH.1549.C1_at ELOVL5 60481 0.94 ELOVL family member 5, elongation of long chain fatty acids (FEN1/
Elo2, SUR4/Elo3-like, yeast)

ADXCRAG_BC028581_x_at PIWIL1 9271 -1.72 Piwi-like 1 (Drosophila)

ADXCRIH.1305.C1_s_at LYz 4069 —1.61 Lysozyme

ADXCRSS.Hs#S1405714_at RNF43 54894 1.27 Ring finger protein 43

ADXCRSS.Hs#S3740849_at HSF5 124535 1.21 Heat shock transcription factor family member 5

ADXCRSS.Hs#S3012761_at HSF5 124535 1.20 Heat shock transcription factor family member 5

ADXCRAD_BM825250_s_at TMA4SF4 7104 —0.99 Transmembrane 4 L six family member 4

ADXCRPD.7300.C1_s_at LOC388199 388199 -1.28 Proline rich 25

ADXCRIH.4080.C1_s_at SPINK1 6690 2.09 Serine peptidase inhibitor, Kazal type 1

ADXCRAD_NM_006113_s_at VAV3 10451 1.38 Vav 3 guanine nucleotide exchange factor

ADXCRIH.546.C1_at GGH 8836 1.49 y-glutamyl hydrolase (conjugase, folylpolygammaglutamyl hydrolase)

ADXCRAD_AJ709424_s_at ABLIM3 22885 —0.65 Actin binding LIM protein family, member 3

ADXCRPDRC.1943.C1_at AXIN2 8313 1.32 Axin 2

ADXCRAD_BG470190_s_at CDX2 1045 0.77 Caudal type homeobox 2

ADXCRAG_XM_371238_at TRNP1 388610 —1.03 TMF1-regulated nuclear protein 1

ADXCRAD_BU664688_s_at SLC14A1 6563 -0.82 Solute carrier family 14 (urea transporter), member 1 (Kidd blood group)

ADXCRPD.12823.C1_s_at SYT13 57586 -0.77 Synaptotagmin XIII

ADXCRAD_CK823169_at ANXA10 11199 —0.80 Annexin A10

ADXCRPD.8346.C1_at HSF5 124535 1.34 Heat shock transcription factor family member 5

ADXCRPD.15182.C1_at MIR142 406934 0.95 MicroRNA 142

ADXCRIH.31.C9_at LYz 4069 —1.61 Lysozyme

ADXCRAD_BP299698_s_at VNN1 8876 —0.96 Vanin 1

ADXCRPD.14261.C1_at ANO1 55107 -1.12 Anoctamin 1, calcium activated chloride channel

ADXCRAG_NM_002526_at NT5E 4907 -1.27 5’-nucleotidase, ecto (CD73)

ADXCRAD_CN404528_s_at DCBLD2 131566 -0.76 Discoidin, CUB and LCCL domain containing 2

ADXCRAD_BM852899_at DUSP4 1846 -0.98 Dual specificity phosphatase 4

ADXCRAD_BP376354_at AXIN2 8313 1.27 Axin 2

ADXCRAG_U04313_s_at SERPINBS 5268 -0.89 Serpin peptidase inhibitor, clade B (ovalbumin), member 5

ADXCRIH.482.C1_at KLK6 5653 -0.76 Kallikrein-related peptidase 6

ADXCRAD_BM718216_s_at TRNP1 388610 -1.16 TMPF1-regulated nuclear protein 1

ADXCRAG_XM_031357_s_at KIAA0802 23255 -0.82 KIAA0802

ADXCRPD.1115.C1_s_at MLPH 79083 -1.32 Melanophilin

NOTE. Positive LFC indicates higher expression in WT2.

Abbreviations: LFC, log fold change; WT2, double wild type.

denotes those predicted to be BRAF wild type. The pred-BRAFm
samples consist of true BRAF mutants and the subset of WT2 and

that

KRASm samples that are positive for the signature. These tumors

share a common gene expression pattern, as can be seen in Appendix
Figure A1 (online only). We call the subset of BRAF wild-type samples

1290 © 2012 by American Society of Clinical Oncology

are positive for the signature BRAFm-like to distinguish them

from the true BRAFm.

Having identified a population of BRAFm-like samples, we pro-

ceeded to its characterization: In the population stratification analysis
of PETACC-3, approximately 30% (76 of 257) of KRASm and 13%
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Table 2. 32 Pairs of Genes Defining the BRAF Signature

Pair  Gene 1 (G1) Gene 2 (G2) Pair  Gene 1 (G1)  Gene 2 (G2)

1 C130rf18 CTSE 17 VAV3 OSBP2

2 DDC AQP5 18 CFTR KLK10

3 PPP1R14D REG4 19 PHYH DUSP4

4 HSF5 RSBN1L 20 PLCB4 HOXD3

5 SATB2 RASSF6 21 ZNF141 C11orf9

6 TNNC2 CRIP1 22 PPP1R14C CD55

7 GGH PPPDE2 23 FLJ32063 TRNP1

8 SPINK1 PLK2 24 APCDD1 FSCN1

9 PTPRO TMA4SF4 25 ACOX1 KIAA0802
10 ZSWIM1 MLPH 26 C100rf99 PLLP
11 RNF43 RBMB8A 27 MIR142 IRX3
12 CELP SOX8 28 ARID3A SLC25A37
13 CBFA2T2 PIWIL1 29 C200rf111 PIK3AP1
14 PTPRD LOC388199 30 AMACR TPK1
15 CDX2 S100A16 31 AIFM3 ZIC2
16 TSPANG6 RBBP8 32 CTTNBP2 SERPINB5S
NOTE. A sample is predicted to be BRAF mutant if the average expression of

the genes in the Gene 1 (G1) columns is lower than the average expression of
genes in Gene 2 (G2) columns.

(46 of 345) of WT2 samples were BRAFm-like. The BRAFm-like
samples were significantly enriched in right-sided tumors in compar-
ison with non-BRAF-like overall and also separately for KRASm (51%
were right-sided) and WT2 (63% were right-sided). There was no
association with a particular KRAS mutation subtype. Approximately
29% of the BRAFm-like samples were MSI-H (whereas 41% of the
BRAFm were MSI-H). On the other hand, 50% of the MSI-H samples
were BRAFm-like, with an additional 27% being BRAFm (Data Supple-
ment). Separate hierarchical clustering of the KRASm and WT2 sub-
populations, based on the genes from the signature, showed a split
between BRAFm-like and the rest of the samples (Data Supplement). The
identified BRAFm-like subpopulation was further described in terms of
clinicopathologic features (Data Supplement), survival rates (Table 4 and
Data Supplement), and differentially expressed genes between BRAFm-

Table 3. Performance Metrics for the BRAF Signature
Data Set Sensitivity Specificity Error Rate
PETACC-3'®
% 95.78 86.52 12.41
Standard deviation 4.04 0.18 0.14
Kim,'® n = 20
% 100.00 54.55 25.00
No. 9/9 6/11 5/20
Koinuma,'® n = 20
% 100.00 72.73 15.00
No. 9/9 8/11 3/20
Cetuximab,’” n = 94
% 85.71 91.95 8.51
No. 6/7 80/87 8/94
Aggregated, on validation sets, n = 134
% 96.00 86.24 11.94
No. 24/25 94/109 16/134
NOTE. PETACC-3: cross-validation estimated performance. For the other
data sets, the values indicate the observed performance.
Abbreviation: PETACC-3, Pan-European Trials in Alimentary Tract Cancers.
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like and BRAFm samples (Data Supplement). The two groups of patients
were similar with respect to their clinical and pathologic parameters, with
the only exceptions being age (BRAFm-like comprise more patients older
than 60 years) and tumor site (56% of BRAFm-like were right-sided,
whereas 77% of BRAFm are right-sided; Data Supplement).

Prognostic Value of the Classifier

The prognostic value of the BRAF signature was assessed in
the combined stage IT and III population and in the stage III only
subpopulation for three end points—overall survival (OS),
relapse-free survival (RES), and survival after relapse (SAR)—
within the whole population, WT2 only, and KRASm only sub-
populations, respectively. To account for the known prognostic
effect of the MSI status (mainly for RES) and its association with
the BRAF mutation, the survival analysis was also performed
within the MSS population only. The small number of MSI-H
samples prevented a similar analysis of the signature predictions
within MSI-H. In whole population and in MSS, the BRAFm and
BRAFm-like patients have shorter survival times (OS and SAR), as
can be seen in Figure 1 and the Data Supplement for different
stratifications. The BRAFm-likeness showed the strongest prog-
nostic effect for SAR, for both KRASm and WT2 (in all and MSS-
only samples; see Figs 1F and 1H). The corresponding hazard ratios
and their 95% ClIs as well as the corresponding log-rank test P
values for each of these comparisons are summarized in Table 4.

No statistically significant difference in survival was found be-
tween the BRAFm and BRAFm-like subpopulations, even though a
tendency was observed for the patients with a BRAFm-like tumor to
have a slightly better prognosis than those with a BRAFm tumor.

To identify potential drivers of the prognostic effect, we assessed
the prognostic value of each of the 64 genes in the signature by fitting
univariate Cox regression models in the whole PETACC-3 population
and in the subset of BRAF wild-type samples (KRASm and WT2).
Most of these genes were found to be significantly associated with the
SAR end point, and, for 25 of them, the association was found also in
the BRAF wild-type subgroup. These results reveal multiple interest-
ing genes for future studies (Data Supplement).

External Validation

The BRAF signature was validated on three external data
sets: Koinuma,'> Kim,'® and an internal series of patients with
cetuximab-treated stage IV disease with gene expression data from
primary tumors.'” When genes from the signature were not repre-
sented on a platform, only the complete pairs of genes were con-
sidered. The aggregated observed sensitivity was 96.0% (24 of 25
BRAFm correctly identified) and the specificity was 86.24% (94 of
109 WT2 and KRASm correctly predicted; Table 3). This con-
firmed the highly sensitive recognition of tumors with a BRAFm
and their distinction from majority non-BRAFm tumors, whereas
approximately 14% of the latter were also wrongly classified as
BRAFm. The reported specificity refers to KRASm and WT2 sam-
ples that should have been labeled as BRAF wild type by the
classifier. The existence of a BRAFm-like group of patients is thus
confirmed in these data sets.

The prognostic value of the BRAF signature has been validated in
all and in the stage IT and III only samples from the Moffitt data set'®
for OS and SAR (RFS being only marginally significant in stage IT and
III). No information on BRAF or KRAS mutational status was available,
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Table 4. Survival Analyses Results
0S RFS SAR
Data Set P HR 95% ClI P HR 95% ClI P HR 95% ClI
PETACC-3, all
pred-BRAFm/pred-BRAFwt .0005 1.67 1.25t0 2.25 2447 1.17 0.90to 1.53 < .001 2.85 2.06 to 3.95
BRAFmM/BRAFwt .0021 2.01 1.28 to 3.17 .1602 1.37 0.88t02.12 < .001 3.68 2.20t0 6.16
Within KRASm: BRAFm-like/pred-BRAFwt .5196 1.16 0.74t0 1.83 4724 1.17 0.76 t0 1.78 .0021 2.13 1.30 to 3.48
Within WT2: BRAFm-like/pred-BRAFwt 1312 1.58 0.87t02.87 .4866 1.20 0.72102.01 .0011 2.72 1.46 to 5.06
PETACC-3, stage Ill
pred-BRAFm/pred-BRAFwt <.0001 1.93 1.41to 1.79 .0455 1.34 1.00t0 1.79 < .0001 3.04 2.15 to 4.29
BRAFmM/BRAFwt .0024 214 1.29 to 3.55 1685 1.41 0.86102.32 < .0001 453 2.54 to 8.07
Within KRASm: BRAFm-like/pred-BRAFwt 1916 1.37 0.851t02.21 .8203 1.05 0.681t0 1.64 .0038 2.09 1.26 to 3.46
Within WT2: BRAFm-like/pred-BRAFwt .0365 1.90 1.03 t0 3.50 2154 1.40 0.82102.40 .0012 2.75 1.45 t0 5.19
PETACC-3, MSS
pred-BRAFm/pred-BRAFwt < .0001 2.19 1.57 to 3.07 .0159 1.46 1.07 to 1.99 < .0001 3.16 2.17 to 4.59
BRAFmM/BRAFwt < .0001 2.91 1.74 to 4.88 .0228 1.79 1.08t0 2.98 < .0001 4.67 2.57 to 8.45
Within KRASm: BRAFm-like/pred-BRAFwt .0511 1.59 0.99t0 2.53 4690 1.17 0.76t0 1.82 .0043 2.07 1.24 to 3.43
Within WT2: BRAFm-like/pred-BRAFwt .0642 1.98 0.95t04.16 .3464 1.37 0.71102.63 .0001 4.24 1.89 to 9.47
PETACC-3, MSS/stage IlI
pred-BRAFm/pred-BRAFwt < .0001 2.27 1.58 to 3.25 .0105 1.54 1.10t02.15 < .0001 297 2.01to 4.40
BRAFmM/BRAFwt .0024 243 1.35to 4.40 1149 1.59 0.891t02.86 < .0001 3.88 1.99 to 7.56
Within KRASm: BRAFm-like/pred-BRAFwt .0216 1.77 1.081t02.89 1765 1.37 0.87t02.16 .0089 1.98 1.18 to 3.34
Within WT2: BRAFm-like/pred-BRAFwt .0220 2.35 1.11t0 4.98 2789 1.46 0.731t02.93 < .0001 4.67 2.05 to 10.63
Moffitt'®
pred-BRAFm/pred-BRAFwt .0376 1.67 1.02t02.73 .0956 1.77 0.90 to 3.50 .0014 3.78 1.58 to 9.04
pred-BRAFm/pred-BRAFwt (stages I1,111) .0003 3.22 1.66 to 6.26 .0498 2.02 0.99t04.15 .0017 3.97 1.58 to 9.99
pred-BRAFm/pred-BRAFwt (stage |ll) .0002 4.26 1.87 t0 9.69 .0204 2.79 1.13t06.87 .0028 4.95 1.58 to 15.44
oS PFS SAR
Cetuximab,'” MSS P HR 95% ClI P HR 95% ClI P HR 95% ClI
pred-BRAFm/pred-BRAFwt < .0001 4.49 2.40t0 8.38 < .0001 4.58 2.45 to 8.56
BRAFmM/BRAFwt .0018 3.24 1.46 to 7.19 < .0001 5.72 2.49 to 13.12
Within BRAFwt: BRAFm-like/pred-BRAFwt .0017 3.45 1.56 to 7.63 < .0001 3.26 1.47 to 7.22
NOTE. Highly significant results (P < .01) are set in bold. For the Cetuximab data set, only two end points could be considered: SAR and PFS. This data set contained
also only stage IV MSS patients. When the predictions are considered within KRASm or WT2 subpopulations, those samples positive for the signature are called
BRAFm-like (see the Results section). The comparison is given in the first column, with the reference category in italic font.
Abbreviations: BRAFm, true BRAF mutant; BRAFwt, true BRAF wild type; HR, hazard ratio; MSS, microsatellite stable; OS, overall survival; PETACC-3,
Pan-European Trails in Alimentary Tract Cancers; PFS, progression-free survival;, pred-BRAFm, classifier-predicted BRAF mutant; pred-BRAFwt, classifier-predicted
BRAF wild type; SAR, survival after relapse.

making it impossible to draw any conclusions on the prognostic value of
the signature within the KRASm or WT2 subpopulations. The signature
was confirmed to be prognostic for SAR and progression-free survival
(PFS) in the cetuximab'” data set as well (OS information was not avail-
able for this data set). The survival analysis results and the corresponding
Kaplan-Meier curves are given in Table 4 and in the Data Supplement.

Our results show that for ¢.1799T>A (p.V600E) BRAFm tumors, a char-
acteristic gene expression signature of high sensitivity can be identified,
and this signature extends to a population of BRAF wild-type subgroup of
colon carcinomas (BRAFm-like) sharing similar clinicopathologic and
gene expression features of potential prognostic importance. The BRAF
mutation status has been previously shown to have prognostic value in
CRC,”** both in MSS and MSI-H tumors, and this feature is also shared
by our signature in the case of MSS tumors. Because of the limited number
of MSI-H tumors, we could not assess its prognostic value in those sam-
ples. The BRAFm-like tumors, either KRASm or double wild type, showa

1292 © 2012 by American Society of Clinical Oncology

similar poor prognostic in all and MSS-only samples. This effect was also
independent of tumor stage.

Globally, the group of BRAFm-like tumors discovered studying the
gene expression data shows clinicopathologic features more similar to the
BRAFm tumors (Data Supplement) than to pred-BRAFwt. As previously
described,'**® BRAFm tumors are found with higher frequencies in right
(proximal) colon, are enriched for the MSI-H phenotype, and are of
higher grade. In our study, the frequencies of high-grade were 30% in
BRAFm, 20% in BRAFm-like, and 5% in pred-BRAFwt; of MSI-H, 30%,
30%, and 3%, respectively; of right-side, 75%, 55%, and 30%, respec-
tively. The mucinous tumors are most frequently BRAFm-like (45%) and
are less often BRAFm (30% v only 10% in pred-BRAFwt). The exception
is age, for which the frequency of young patients is highest in BRAFm-like
(55%) and lowest in BRAFm (35%).

From a biologic perspective, this finding supports the notion that
the poor outcome of tumors with BRAFm is shared with some non—
BRAF-mutated tumors, suggesting that they have common biology
that drives poor survival after relapse. For the genes in the signature,
the ¢.1799T>A (p.V600E) BRAFm tumors display a homogeneous
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Fig 1. Kaplan-Meier curves for different stratifications of the stage Ill subpopulation and different end points. Columns correspond to overall survival and survival after
relapse end points, respectively. Panels A-D correspond to stratifications into samples predicted to be BRAF mutant (pred-BRAFm)/predicted to be BRAF wild type
(pred-BRAFwt; A, B) and BRAF mutant (BRAFm)/BRAF mutant like (BRAFm-like)/pred-BRAFwt (C, D) in the whole stage Ill subpopulation. Panels E-H correspond to
stratifications BRAFm-like/pred-BRAFwt within KRAS mutant (E, F) and double wild type (WT2; G, H) subpopulations, in microsatellite stable. For the cases when only
two populations are compared, the log-rank test P values and the hazard ratios (HRs; with 95% Cls) are given.

gene expression pattern, which is also found in some KRASm and
WT?2 samples (approximately 30% and 13% in our data, respectively;
Appendix Fig A1). It is interesting to note that BRAF mutations have
been strongly associated with the serrated adenoma pathway,*>*° and
thus the clear differences in gene expression between BRAFm and
other colon tumors may be related to a different adenoma-carcinoma
progression sequence. The existence of several subgroups of CCs,
defined by their DNA methylation and mutation status, was first
discovered in a population-based study’' and was then subsequently
confirmed.*** A recent study’* similarly presented evidence validat-
ing the existence of a cluster that included all BRAFm samples and a
fraction of KRASm (18% of all KRASm) and WT?2 samples and that
was enriched for CIMP-positive, MLH1 hypermethylated, and right-
sided tumors. For the moment, we can only speculate about the relation
between our BRAFm-like concept and this cluster. In any case, it also
supports the idea that ¢.1799T>A (p.V600E) BRAFm tumors form a
homogeneous group with respect to the genes in the signature and that a
sizeable set of other tumors show similar characteristics. The underlying

Www.jco.org

driver biology of this BRAFm-like group remains unknown, although
it is clearly associated with clinicopathologic features, such as MSI-H,
right-sidedness, and mucinous histology.

The identification of a BRAFm-like subpopulation of CC that
includes KRASm and WT2 samples and that manifests a coherent
clinical behavior suggests that a new definition of CC subgroups is
needed. To the best of our knowledge, this is the first reported split
based on gene expression data of the KRASm tumors (see also Data
Supplement), which were considered until now as a compact group,
based solely on their mutation status.

The genes associated with the BRAF ¢.1799T>A (p.V600E) mu-
tation in CC and in melanoma are dissimilar, indicating tissue-specific
biology that needs to be understood and targeted differently. It is
therefore not surprising that BRAF-specific inhibitors, such as
PLX4032 or GSK2118436, although very successful in BRAFm mela-
noma, have failed in BRAFm colorectal cancer treatment.>>>®

In summary, our results show that for c.1799T>A (p.V600E)
BRAFm tumors, a high-sensitivity gene expression signature can be
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Fig 1. (continued).

derived and that this signature identifies also a subgroup of BRAFm-
like tumors sharing similar clinicopathologic features of potential
prognostic importance. They also indicate histologic and prognostic
heterogeneity within the KRASm and thus challenge the current as-
sumption that these tumors can all be considered alike. This stratifi-
cation may be of interest in randomized clinical trials and in drug
development studies and can easily be obtained by applying the pro-
posed classifier.
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Abstract

Background: The mutation status of the BRAF and KRAS genes has been proposed as prognostic biomarker in
colorectal cancer. Of them, only the BRAF V600E mutation has been validated independently as prognostic for
overall survival and survival after relapse, while the prognostic value of KRAS mutation is still unclear. We
investigated the prognostic value of BRAF and KRAS mutations in various contexts defined by stratifications of the
patient population.

Methods: We retrospectively analyzed a cohort of patients with stage Il and Il colorectal cancer from the PETACC-3
clinical trial (N =1,423), by assessing the prognostic value of the BRAF and KRAS mutations in subpopulations
defined by all possible combinations of the following clinico-pathological variables: T stage, N stage, tumor site,
tumor grade and microsatellite instability status. In each such subpopulation, the prognostic value was assessed by
log rank test for three endpoints: overall survival, relapse-free survival, and survival after relapse. The significance
level was set to 0.01 for Bonferroni-adjusted p-values, and a second threshold for a trend towards statistical
significance was set at 0.05 for unadjusted p-values. The significance of the interactions was tested by Wald test,
with significance level of 0.05.

Results: In stage II-lll colorectal cancer, BRAF mutation was confirmed a marker of poor survival only in
subpopulations involving microsatellite stable and left-sided tumors, with higher effects than in the whole
population. There was no evidence for prognostic value in microsatellite instable or right-sided tumor groups. We
found that BRAF was also prognostic for relapse-free survival in some subpopulations. We found no evidence that
KRAS mutations had prognostic value, although a trend was observed in some stratifications. We also show
evidence of heterogeneity in survival of patients with BRAF V60OE mutation.

Conclusions: The BRAF mutation represents an additional risk factor only in some subpopulations of colorectal
cancers, in others having limited prognostic value. However, in the subpopulations where it is prognostic, it
represents a marker of much higher risk than previously considered. KRAS mutation status does not seem to
represent a strong prognostic variable.

Keywords: Colorectal cancer, BRAF V60OE mutation, KRAS mutations, Survival analysis, Stratified analysis
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Background

Our current models of colorectal cancer (CRC) are domi-
nated by the idea of a sequential tumor progression from
adenoma to carcinoma, in which the accumulation of gen-
etic events in key genes defines alternative oncogenic
paths with impact on tumor characteristics. These genetic
events include the mutational activation of oncogenes like
BRAF and KRAS, disruption of WNT signaling, allelic im-
balance on chromosome 18q and mutation of TP53 tumor
suppressor gene [1-4]. Since the mutations of BRAF and
KRAS genes, which lead to the activation of MEK/ERK
pathway, are seen as important events in the tumor pro-
gression and based on their relatively high incidence (7-
15% for BRAF mutations and 35-40% for KRAS mutations
[5-8]), they have been proposed as prognostic biomarkers
for CRC. Of them, only BRAF V600E mutation has been
consistently validated, while the prognostic value of KRAS
mutation remains debatable. The BRAF has been shown
to be prognostic for overall survival (OS) and survival after
relapse (SAR) in general CRC population by us and others
[9-13] as well as in microsatellite-stable (MSS) population
[12,14], while having no prognostic value for relapse-free
survival (RFS). In these studies, the hazard ratios (HR) for
BRAF mutation varied between 1.4 and 2.1 for OS and 2.3
to 3.6 for SAR. In the case of KRAS mutation, the pub-
lished results are contradictory, with prognostic value, in
the positive studies, found only for relapse-free survival
[9,11,15], while other studies, including our own [13], did
not find any evidence of prognostic value for KRAS muta-
tion. Also, a recent meta-analytical review found no evi-
dence supporting the prognostic value of KRAS mutation
[16]. A detailed review is given in [17].

The question remains whether the prognostic value of
the BRAF and KRAS mutations is uniform across different
patient groups defined by clinical parameters or if there
are interactions that would influence their utility. Taking
advantage of a large series of stage II-III CRC tumors with
mutation data from the PETACC-3 clinical trial [18], we
systematically investigate the prognostic value of the
BRAF and KRAS mutations in all possible stratifications —
contexts — defined by a set of clinical parameters found to
be important in survival prognosis in a previous analysis
[19]. The main question our study tries to answer is
whether the mutations of BRAF and KRAS genes are indi-
cators of different prognosis within otherwise uniform
(with respect to the clinical parameters considered) sub-
populations of patients with CRC. A secondary question
we address, for the main findings, is whether the observed
prognostic values are statistically significant also in multi-
variate models, in the respective subpopulations.

Methods
We retrospectively analyzed the PETACC-3 clinical trial
[18] data set (N =1,423), of patients with stage II and III
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CRC, by generating the subpopulations defined by all
possible combinations of levels of the following five vari-
ables: MSI status (MSI-H and MSS levels), tumor site (left
and right), T stage (T1,2, T3, and T4), N stage (NO, N1
and N2) and tumor grade (G1,2 and G3,4). In total, there
were 393 possible subpopulations (see Additional file 1 for
an exhaustive listing), of which only those with more than
N =20 samples were further considered for testing the
prognostic value of the BRAF and KRAS mutations. The
full description of the data set is given in [19].

In each subpopulation, the prognostic importance of the
BRAF and KRAS mutations was assessed using log-rank
test comparing the survival of BRAF-/KRAS-mutant
population to the BRAF- and KRAS- wild type (double
wild type — WT2) population, for overall survival (OS),
relapse-free survival (RFS) and survival after relapse (SAR)
endpoints. Data was summarized with hazard ratios (HR),
their 95% confidence intervals (CI), P-values and adjusted
P-values (Bonferonni correction, denoted hereinafter
by P°). For a result to be considered statistically signifi-
cant we required that P"<0.01 and that at least 10
patients were in each of the two groups compared. If
only P <0.05, the result was reported as a trend towards
significance. The significance of the interactions was tested
by Wald test in the presence of both main effects, with
significance level of 0.05 (no adjustment for multiple test-
ing in this case). All tests were two-sided.

All computations were carried out in R version 2.15.2
(http://www.r-project.org) and survival analysis was performed
using R survival package version 2.37-2.

Results and discussion

In the global population, the BRAF mutation is prognostic
for poorer overall survival and survival after relapse, while
KRAS mutation is not prognostic for any of the three end-
points (Table 1). In stratified analyses and after correction
for multiple testing, BRAF mutation status remained a
significant prognostic marker in various subpopulations.
On the contrary, KRAS mutation status never reached the
level of significance required after P-value adjustment
(P"<0.01 and at least 10 patients in both of the groups
compared). However, in several stratifications, KRAS
mutation showed a trend towards significance (P <0.05).
The full table of results with all possible stratifications is
given as Additional file 1.

BRAF mutation

The BRAF mutation was prognostic for overall survival in
MSS and/or left-sided tumors subpopulations (Figure 1).
In the MSS tumors, BRAF was indicative of worse overall
survival (P" < 0.0001; HR = 2.82; 95% CI = 1.85 to 4.30), as
well as in MSS/left tumors (P < 0.0001; HR = 6.41; 95%
CI =357 to 11.52) and all left-sided tumors (P’ < 0.0001;
HR =5.18; 95% CI=3.00 to 8.94) (Figure 1A,B). At the
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Table 1 Univariate analysis of the prognostic factors in the whole CRC population
oS RFS SAR
Factor Comparison P-value HR (95% Cl) P-value HR (95% Cl) P-value HR (95% Cl)
MSI MSI-H vs MSS 0.0002 045 (0.30,0.69) < 0.0001 048 (0.34,0.68) 0.9643 0.99 (0.65,1.52)
Site Left vs Right 03143 0.89 (0.72,1.11) 02123 3(0.93,1.36) <0.0001 0.59 (047, 0.73)
Grade G34 vs G1,2 0.0018 1.63 (1.29,2.23) 0.0012 6 (1.19,2.04) 0.0387 1.38 (1.01,1.88)
T stage T3vsT1,2 0.0634 1.76 (0.96,3.22) 0.0629 8(0.97,2.58) 0.1399 1.57 (0.86,2.88)
T4 vs T1,2 0.0002 3.06 (1.635.74) < 0.0001 269 (1.61,448) 0.0680 1.78 (0.95,3.35)
N stage N1 vs NO < 0.0001 1.91 (1.38,2.65) < 0.0001 1.78 (1.36, 2.32) 0.9809 0.98 (0.71,1.35)
N2 vs NO < 0.0001 451 (3.286.21) < 0.0001 4.06 (3.11,5.29) 0.1498 1.24 (0.90,1.71)
BRAF BRAF mut vs WT2 0.0004 1.92 (1.33,2.78) 0.0832 5(0.96,1.89) < 0.0001 2.56 (1.75,3.70)
BRAF mut vs BRAF wt 0.0009 1.78 (1.26,2.53) 0.1174 0 (0.94,1.81) < 0.0001 248 (1.74,3.53)
KRAS KRAS mut vs WT2 0.1461 1.20 (0.93,1.54) 04410 9 (0.88,1.33) 0.1755 8(0.93,1.52)
KRAS mut vs KRAS wt 04826 1.09 (0.86,1.37) 0.7245 4 (0.85,1.27) 0.7222 1.04 (0.82,1.32)

same time, BRAF mutation was not prognostic in any
stratification involving only right-sided tumors (Figure 1C)
and/or MSI-H tumors. In a multivariate model, including
up to second degree interactions between MSI status,
BRAF mutation and tumor site, adjusted for grade, T stage
and N stage, the only significant interaction was between
BRAF mutation and tumor site (P =0.0041). The inter-
action between BRAF mutation status and tumor site was
also significant within MSS tumors (P =0.0033), but not
within MSI-H tumors. The interaction between BRAF
mutation status and MSI status was not significant in
either left or right-sided tumors. These results show that
BRAF mutation represents an additional risk factor only
within MSS/left tumors, with no statistically significant
effect in right or MSI-H tumors, the general prognostic
value of BRAF mutation being driven by its effect in this
subpopulation. As a consequence, the corresponding HR
should be re-interpreted: a BRAF mutation does not
double the risk of death for all patients carrying this

mutation (HR =1.92 in global population), but represents
a six-fold increase of the risk in the case of patients with
MSS/left tumors (HR =6.41) — in comparison with the
double wild type MSS/left tumors. At the same time,
BRAF mutation does not significantly influence the risk of
death (in comparison with WT2) in MSI-H and/or right-
sided tumors. The MSS/left side BRAF-mutant population
emerges as the worst surviving group of patients in our
data set: for example, the 3-year overall survival rate is
0.35 (95% CI=0.20 to 0.66) in comparison to 0.89
(95% CI=0.85 to 0.93) for KRAS-mutant and 0.91
(95% CI =0.88 to 0.93) for WT2, respectively (Table 2).
The observation could not be extended to MSS/right-
sided tumors (Table 2).

Interestingly, BRAF mutation was also prognostic for
shorter relapse-free survival in left-sided tumors (Figure 2):
all left-sided tumors (P =0.0002; HR = 3.31; 95% CI = 1.98
to 5.55) and MSS/left tumors (P"=0.0005; HR = 3.57;
95% CI =2.02 to 6.31) (Figure 2, see also Table 2). This
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Table 2 Three-year overall and relapse-free survival rates,
and one-year survival after relapse rates in MSS/left and
MSS/right populations, stratified by mutation status

MSS/left MSS/right
Population  Survival rate 95% Cl  Survival rate 95% ClI
OS: 3-year survival rates
WT2 091  088-093 083  0.77-0.89
KRAS mut 0.89 0.85-0.93 0.80 0.74-0.86
BRAF mut 037  020-0.66 073  0.60-0.89
RFS: 3-year survival rates
WT2 0.75 0.71-0.80 0.75 0.68-0.82
KRAS mut 068  062-0.74 073  0.66-0.80
BRAF mut 032 016061 068  054-0.84
SAR: 1-year survival rates
WT2 081  0.74-0.88 065  052-082
KRAS mut 080  0.71-0.89 075  053-080
BRAF mut 0.17 0.05-0.60 0.36 0.17-0.79

is a novel observation, since BRAF mutation was not
generally considered prognostic for relapse. In other
MSS-subpopulations involving left-sided tumors BRAF
mutation is also prognostic (see Additional file 1).
Again, the BRAF mutation was not prognostic in any
subpopulation involving MSI-H and/or right-sided tu-
mors. In a multivariate model, involving up to second
degree interactions between MSI status, BRAF mutation
and tumor site, adjusted for grade, T stage and N stage,
the only significant interaction was between BRAF
mutation and tumor site (P =0.047). The interaction
between BRAF mutation status and tumor site was also
significant within MSS tumors (P = 0.043), but not within
MSI-H tumors (where the small number of BRAF mutants
in the left colon limits the statistical power). Hence, the
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prognostic value of the BRAF mutation is confined to the
MSS/left-sided tumors.

For the survival after relapse (SAR), BRAF mutation rep-
resents an additional risk factor in more stratifications,
most of them involving MSS and/or left-sided tumors.
BRAF mutation shows also a trend to be prognostic in
MSS/right-sided tumors as well, even though the p-value
was no longer significant after multiple testing correction.
The BRAF mutation was indicative of poor survival
after relapse in all MSS tumors (P < 0.0001; HR = 3.43;
95% CI=2.19 to 5.36); MSS/left tumors (P" = 0.0002;
HR = 3.89; 95% CI =2.11 to 7.20) and showed a trend in
MSS/right (P =0.0111; HR = 2.27; 95% CI = 1.17 to 4.38)
(Figure 3). The test for interaction between BRAF muta-
tion status and tumor site was not significant, hence we
conclude that BRAF mutation is prognostic for SAR in
all MSS patients.

The differences in prognostic value of the BRAF mu-
tation status in various subpopulations suggest a certain
degree of heterogeneity in the survival of patients har-
boring this mutation. Indeed, within the BRAF mutant
population, the MSS tumors had worse outcome for
overall survival (P = 0.0021; HR = 3.45; 95% CI =1.49 to
7.69)) and relapse-free survival (P =0.0085; HR =2.63;
95% CI=1.25 to 5.56), this observation being in line
with the fact that MSI-H has a protective prognostic effect
in CRC. At the same time, the left BRAF-mutant tumors
had a worse prognosis than the right BRAF-mutant
tumors, for overall survival (within all BRAF-mutants:
P =0.0003; HR = 3.20; 95% CI = 1.64 to 6.23; within MSS/
BRAF-mutants: P =0.0059; HR =2.84; 95% CI=1.31 to
6.15; while within MSI-H/BRAF-mutants it could not be
assessed) and for relapse-free survival (within all BRAF-
mutants: P =0.0002; HR=3.24; 95% CI=1.71 to 6.16;
within MSS/BRAF-mutants: P =0.0062; HR =2.82; 95%
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CI=1.30 to 6.12; while within MSI-H/BRAF-mutants it
could not be assessed). However, there was no statistically
significant difference in survival after relapse among BRAF
mutants, all having an equally poor survival.

KRAS mutation

KRAS mutation did not reach the significance level
required to be considered prognostic for any of the three
endpoints, since the adjusted p-values were all larger than
0.01. However, in some cases, it showed a trend towards
significance (P < 0.05).

In overall survival, KRAS mutation had a trend to be-
come significant in several stratifications of tumors with
early stage lymph node invasion (N1). In all these, KRAS
mutation was a marker of worse outcome (see Additional
file 1). While not being a significant prognostic factor (as
required by us) for relapse-free survival, KRAS mutation

showed a trend to become prognostic. In contrast with
BRAF, KRAS mutation seemed to be prognostic for RFS
mostly in the right colon. The most intriguing observation
was in MSI-H/right colon subpopulation (N =102, KRAS
mutants: 39), where KRAS mutation seemed to identify
a low risk group (P =0.0349; HR = 0.29; 95% CI =0.08
to 0.99) (Figure 4). KRAS mutation was not prognostic
for SAR. Also, no significant interaction between KRAS
mutation, MSI status and tumor site was observed, for
any of the three endpoints.

Since several studies have suggested that KRAS muta-
tions at codon 12 may have a different prognostic value
than codon 13 mutations [20], we have tested for differ-
ences in survival between the two groups of mutations,
in all the same stratifications. No statistically significant
difference was observed, but the sample size of our data
might be too limited to detect such differences.
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Conclusions

In our analyses, we have compared the survival of BRAF/
KRAS-mutated population with that of the double-wild
type population, while controlling for several other param-
eters (tumor site, T and N stage, grade and MSI status).

Our analyses confirm the prognostic value of BRAF
mutation status, in various stratifications. As a novelty,
we observe a strong prognostic value for relapse-free
survival of the BRAF mutation status in the MSS/left-
colon tumors.

The interpretation of BRAF mutation as additional
risk factor has to be made in the context of MSI status
and tumor location. Indeed, our results show that BRAF
represents a risk factor in the left colon and/or MSS
tumors. In the data analyzed, we found no sufficient
statistical evidence supporting a worse outcome associ-
ated with BRAF mutation in MSI-H tumors. As a conse-
quence, the published hazard ratios for BRAF mutation
for general population have to be reconsidered. The tumor
staging (T or N stage, tumor grade) had a lesser impact on
the prognostic value of the BRAF mutation status, while
the tumor background (site and microsatellite (in)stability)
significantly influenced the prognostic.

For the KRAS mutation, we could not confirm nor com-
pletely disprove its prognostic value. It was prognostic in
several stratifications, in some showing a protective effect,
while in others representing a risk factor. This is probably
an effect of the heterogeneity of KRAS mutant population
[21,22] and may explain in part the contradictory results
published so far. With the strict requirements for statis-
tical significance imposed, KRAS mutation did not appear
to have prognostic value in any of the stratifications. The
trend towards significance suggests, however, a potential
utility as prognostic marker for RFS mostly in right colon.

In conclusion, the utility of the BRAF and KRAS as
prognostic biomarkers depends on the MSI status and
tumor location. We hypothesize that this interaction
may extend to other biomarkers and prognostic gene
signatures as well. At the same time, this observation
has clear implications in clinical trial design and needs
to be accounted for.

We make public the full table with all stratifications to
support similar analyses in other data sets.

Additional file

Additional file 1: Full survival analysis results. In each possible
stratification three endpoints were tested - overall survival, relapse-free
survival and survival after relapse - and the sample size of the analysis
along with the resulting p-values and hazard ratios are given.
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Abstract

The recognition that colorectal cancer (CRC) is a heterogeneous disease in terms of clinical behaviour and
response to therapy translates into an urgent need for robust molecular disease subclassifiers that can explain this
heterogeneity beyond current parameters (MSI, KRAS, BRAF). Attempts to fill this gap are emerging. The Cancer
Genome Atlas (TGCA) reported two main CRC groups, based on the incidence and spectrum of mutated genes,
and another paper reported an EMT expression signature defined subgroup. We performed a prior free analysis of
CRC heterogeneity on 1113 CRC gene expression profiles and confronted our findings to established molecular
determinants and clinical, histopathological and survival data. Unsupervised clustering based on gene modules
allowed us to distinguish at least five different gene expression CRC subtypes, which we call surface crypt-like,
lower crypt-like, CIMP-H-like, mesenchymal and mixed. A gene set enrichment analysis combined with literature
search of gene module members identified distinct biological motifs in different subtypes. The subtypes, which
were not derived based on outcome, nonetheless showed differences in prognosis. Known gene copy number
variations and mutations in key cancer-associated genes differed between subtypes, but the subtypes provided
molecular information beyond that contained in these variables. Morphological features significantly differed
between subtypes. The objective existence of the subtypes and their clinical and molecular characteristics were
validated in an independent set of 720 CRC expression profiles. Our subtypes provide a novel perspective on
the heterogeneity of CRC. The proposed subtypes should be further explored retrospectively on existing clinical
trial datasets and, when sufficiently robust, be prospectively assessed for clinical relevance in terms of prognosis
and treatment response predictive capacity. Original microarray data were uploaded to the ArrayExpress database
(http://www.ebi.ac.uk/arrayexpress/) under Accession Nos E-MTAB-990 and E-MTAB-1026.

© 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society
of Great Britain and Ireland.
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Introduction instability (MSI) emerged as an important classifier
with significant prognostic impact and potential for
patient stratification for therapy [2,3]. Some molecu-

lar markers, as well as the mutation status of BRAF

Current classifications of sporadic colorectal cancer
take into consideration stage, histological type and

grade [1]. Colorectal cancer (CRC) is a highly het-
erogeneous disease, with clinicopathologically simi-
lar tumours differing strikingly in treatment response
and patient survival. These differences are only partly
explained by current concepts regarding the molecular
events leading to CRC. In recent years, microsatellite

or KRAS genes (predictive for anti-EGFR [4]), are in
use for treatment decisions and patient stratification.
However, patient groups defined by these molecular
markers still differ remarkably in behaviour and ther-
apy response [5,6]. Several approaches to further sub-
type CRC have been proposed, based on combinations
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of clinical, histopathological, gene expression, CNV,
epigenetic and single gene parameters [7—13]. Each of
these different modalities provides its own perspective
on the same underlying biological reality. The CpG
island methylator phenotype (CIMP) status is emerging
as important molecular determinant of CRC hetero-
geneity [11]. The cancer genome atlas (TCGA) analysis
identified a hypermutant group not entirely captured
by MSI status [13]. Several studies have addressed
CRC subtyping using genome-wide gene expression
profiling of relatively large patient cohorts [12,14].
One study used unsupervised clustering of stage II and
IIT CRC:s to identify three stage-independent subtypes,
with BRAF mutation and MSI status dominating one
of the subtypes [14]. A study of stage I-IV CRC sam-
ples segregated CRC into two prognostic subtypes with
epithelial—-mesenchymal transition (EMT) as a main
determinant [12]. Another study on 88 stage [-1V sam-
ples identified four subtypes, one correlated with MSI,
BRAF mutation and mucinous histology, two with stro-
mal component and one with high nuclear B-catenin
expression [15].

We recently reported CRC expressing a BRAF -
mutated signature [6], which strongly overlaps with
the methylation-based group of Hinoue [11], and a
MSI-like gene expression group that captures the
hypermutant tumours of TCGA [13], indicating the
potential for identification of robust biological sub-
groups. We now describe CRC subtypes based upon
unsupervised clustering of genome-wide expression
patterns. We characterized these subtypes in terms
of biological motifs, common clinical variables,
association with known CRC molecular markers
and morphological patterns. A key element in our
approach was the use of a system of unsupervised gene
modules— groups of genes with correlated expression.
They are more resistant to noise and have a higher
chance of having at least a few members represented
on various platforms. In addition, as each gene module
is represented by its median expression, the modules
with fewer genes contribute equally to the subtype
definition. We and others have successfully used sim-
ilar strategies previously [16—18]. We validated the
existence of the subtypes and their respective clinical
and molecular marker characteristics in an independent
dataset. Ultimately, it will be mandatory to integrate
the various sources of information on CRC hetero-
geneity into an integrative, robust and reproducible
subclassifier that can become a tool for clinical use.

Materials and methods

A detailed description of all the datasets and analysis
procedures is given in Supplementary methods and
results (see Supplementary material).

Data acquisition and processing

We have built two non-overlapping data collec-
tions: a discovery collection, comprising four publicly

© 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd
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available (425 samples) and two previously unpub-
lished datasets (688 samples with 10 year follow-up in
a clinical trial setting and 64 normal samples) with
known stage status, and a validation collection of
eight publicly available datasets (720 CRC samples)
(see Supplementary material, Supplementary methods
and results). Observations derived from the analysis
of 64 normal samples were further validated on five
publicly available datasets, with both carcinoma and
normal samples available in one batch (totalling 205
normal/adenoma/carcinoma samples). Copy number
data was available for 154 of the PETACC3, as in [19].
Our analysis included a total of 2102 samples.

The discovery collection contained the previously
unpublished 688 CRC formalin-fixed, paraffin-
embedded (FFPE) samples of PETACC3 [6] and
64 FFPE normal colon tissue samples from Centre
Hospitalier Universitaire Vaudois’s Biobank, which
were uploaded to ArrayExpress (http://www.ebi.ac.uk/
arrayexpress/), under Accession Nos E-MTAB-990
and E-MTAB-1026, respectively. Gene expression
data were processed by standard tools to obtain
normalized, probeset-level expression data. For each
EntrezID in the datasets, the probeset with the
highest variability was selected as representative and
the number of EntrezIDs entering the analysis was
reduced to 3025 by applying non-specific filtering.
For PETACC3 and normal colon samples, patients
signed an informed consent form in which the use of
tissue specimens was included, and all marker study
proposals were subjected to the approval of the trial
steering committee.

Subtype definition and validation

For model development (gene modules and subtype
definition, classifier training, identification of subtype-
specific genes) only the 1113 CRC samples of the
discovery set were used, no sample in the validation
collection being used for any model tuning. Hierarchi-
cal clustering (complete linkage, Pearson correlation
similarity measure) and dynamic cut tree [20] were
used to produce gene modules (groups of genes with
correlated expression), from which non-robust modules
(see Supplementary material, Supplementary methods
and results) and a gender-related module were dis-
carded. Each expression profile was then reduced to
a vector of meta-genes by taking the median of the
values of genes in each gene module. The meta-genes
were then further grouped into clusters using hierarchi-
cal clustering.

The subtypes were defined in terms of core sam-
ples —those samples from the discovery collection that
were assigned to clusters by hierarchical clustering,
using a consensus distance [21] followed by prun-
ing of the dendrogram (see Supplementary material,
Supplementary methods and results). The clusters to
which the core samples were assigned were called
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subtypes. The rest of the samples from the discov-
ery collection, not assigned to subtypes by this pro-
cedure, were called non-core samples. This approach
allowed the reduction of noise in subtype-defining sam-
ples, and thus a higher consistency of the resulting
subtypes defining the ground truth for downstream
analyses. The stability of the obtained clusters was
assessed under different perturbations of the processing
pipeline (different parameters and clustering methods)
to ensure that the results were not simple artefacts
(see Supplementary material, Supplementary methods
and results). A multiclass linear discriminant (LDA)
[22] was trained on core samples with meta-genes as
variables to assign new samples to one of the sub-
types. Minimal gene sets characteristic to each subtype
were identified using ElasticNet [23] on gene-level
data.

In order to validate the existence of subtypes (and
their independence on data selection) and the mod-
elling choices in subtype discovery, we applied the
same subtyping procedure (including parameters) to the
validation collection. The clusters identified in the val-
idation collection were put in correspondence with the
subtypes in the training set by LDA predictions and
correlations of subtype-specific moderated ¢ statistic
[24] values, corresponding to the gene-wise compar-
ison of the respective subtype with the other subtypes
(one-versus-all comparison). A simple classifier appli-
cation would have led the validation samples to be
classified as one of the subtypes, but it would have not
informed us of possible over-fitting of the data in the
discovery procedure.

Subtype characterization

If not specified differently, all the reported p values
were adjusted for multiple hypothesis testing, using
the Benjamini—Hochberg procedure. Significance level
was set at 0.1. Pathway analysis for each set of
gene modules was carried out using the Database
for Annotation, Visualization and Integrated Discov-
ery (DAVID) [25]. Gene set enrichment analysis of
gene signatures was performed using the mygsea2
tool, in each subtype and normal samples, on aver-
age expression-ordered median-centred lists of genes.
Differential expression analysis was performed using
limma [24] and sign test using BSDA [26]. The
Cox proportional hazards model was used to anal-
yse the prognostic value of interquartile range (IQR)-
standardized values of meta-genes, for overall survival
(OS), relapse-free survival (RFS) and survival after
relapse (SAR), stratified by dataset. The Wald test was
used to assess the global significance of the models.
Pairwise differences in survival were assessed using the
log-rank test. For subtype comparison, the survival was
truncated at 7 years. Subtype enrichment for clinical or
molecular markers was assessed by the Fisher test to
the baseline, defined as the proportion of the marker in
the whole dataset. Morphological pattern differences
were assessed pairwise by Fisher test.

© 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd
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Histology

The identified subtypes were characterized histologi-
cally in terms of six different architectural patterns:
complex tubular; solid/trabecular; mucinous; papillary;
desmoplastic; and serrated (Figure 4A), which were
called dominant or secondary depending on their pres-
ence in the histology slides (for details on immunohis-
tochemistry, see Supplementary material, Supplemen-
tary methods and results).

Results

Gene modules and subtype definition

We identified 54 gene modules, reproducible across
all datasets in the discovery collection, comprising
658 genes from an initial list of 3025 identified
as the most variable. The assignment of genes to
gene modules and gene module clusters is listed in
Table S1 (see Supplementary material); meta-gene
expression profiles for the discovery set are shown in
Figure 1A; and between meta-gene correlations in
Figure S1C (see Supplementary material). Based on
gene modules, we identified five major subtypes:
surface crypt-like (A), lower crypt-like (B), CIMP-H-
like (C), mesenchymal (D) and mixed (E), totalling 765
samples (69% of discovery data; see Supplementary
material, Supplementary methods and results).

Subtype reproducibility in an independent
validation set

In the validation set of 720 CRC samples we identified
a set of subtypes comprising 602 samples (83.6%
of the validation set) and associated them with our
discovery subtypes using the subtype classifier (see
Supplementary material, Table S2) and correlations
of subtype-specific patterns based on moderated ¢
statistic (see Supplementary material, Table S3). All
five major subtypes reappeared in the validation set,
confirming the robustness of our approach. Figure S2
(see Supplementary material) presents gene expression
profiles of both discovery and validation sets. Two
notable differences were observed: (i) subtype B in the
validation set was split into two subgroups (B1, B2),
as observed in the discovery set too, but only at lower
pruning height; (ii) another cluster passed the minimal
size criteria, corresponding to the small subtype (F)
which, in the discovery set, was not considered for
further characterization because of small sample size.
Validation of other subtype characteristics (to the extent
of available information) is described in each of the
respective sections.

Subtypes are characterized by distinct biological
components
We set out to assign biological labels to gene modules

that define the subtypes (Table 1; see also Supple-
mentary material, Table S1). Of the 54 meta-genes,

J Pathol 2013; 231: 63-76
www.thejournalofpathology.com

61801 SUOWILLIOD BAIERID 3[Ged | idde 8 Aq pauiA0B ae SDILE WO ‘88N J0 S9N o) ALeig T 3UIIIO AB]IM UO (SUONIPUOO-PLE-SWLBYWIOD"AB | AR | pUIIUO//SAIY) SUONIPUOD PUE SWI | 3L 885 *[SZ02/T0/20] U0 ARIqIT8UIUO A3|1AM ‘1/andoy Yoez) aLeiy0D Ag ZTzy'Yed/Z00T 0T/10p/w00" B | ALeid) U1 IuO'S U bosyled)/sany wioay papeojumod ‘T ‘ETOZ ‘9686960T



o
66 E Budinska et al
RFS os SAR
Top colon crypt —_—
EREG i} ——] e
Top colon crypt | | e
mela76 —— —_ -
-—meta103 —— e
GDC —meta113 —_— e ——
—metag2 —— ——
| S
Chr 20q —— —
1| , | : —_ —_— ——
chr X |[; \ ' ' —_ =
chr 20p | |
Lipid synthesis 1] | |. l[ I = —
1 7 — —
Proliferation | 5 TR
e ——
—
Colon crypt —“‘;‘35‘25
M
(secretory cells)| | —me1:126
Metallothianeins |—meta124
Homeobox —meta131
|| —meta130 —
—_— ———
bt
Ly
EMT (stroma) T ——
S
iz i
e —_—
i
——— g
—_—— —
—_— —_—
—— —_—
[P ——
—meta104 —_— T
—melad3
Immune
——
—_—
e g
RNA metabolics
Gut development
rrrr 177 11 rr-r1r 17171 751t 171mT11
04 06 08 1 12 14 16 04 06 08 1 12 14 16 04 08 08 1 12 14 16
HR HR
C . RFS 1 i
N HR  (p-val)
b CwvsA 3.52(0.01127)
CvsB 4.97 (8.55E-08)
08 0.8 CvsD 214 (0.01197)
= = = Dvs B 2.22(0.00655)
% % % EvsB 228(0.10179)
a 0.6 3 & 06
B k- B
2 o4 8 04 8 04
2 e 2
. HR (p-val) 2 o
0o | DVSA  182(0.0740) _—A ol = A HR  (p-val) sl A
I DvsB 1.86(0.01187) T == CvsB 196 (0.01197) SI=
DvsC 1.68(0.0382) D o DvsB 2.21(0.0016) D
— E —: p—E
0 0 0
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Time (months) Time (months) Time (months)
#atrisk 66 49 38 28 ] #atrisk 53 44 40 33 6 #atrisk 13 10 4 1 1
236 185 145 126 13 224 210 182 159 18 64 45 29 5 1
129 5 7 &1 4 16 84 78 &1 3 28 5 1 0 0
39 26 22 20 4 35 30 21 21 4 10 5 2 1 0

Figure 1. Meta-gene expression pattern in subtypes, connected with prognostic effect of subtypes and meta-genes, in the discovery set.
(A) Two heat maps clustering normal (left) and CRC (right) samples (columns) and meta-genes (rows). Colours represent decreased (blue)
or increased (red) meta-gene expression relative to their medians. Normal samples were clustered independently on meta-genes centred
to CRC meta-gene medians. For comparative purposes, ordering of meta-genes in normal samples is imposed to correspond to that of CRC
samples. White horizontal lines denote eight unsupervised clusters of meta-genes, each assigned a colour bar on the left; meta-genes not
belonging to a cluster have no colour bar. Names of the meta-genes corresponding to gene modules with gene-gene correlations in normal
samples comparable to those in cancer samples are marked red (see Supplementary material, Figure S1D). (B) Effect of inter-quartile range
(IQR) standardized expression of meta-genes on RFS, OS and SAR. Points represent estimated hazard ratio (HR), bars represent 95% Cl.
Bold lines represent effects significant at 5% without adjustment for multiple hypothesis testing; red lines represent effects significant
at FDR < 100%; details are provided in Table S6 (see Supplementary material). (C) Kaplan-Meier plots for RFS, OS and SAR, with HR for
significant pairwise comparisons (p values adjusted for FDR). Numbers below x axes represent number of patients at risk at selected time
points.

41 could be further grouped into eight gene module
clusters; 13 meta-genes remained ungrouped, each pos-
sibly representing a distinct biological motif. Pathway
analysis characterized five of eight gene module clus-
ters by the following biological motifs: chromosome

© 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd
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20q (cluster 2), proliferation (cluster 3), EMT/stroma
(cluster 5) and immune response (clusters 7 and 8).
Literature searching identified biological motifs asso-
ciated with other gene modules. We labelled cluster 1
as GDC (genes differentially expressed in CRC), as
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Table 1. Biological identification of gene modules

Pathway analysis result
(number of overlapping

Number of genes, p value) OR description
Cluster name genes based on literature search
1.GDC 27 Genes involved in differentiation of colon
crypt and/or whose expression was
reported to be affected in colorectal cancer
and/or with prognostic effect in CRC
2. Chromosome 20q 33 Chromosome 20 (26 genes, 9.2E-34)
genes
3. Proliferation 83 Cell cycle (36 genes, 3.0E-33)
Mitosis (26 genes, 1.4E-29)
Chromosome (26 genes, 2.5E-17)
DNA metabolic process (20 genes, 4.9E-10)
Lipid synthesis (4 genes, 5.0E-2)
4. Colon crypt markers 16
(secretory cells)
5. EMT/stroma 310 Extracellular region part (90 genes) 2.7E-36
Cell adhesion (57 genes) 1.2E-17
Extracellular matrix (44 genes) 5.3E-30
Collagen (16 genes) 1.2E-15
EGF-like domain (26 genes) 1.6E-12
Cell motion (33 genes) 7.2E-8
Blood vessel development (25 genes) 1.1E-8
Growth factor binding (6 genes) 6.0E-5
Frizzled related (5 genes) 6.7E-3
Cell junction organization (7 genes) 1.8E-2
WNT receptor signalling pathway (8 genes)
1.4E-1
6. Unidentified 14
7 and 8. Immune 103 Immune response (42 genes) 2.0E-28

response Positive regulation of immune system process
(16 genes) 4.0E-9
Antigen processing and presentation via MHC
class Il (6 genes) 7.5E-5
Defence response (31 genes) 3.3E-17
Chemokine signalling pathway (9 genes)
2.2E-3
Lymphocyte activation (11 genes) 2.1E-5
Regulation of programmed cell death
(14 genes) 2.1E-2
Cluster-unassigned meta-genes with colon crypt cell markers (enterocytes/top of the crypt)
Meta-gene 105 6 Top of the crypt genes

Meta-gene 144 5 Enterocytes, goblet cells markers
Cluster-unassigned meta-genes associated with chromosomal location O
Meta-gene 81 7 Chromosome X (7 genes) 1.1E-8

Meta-gene 97 6 Chromosome 20p (5 genes) 5.0E-11

Meta-gene 84 7 Chromosome 8 (7 genes) 5.4E-9

Other cluster-unassigned meta-genes
Meta-gene 141 5 EREG

Meta-gene 112 6 Lipid synthesis (4 genes) 5.0E-2

Meta-gene 95 6 Homeobox genes

Meta-gene 124 5 Metallothioneins

Meta-gene 131 5 Disulphide bonds (5 genes) 1.7E-02

Meta-gene 143 5 Unidentified

Meta-gene 80 7 Regulation of RNA metabolic process
(6 genes) 4.9E-2

Meta-gene 71 8 Gut development (3 genes) 3.5E-2

© 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd
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Selected genes

Intestinal differentiation genes: CDX2[45], IHH[46],
VAV3[47], ASCL2[35], PLAGL2[48]

Genes reported altered in colorectal cancer with
prognostic effect: PITX2[49], DDC[50], PRLR[51],
SPINK1[52]

Other genes connected to CRC:

GGH-connected to CIMP™ phenotype [53]

NR1/2-connected to chemoresistance [54]

Other, non-20q genes: TP53RK, ANO9, NEU1, CLDN3,
PRSS8

Mitotic checkpoint kinases: BUB1, BUB1B

Cyclins: CCNA2, CCNB2 Centromere proteins: CENPA,
CENPE, CENPN

Kinesins: KIF11, KIF23, KIF4A

Topoisomerase |l (TOP2A)

Cell division cycle 2 CDC2

AGR2[55], AGR3, MUC2, SPINK4[56], RETNLB[57],
REG4[58]

Inhibitors of B-catenin-dependent canonical WNT:
SFRP1, SFRP2, SFRP4, DKK3, FZD1,7, PRICKLE1, NXN

Mesenchymal markers: N-cadherin, OB cadherin, SPARC,
DDR2

EMT inducers(TFs): SNAI2, ZEB1, ZEB2, TWIST1, CDH11

ECM remodelling and invasion: MMP14, VIM ECM
proteins: fibronectin 1, collagens

Angiogenesis: PLAT, PLAU, NRP1, NRP2, THBS1, THBS2,
THBS4

TGFs, their receptors and binding proteins: IGF1, IGFBP5,
IGFBP7,TGFB, LTBP1, LTBP2, PDGFRA, PDGFRB

DUSP1, EGR2, SERPINE1

Cytokines: CCL3, CXCL5, CXCL9,CXCL10, CXCL11, SPP1,
LTB

MHC class Il: HLA-DMB, HLA-DPA1, HLA-DRA, CD74

MHC class I: HLA-F, TAP1, TAP2

Anti-apoptotic: BCL2A1, CD74, BIRC3, IFl6, TNFAIP3,
TNFAIP3

Apoptotic: STAT1, XAF1

Interferon-induced proteins: IFI30, IFI16, IFI44, IFI16,
IFIH1, IFIT3

FAM55A, FAM55D, MUC12 and CEACAM7[59],
SLC26A2[59], SLC26A3[59]
LOC644844, NGEF, HEPH, KRT20[59], MUC20[59]

CXorf15, EIFTAX, HDHD1A, MED14, PNPLA4, SCML1,
SMC1A

CDC25B, CSNK2A1, MRPS26, PTPRA, RP5-1022P6.2,
SNRPB

AGPAT5, FDFT1, GTF2E2, LONRF1, MTUST, VPS37A,
ZNF395

AK3L1, ARID3A, EREG, LDLRAD3, ZBTB10

DHCR7, FASN, FGFBP1, HMGCST, IDI1, PCSK9
HOXA10, HOXA11, HOXA13, HOXA5, HOXA7, HOXA9
MTIE, MT1F, MT1G, MT1M, MT1X

CXCL5, IL6, MMP1, MMP3, PTGS2

DUSP5, ERRFI1, KLF6, MXD1, PLAUR

ATF3, C8orf4, FOS, JUNB, NR4A1, SIK1, ZFP36

CCL11, CH25H, EDNRB, F2RL2, FOXF1, FOXF2, PCDH18,
WNT5A

www.thejournalofpathology.com
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Table 2. Subtype-specific minimal gene set as identified by Elastic net

E Budinska et al

Minimal gene sets specifying a subtype

Up-regulated from
Subtype population mean

ADTRP, B3GNT7, CLCA1, MUC2, NR3C2, PADI2, RETNLB, STYK1

CCDC113, CDHR1, FARP1, GPSM2, GRM8, HNF4A, IHH, KCNK5,
KIAA0226L, MYRIP, PLAGL2, PRR15, QPRT, RNF43, RPS6KA3,
SLC5A6, TP53RK, TSPANG, VAV3, YAETD1

A. Surface crypt-like
B. Lower crypt-like

C. CIMP-H-like
D. Mesenchymal

it consisted of a number of genes significantly associ-
ated with CRC. The analysis of pairwise intra-gene
module correlations in normal samples of both dis-
covery and validation set identified as cancer-specific
gene modules of chromosome 20q, several immune
response, EMT/stroma and GDC gene modules, home-
obox genes and gut development (see Supplementary
material, Figure S1D). The relationship between sub-
types and meta-genes is illustrated by the heat map
(Figure 1A), in which the major molecular motifs
and their role in subtype definition stand out. Table
S4 (see Supplementary material) contains median sub-
type values per meta-gene and the results of differ-
ential meta-gene expression testing between subtypes.
Subtypes are not determined by individual biologi-
cal components but each of them contributes to the
molecular identity of the subtypes. The EMT/stroma
cluster stands out in subtypes A + B (low expression)
and D +E (high expression), while subtype C notably
contained a high expression of immunity-associated
cluster. High expression of meta-genes representing
upper colon crypt cells in subtypes A and B, cor-
related with serrated and papillary (A) and complex
tubular (B) morphological patterns (see below). Given
the enterocyte-like morphology and retained polarity
of the neoplastic cells in these patterns, they are con-
sidered as well differentiated. Subtype C is associated
with the mucinous phenotype. Interestingly, subtypes
A and C show high expression of metallothioneins,
subtypes C and E show high expression of the home-
obox gene module, while subtypes E and B strongly
express a gene module containing the EREG gene
(Table 1). The high expression of chromosome 20q
cluster in subtype B was correlated with a significantly
higher copy number gain/amplification of all of 20q in
this subtype (see Supplementary material, Figure S8).
The low expression of lipid synthesis genes is striking
for subtype D and low expression of the gut devel-
opment gene module for subtype C. A refined picture
of differences is given by a quantitative comparison
of (meta-)gene expression between subtype pairs (see
Supplementary material, Tables S4 and S5, Figure S4).
For each subtype we also identified a minimum set
of characteristic genes (Table 2; for more details, see
Supplementary material, Supplementary methods and
results).

© 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org.uk

ANP32E, EGLN3, IDOT, PLK2, RAB27B, RARRES3, RPL22L1, TFAP2A
ANK2, BOC, C7, CRYAB, DCHS1, DDR2, GEM, PRICKLET, TAGLN
E. Mixed CEACAMS6, CXCL5, HSD11B1, IL1B, IL6, MRPS31, PI15, RAP2A, UQCC

Down-regulated from
population mean

CHI3L1, FNDC1, TIMP3, SULF1

ALOX5, BASP1, CREB3L1, CXCR4,
EPB41L3, FSCN1, GFPT2, GPXS,
ITPRIP, KCNMA1, KCTD12,MT1E,
RARRES3, RNASET, SGK1, SOCS3

ATP9A, C100rf99, CXCL14, KIAA0226L

HOOKT, RBM47

AGR3, RAB27B, REG4

Normal colon mucosa in the context of subtypes

When applied to the 64 normal samples, the LDA clas-
sifier assigned them all to subtype A, with posterior
probability > 0.99, supporting the observation that A is
well differentiated and closest to normal colonic epithe-
lium in terms of gene expression pattern. For valida-
tion, we analysed five public datasets comprising 205
profiles of normal/adenoma/carcinoma samples. Most
of the normal and adenoma samples were classified by
LDA as subtype A (74.5% of 51 and 69.0% of 71,
respectively) or subtype B (28.2% and 21.6%, respec-
tively), confirming subtype A as the most normal-like.
The 80 carcinoma samples were distributed over all
subtypes (26.2% A, 30.0% B, 11.3% C, 18.7% D and
13.8% E).

Subtypes and patient survival

We assessed whether subtypes differ in survival, as a
general read-out of biological significance, and then
tested the association of each meta-gene with progno-
sis, using the complete discovery set of 1113 patients
(Figure 1B-C see also Supplementary material, Table
S6). Kaplan—Meier curves for RFS, OS, SAR, haz-
ard ratios (HRs) and p values of pairwise differences
between subtypes are shown in Figure 1C. The results
indicate that subtypes C and D are associated with poor
OS. For subtype D, this is primarily due to early relapse
correlated with high expression of EMT genes and low
expression of proliferation-associated genes. For sub-
type C it is the result of short SAR, correlated with
low expression of GDC, top colon crypt, EREG and
Chr 20q genes and high expression of meta-gene 126
(see Supplementary material, Table S1). For subtype E
the trend towards poorer OS and RFS was not statisti-
cally significant, although borderline significant poorer
SAR was found relative to subtype B. Subtypes A and
B had better prognosis than D for all three endpoints,
although for OS in subtype A this was not significant.

The analysis of clinical and molecular markers
(below) showed that subtype C is enriched for MSI
tumours and BRAF mutant tumours, the latter present
also in subtype D. The literature indicates that MSI
is associated with better RFS, while BRAF mutation
is an indicator of worse SAR [27]. To analyse how
these two contradictory components affect survival in

J Pathol 2013; 231: 63-76
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Table 3. Result of additive multivariate Cox proportional hazards model, with subtype, BRAF mutation, MSI and stage®

Variable RFS HR p OS HR
A 0.906 0.760 1.381
C 0.940 0.850 1.560
D 1.688 0.0055* 2.161
E 1.506 0.210 2.201
BRAFm 1.633 0.085 2.472
MSI 0.478 0.044* 0.275
Stage 3 0.770 0.190 0.943

69
p SAR HR p

0.390 1.726 0.180
0.220 3.675 0.0022*
0.0011* 1.906 0.014*
0.035* 2.046 0.075
0.0034* 3.361 0.00072*
0.004* 0.356 0.036*
0.820 1.780 0.062*

@Baseline is subtype B, MSS, BRAF wt and Stage 2.
*Variables significant in the model.

Hazard ratios (HR) for relapse-free survival (RFS), overall survival (0S) and survival after relapse (SAR).

subtypes, we built a multivariate Cox proportional
hazard model with subtype, stage, BRAF and MSI
(Table 3; see also Supplementary material, Table S6).
Subtype C remained significantly associated with poor
SAR, even after the adjustment for BRAF, MSI and
stage, but not with RFS. Subtypes B and D remained
significantly prognostic for RFS, OS and SAR. No
equivalent survival data were available for the datasets
in the validation series, hence these observations could
not be validated.

Colorectal stem cell and Wnt signatures within
subtypes

We investigated the association of subtypes with
Wnt [28-32], putative colon cancer stem cell (CSC)
[33-35] signatures, and two signatures specific for
upper and lower colon crypt compartments [36], using
gene set enrichment analysis (Figure 2; see also Sup-
plementary material, Table S7). Subtypes B and E
highly expressed canonical Wnt signalling target sig-
natures. Subtypes A and D and also normal samples,
however, showed low expression of these signatures.
This was in concordance with the differences in -
catenin nuclear immunoreactivity at the invasion front
(IF; see Supplementary material, Figure S9 and Sup-
plementary methods and results). Subtypes B and E
showed the highest percentages, while subtypes A and
D showed significantly lower percentages of the B-
catenin-positive nuclei. Subtype C exhibited almost no
p-catenin nuclear immunoreactivity at the IF. We anal-
ysed CSC signatures derived from low colon crypt
compartment cells that had been identified either by a
Whnt reporter construct TOP GFP or by high surface
expression of EphB2. Subtypes D and E expressed
both TOP GFP and EphB2-derived CSC signatures,
while subtype B mainly expressed only the TOP GFP
signature (Figure 2).

Subtypes complement clinical and molecular
markers

An important goal of this study was to assess how
our molecular subtypes complement known clinical
variables and molecular markers. We found that MSI,
BRAF mutation status, site, mucinous histology and
expression of p53 were significantly associated with
various subtypes (Figure 3), but not tumour stage,

© 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org.uk

age, gender, SMAD4 or PIK3CA mutations (see Sup-
plementary material, Figure S5A). Subtype D was
not significantly enriched for any of the tested vari-
ables except for the BRAF mutated signature and
possibly represents a mixture of tumours that have
the EMT/stroma signature in common. KRAS mutants
occurred in all subtypes (see Supplementary mate-
rial, Figure S5C), supporting the emerging notion that
KRAS -mutated CRC are substantially heterogeneous
[5,6,37], the oncogenic role of KRAS varying per spe-
cific mutation and the molecular background of the
tumour in which it occurs [38]. Subtype C expressed
the BRAF mutant signature we identified earlier [6]
(87.0%), a CIMP-H signature ([11], Figure 2), and
its characteristics (enrichment for MSI, right side and
mucinous histology) corresponded with those of the
previously reported CIMP-H phenotype [9,11,39,40]
and hypermutated tumours [13]. Regarding the lat-
ter, subtype C had a similar low frequency of copy
number variations (see Supplementary material, Figure
S7). The distribution of MSI status, stage, age, gen-
der, grade and site over the subtypes in the validation
set followed the same patterns established in the dis-
covery set [cf Figures 3 and S5B (see Supplementary
material)]. A classification tree, trained with a combi-
nation of available clinical and molecular markers, did
not identify our subtypes (see Supplementary material,
Figure S5D), indicating that gene expression patterns
reveal a layer of heterogeneity that goes beyond con-
ventional CRC classification approaches.

Histological characteristics of subtypes

To study whether or not our molecular subtypes
are associated with histological patterns, we exam-
ined haematoxylin and eosin (H&E)-stained paraffin
sections of a randomly selected subset of each subtype
(23, 31,31, 29 and 19 cases for subtypes A, B, C, D and
E, respectively). In attempting to match histological
morphotypes to molecular subtypes, architectural pat-
terns were used, as illustrated in Figure 4A, rather than
the recognized WHO classification of CRCs [1]. Not
surprisingly, given intratumour heterogeneity, none of
the tumours had a single pattern. However, the preva-
lent patterns showed appreciable differences between
the subgroups (Figure 4B, C; see also Supplementary
material, Figure S6). In subtype A, the serrated pattern
was most frequent, followed by the papillary pattern; in

J Pathol 2013; 231: 63-76
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CSC TOP-GFP
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Figure 2. Subtypes and biological motifs. Subtype-specific fingerprints of biological motifs, represented either as mean values of gene set
enrichment scores of gene sets from corresponding gene modules (EMT/stroma, immune, secretory cells, proliferation, GDC, chromosome
20q, top of the crypt—meta105 and meta144) or composed gene set enrichment scores of particular signatures (canonical Wnt targets,
CSC-TopGFP, CSC-EphB2, colon crypt bottom and CIMP-H). The gene set enrichment scores represent whether the genes from the gene set
show statistically significant enrichment between the down-regulated (negative scores, light blue area) or up regulated (positive scores)
genes of a given subtype; details of score calculation can be found in the Supplementary material (Supplementary methods and results
and Table S7.).

KRASmM P53 (>=45) MmsI Mucinous Grade (3) BRAFm BRAFpos Site (right)
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Figure 3. Clinical and mutational characterization of subtypes. Columns represent variables and rows subtypes. Horizontal bar plots
represent proportions of the corresponding variable in each of the subtypes and non-core samples. Non-core samples were tested as one
group to ensure that they did not share a common characteristic that would set them apart. Numbers in brackets adjacent to subtype
name represent overall number of samples in the subtype. Under the title of each variable we denote the percentage representing baseline
proportion in the population, with available information, and N denotes the number of patients for which the information on the respective
feature was available. Bars in red represent significant enrichment and bars in blue significant depletion of a feature in the subtype in
comparison to baseline, at the 5% significance level. Adjacent to each bar is the percentage of samples in the subtype with the specific
feature and in brackets the overall number of samples in the subtype with the information available. We can read that, for instance,
subtype C, comprising 154 samples, is enriched for microsatellite-unstable (MSI) tumours, where 60.4% of 91 samples with available
information are MSI.
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Figure 4. Morphological CRC patterns. (A) morphological CRC patterns scored in subtypes. (B, C) Distribution of dominant (B) and secondary
(C) histological patterns in subtypes. Columns represent subtypes and widths are proportional to subtype frequency (numbers of samples
in each subtype); rows represent dominant (B) or secondary (C) patterns and heights are proportional to pattern frequency. Boxes show
adjusted p values of pairwise statistical testing of morphological pattern distribution between subtypes.

subtypes B and E, complex tubular dominated; in sub-
type C the solid pattern dominated, with mucinous as
the second; most striking was the presence of a strong
stromal reaction in subtype D.

Discussion

Our approach, using gene modules on a large panel of
samples, allowed us to identify five main CRC gene
expression subtypes (Table 4). It is relevant to note
that subtyping can be performed on FFPE tissues, an
important prerequisite for wide clinical applications.
An example is the hypermutated group identified in
the TCGA study by whole exome sequencing [13], but
according to our data also by gene expression profiling
on routinely processed tissues (CIMP-H-like subtype).

© 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org.uk

The combination of gene expression, clinical, muta-
tional, survival and morphological data contributes new
insight into the heterogeneity of CRC. While the vali-
dation confirmed the robustness of our findings across
different platforms (ALMAC versus Affymetrix), sam-
ple preparation methods (FFPE versus fresh-frozen)
and dataset collections, larger datasets are necessary
to assess and characterize the relevance of lower fre-
quency subtypes (eg F, or further segregation of B
into B1 and B2). Our data indicate that several major
biological processes are key determinants of a com-
plex subtype structure of CRC. Therefore our sub-
types defined by gene expression do not substitute
but complement groups defined by current clinico-
pathological variables and molecular markers. Notably,
morphological subclassification of CRC has clearly
reached its limits, given the often striking intratumour
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Table 4. Summary of subtype characteristics

Gene expression

Median survival (months) Clinical

IHC

Histopathology

CRC markers and mutations

Nuclear
B-catenin at IF

Down-regulated
EMT/stroma, Wnt, CSC,

Up-regulated

RFS SAR Site Grade
28.9

NA

0s

Dominant

BRAF KRAS P53

MSI

Subtype

Top colon crypt, secretory

NA

Papillary or serrated

A: Surface crypt-like

Chr20q,

cell, metallothioneins

proliferation
EMT/stroma, immune,

Top colon crypt,

50.4 Left 2

NA

NA

Complex tubular

B: Lower crypt-like

secretory cell
GDC, top colon crypt,

proliferation, Wnt
Proliferation, immune,

3

Right

NA 6.9

NA

Solid/trabecular or

C: CIMP-H-like

Chr20q
Proliferation, secretory

metallothioneins
EMT/stroma, CSC, immune

mucinous
Desmoplastic

19.8

79.5

NA

D: Mesenchymal

cell, top colon crypt,
GDC, Wnt, Chr20q

Secretory cell

EMT/stroma, immune, top

19.6 Left

NA

NA

Complex tubular

_|_

E: Mixed

colon crypt, Chr20q,

GDC, CSC

+, significantly enriched; -, significantly depleted; IF, invasion front; NA, not attained; no value, no significant enrichment in comparison to population baseline.
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heterogeneity, which made us use a (primary and
secondary) architectural pattern approach rather than
the canonized histological subtypes (WHO). Profiling
of microdissected patterns within a single tumour might
reveal molecular mechanisms responsible for these
morphotypes. This additional heterogeneity within the
subtypes may reflect tumour polyclonality, similar to
breast cancer [41]. Ultimately, aggregating clinical,
pathological and further detailed molecular character-
istics (including CNV, miRNA and methylation) will
contribute to a more detailed perception of CRC hetero-
geneity and it is likely that more subtypes will emerge.
This, however, would need more detailed molecular
annotation of larger clinically well documented CRCs.

A striking association was found between the stro-
mal subtype D and the EMT signature. The previously
discovered EMT [12] also emerged from our analy-
sis as the largest cluster of meta-genes associated with
poor RFS (subtype D). Our histological assessment
suggests that the EMT signature is the reflection of
a strong mesenchymal stromal reaction, and this his-
tological characteristic deserves to be tested for its
capacity to predict resistance to therapy, in view of its
strong association with poor survival. Studies requiring
high tumour cell content as sample inclusion criteria
(eg [13]) could miss this poor prognosis subtype. Iden-
tification of this subtype in cell lines or xenograft mod-
els is less straightforward and would benefit from the
analysis of gene expression patterns between microdis-
sected tumour and stromal cells.

EMT, however important, only partly explains
CRC heterogeneity, as even subtypes with similar
expression of EMT-associated genes (A—C or D-E)
differ in survival, mutational, clinical and gene expres-
sion characteristics. Additional biological components,
such as differentiation, immune response, proliferation,
chromosome 20q or cluster of genes deregulated in
CRCs, are important co-determinants that underpin a
need for further subdivision of CRCs. The findings
from the analysis of CSC and WNT signatures support
the recently suggested hypothesis that the colon stem
cell signature under the condition of silenced canon-
ical WNT targets is associated with higher risk of
recurrence (subtype D) [33]. This is consistent with
subtype D showing a significantly lower percentage
of B-catenin-positive nuclei than subtype B, with its
Wht-associated gene expression and better survival.

MSI tumours represent a subclass in most unsu-
pervised analyses and can be recognized at the gene
expression level [42]. The more recent gene expression
studies [14,15] suggest that MSI and BRAF' share dis-
tinct gene expression patterns. Subtype C was enriched
for both MSI and BRAF mutants and had one of the
best outcomes for RFS, but the worse outcome in SAR,
in concordance with previously reported results [43].
Subtype C retained its poor SAR prognostic value, even
in the population of MSS and BRAF wild-type patients.
Our data suggest that subtype C represents tumours
with a common biology and a gene expression pattern
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that might best characterize a group of tumours resis-
tant to chemotherapy, once metastatic. In this sense,
our work not only agrees with the current known mark-
ers (BRAF mutation status and MSI) but clearly adds
new insight, putting together these previously unre-
lated clusters into one biologically meaningful group.
This observation is in line with recently published
work [6].

Our observations show that gene expression profil-
ing contributes substantially to our insight into CRC
heterogeneity in confirming and complementing data
from sequencing, CNV and promoter methylation
analysis. Our subtypes can be further functionally
interrogated for driving oncogenes/events by in vitro
functional screens. High-risk subtypes D and C might
contribute to therapeutic decision making in either
adjuvant or metastatic settings. Retrospective analysis
of clinical trial series may identify drug sensitivity
associated with particular subtypes, and might open
new treatment optimization strategies to be tested in
clinical trials with stratified cohorts, similar to the
I-SPY?2 trial for breast cancer [44].

In conclusion, our unsupervised approach using
gene modules resulted in the identification of dis-
tinct molecularly defined CRC subtypes, which adds
a new layer of complexity to CRC heterogeneity and
opens new opportunities for understanding the dis-
ease. The challenge is now to assimilate conventional
and these new molecular approaches into a compre-
hensive consensus classification, which might then be
used in further clinical studies for patient stratification
and experimental studies to further elucidate mecha-
nisms involved in the development and progression
of CRC.
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Cross-species analysis of genetically engineered mouse models
of MAPK-driven colorectal cancer identifies hallmarks of the

human disease

Peter J. Belmont"*, Eva Budinska®3*, Ping Jiang', Mark J. Sinnamon*, Erin Coffee?, Jatin Roper?, Tao Xie',
Paul A. Rejto’, Sahra Derkits’, Owen J. Sansom’, Mauro Delorenzi®, Sabine Tejpar®, Kenneth E. Hung” and

Eric S. Martin'#*

ABSTRACT

Effective treatment options for advanced colorectal cancer (CRC) are
limited, survival rates are poor and this disease continues to be a
leading cause of cancer-related deaths worldwide. Despite being a
highly heterogeneous disease, a large subset of individuals with
sporadic CRC typically harbor relatively few established ‘driver’
lesions. Here, we describe a collection of genetically engineered
mouse models (GEMMs) of sporadic CRC that combine lesions
frequently altered in human patients, including well-characterized
tumor suppressors and activators of MAPK signaling. Primary tumors
from these models were profiled, and individual GEMM tumors
segregated into groups based on their genotypes. Unique allelic and
genotypic expression signatures were generated from these GEMMs
and applied to clinically annotated human CRC patient samples. We
provide evidence that a Kras signature derived from these GEMMs
is capable of distinguishing human tumors harboring KRAS mutation,
and tracks with poor prognosis in two independent human patient
cohorts. Furthermore, the analysis of a panel of human CRC cell
lines suggests that high expression of the GEMM Kras signature
correlates with sensitivity to targeted pathway inhibitors. Together,
these findings implicate GEMMs as powerful preclinical tools with the
capacity to recapitulate relevant human disease biology, and support
the use of genetic signatures generated in these models to facilitate
future drug discovery and validation efforts.

KEY WORDS: KRAS, BRAF, MAPK, Colorectal cancer, GEMM,
Genomic signatures

INTRODUCTION

Human sporadic colorectal cancer (CRC) is a complex
heterogeneous disease, and this contributes to the low success rate
of its clinical trials and lack of robust therapeutics (Betensky et al.,

"Oncology Research Unit, Pfizer Global Research and Development, San Diego,
CA 92121, USA. ?Institute of Biostatistics and Analyses, Faculty of Medicine,
Masaryk University, 625 00 Brno, Czech Republic. *Bioinformatics Core Facility,
SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland. “Division of
Gastroenterology, Tufts Medical Center, Boston, MA 02111, USA. °The Beatson
Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK.
SUniversity Hospital Gasthuisberg, Katholieke Universiteit Leuven, 3000 Leuven,
Belgium. "Pfizer Biotherapeutics Clinical Research, Cambridge, 02140 MA, USA.
*These authors contributed equally to this work

*Author for correspondence (esmartin.phd@gmail.com)

This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted
use, distribution and reproduction in any medium provided that the original work is properly
attributed.

Received 3 September 2013; Accepted 15 April 2014

2002; de Bono and Ashworth, 2010). Efforts have been made to
understand and account for the heterogeneity of several human
cancers, including CRC, with a focus on segmenting cancer
populations based on core genetic ‘driver’ lesions (Greenman et al.,
2007). In addition, several studies have identified genomic
signatures within large CRC datasets that predict clinical outcome
(Roth et al., 2010; Dry et al., 2010; Popovici et al., 2012; Budinska
et al., 2013; De Sousa E Melo et al., 2013; Sadanandam et al.,
2013).

To further understand and experimentally interrogate the biology
underlying genetically defined disease segments of interest, and to
facilitate discovery of relevant treatment paradigms, stochastic
preclinical disease models harboring homologous somatic alterations
are crucial. To this end, several studies have utilized genetically
engineered model organisms, including Drosophila (Vidal and
Cagan, 2006; Rudrapatna et al., 2012) and mice (Jonkers and Berns,
2002; Tuveson and Jacks, 2002), to recreate hallmark characteristics
of human cancers. Drosophila cancer models have shed light on
numerous biological underpinnings of cancer, including tumor
suppressors, invasion and metastasis (Rudrapatna et al., 2012),
providing substrate for further validation in mammalian models.
Genetically engineered mouse models (GEMMs) have been utilized
as the mammalian cancer model system of choice for decades
(Tuveson and Hanahan, 2011; Politi and Pao, 2011). Although
GEMMs have traditionally incorporated germline alterations in
disease-prevalent genes, models using conditionally controlled,
somatically acquired alleles allow a more accurate stochastic
modeling of the sporadic nature of human tumorigenesis (Heyer et
al., 2010). To address this, GEMMSs have been further developed to
leverage restricted exposure of Cre recombinase to initiate latent
alleles exclusively in tissues of interest, closely mimicking the onset
of spontaneous lesions in humans (Johnson et al., 2001; Roper and
Hung, 2012; DuPage et al., 2009; Frese and Tuveson, 2007).

To provide maximal experimental utility and enable the
translation of preclinical mouse modeling experiments into human
disease, GEMMs of human CRC must be driven by homologous
allelic series, and exhibit similar clinical presentations to the human
disease, including disease histopathology and appearance of
metastatic lesions (Heyer et al., 2010; Roper and Hung, 2012).
Recently, primary tumors from GEMMs of pancreatic, colorectal
and non-small-cell lung cancers harboring genetic lesions that are
present in human cancers were shown to be histologically and
pathologically similar to their respective human counterparts
(DuPage et al., 2009; Hung et al., 2010; Martin et al., 2013). In
some cases, GEMMs have closely emulated the response seen in
humans to both standard of care and targeted therapies (Arnold et
al., 2005); furthermore, the mechanisms of acquired resistance to
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TRANSLATIONAL IMPACT

Clinical issue

Colorectal cancer (CRC) is the third leading cause of cancer mortality in
the United States, and ~80% of all cases are sporadic in nature,
involving the acquisition of tumorigenic somatic alterations. Treatment
options for CRC are limited, and the survival rates associated with
advanced-stage disease are low. The highly heterogeneous nature of
this disease is thought to contribute to the lack of success of novel
therapeutics in the clinic. Thus, preclinical models that recapitulate the
core biology of the human disease are needed for the identification of
new therapeutic strategies. Despite the heterogeneity associated with
sporadic CRC, the vast majority of cases display alterations in a limited
number of tumor suppressors and oncogenes. Here, the authors
amassed a unique collection of genetically engineered mouse models
(GEMMSs) harboring conditional alleles that mimic acquired somatic
alterations observed in human sporadic CRC, including loss of the tumor
suppressors APC and TP53 and gain of oncogenic BRAF and KRAS. To
gain an understanding of the utility of these models, gene signatures
were derived and used to stratify genomically heterogeneous clinically
annotated patient samples, as well as human cell lines treated with
targeted inhibitors.

Results

Primary tumors were isolated from GEMMs harboring common CRC
‘driver’ mutations, and these tumors were subjected to gene expression
profiling to generate genotype-specific signatures. GEMM-derived
signatures were applied to two independent human clinical CRC
datasets for which genomic profiling and survival data were available.
The GEMM Kras signature score was enriched in individuals with a
mutation in KRAS, and associated with shorter overall survival (OS),
relapse-free survival (RFS) and survival after relapse (SAR).
Interestingly, the signature further segregated the KRAS mutant CRC
patient population into two clinically distinct groups, consistent with
emerging evidence of heterogeneity in this population in both gene
expression and survival. Finally, the signature was predictive of response
to MEK inhibitors, which are widely used as cancer drugs, in human
CRC cell lines.

Implications and future directions

Together, these results demonstrate that gene signatures derived from
genetically and contextually relevant GEMMs are capable of further
resolving genomically heterogeneous populations of human CRC and
identifying patients with characteristics of aggressive disease. The
correlation of the GEMM Kras signature with response to targeted
inhibition of a clinically relevant pathway in a collection of human CRC
cell lines highlights its potential utility in predicting therapeutic response.
Future studies will focus on the application of this signature to other
therapeutic modalities of interest, and on further understanding the
contribution of key nodes or targets present within the signature itself.
On a wider scale, this study demonstrates the usefulness of GEMMs
expressing conditional alleles for exploring genetic heterogeneity in
human malignancies.

such agents have often closely resembled those seen in the clinic
(Engelman et al., 2008; Jorissen et al., 2009; Van Cutsem et al.,
2009; Hegde et al., 2013). Thus, GEMMs are useful preclinical
models for modeling human cancer biology and identifying potential
therapeutic targets.

To further our understanding of the molecular etiology underlying
common genotypic subsets of human CRC, and to assess the extent
to which they recapitulate human disease in animal models, we
amassed a collection of GEMMs that combine colon-specific
mutations, including somatic alterations in Apc (Apc“K°), Tp53
(Tp531o¥1o%y | Kras (Kras-S+9'?P) and Braf (Braf¥*"F), genes that are
among the most frequently mutated in human sporadic CRC (Cancer
Genome Atlas Network, 2012). Primary tumor material from this
collection was subjected to gene expression profiling to assess core
similarities and differences among these models, and to generate
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unique signatures based on genotype. These signatures were then
evaluated in human CRC tissue with annotated clinical data to assess
the ability of these GEMMs to recapitulate the core transcriptional
biology of their human CRC counterparts. Overlapping gene
expression modules shared between GEMM and human signatures
represent potential points of therapeutic interrogation and provide key
substrate for follow-up validation and drug discovery efforts.

RESULTS

Development and profiling of genetically relevant CRC
GEMMs

Adult GEMMs harboring combinations of latent, inactive alleles of
the four most common somatic lesions observed in human CRC
(Cancer Genome Atlas Network, 2012) (4PC, TP53, KRAS and
BRAF) were subjected to surgically restricted delivery of AdCre to
the distal colon; mice were then followed longitudinally for tumor
progression via endoscopy, and tumor material was harvested as
previously described (Hung et al., 2010; Martin et al., 2013). The
conditional Apc and Tp53 alleles harbor loxP sites (floxed), which,
upon exposure to AdCre, result in excision of critical exons,
resulting in loss-of-function proteins, as previously described
(Kuraguchi et al., 2006; Kirsch et al., 2007). The conditional Kras
and Braf alleles harbor floxed transcriptional stop elements upstream
of mutant forms of exon 1 (Kras®'?P) (Hung et al., 2010) or exon 15
(Braf¥®®) (Coffee et al., 2013). A list of primary tumors with allelic
combinations is provided (supplementary material Table S1).
Tumors and normal colonic tissue from wild-type littermate controls
were subjected to whole-genome expression profiling. Subsequently,
principal component analysis (PCA) and unsupervised hierarchical
clustering on the top 500 most variable genes was performed.
Individual CRC GEMMs clustered by genotype, both in the PCA
(Fig. 1A, genotype representing the first two principal components)
and hierarchical clustering (Fig. 1B). These results demonstrate that
the genotypes of these models represent the primary differentiating
feature, and suggest that each genotype likely possesses unique
underlying biological characteristics.

Allele-specific GEMM signatures

To further assess the underlying differences among our CRC
models, we identified gene signatures (lists of differentially
expressed genes) characteristic of each mutant allele (4Apc, Tp53,
Kras, Braf) within the GEMM collection using a multivariable
analysis (see Materials and Methods). It is important to note that all
GEMMs contain Apc lesions; therefore, all results for Braf, Kras
and Tp53 alleles should be interpreted with this regard. A Venn
diagram (Fig. 2A) and heatmaps of supervised hierarchical
clustering on the signature-specific genes (Fig. 2B-E) demonstrate
that these gene lists partially overlap, suggesting common biological
characteristics, including redundant signaling and pathway
activation. To determine whether the unique or intersecting gene
lists associated with each mutant allele displayed enrichment in
known biological processes or curated gene signatures, we cross-
referenced each to the molecular signatures database [MSigDB
(www.broadinstitute.org/gsea/msigdb/)]. Indeed, common gene sets
enriched among upregulated Kras and Braf genes included several
annotated MAPK pathway sets, consistent with the established roles
of mutant Kras and Braf in activating this pathway (supplementary
material Table S2). Gene sets enriched among shared upregulated
Apc and Tp53 genes included several cell cycle gene sets as well as
DNA synthesis, replication and repair, consistent with their
established roles as tumor suppressors and thus with the
deregulation of these functions in our models (supplementary
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Fig. 1. GEMM primary tumors segregate by
genotype. (A) Principal component analysis (PCA)
on GEMM primary tumor samples and normal colon
tissue. wt, normal colon from wild-type untreated
mice. The following designations describe the alleles
present in CRC GEMMs: A, Apc; AB, Apc, Braf, ABP,
Apc, Braf, Tp53; AK, Apc, Kras; AKP, Apc, Kras,
Tp53; AP, Apc, Tp53. (B) Unsupervised hierarchical
clustering using the top 500 most differentially
expressed genes from samples as described in A.
WT, wild type.

B unsupervised hierarchical clustering: top ~500 genes
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material Table S3). Gene sets enriched among unique genes for each
allele were also assessed. Gene sets found to be enriched in Kras-
specific genes included metabolism, signaling downstream of
receptors, and adhesion (supplementary material Table S4),
functions previously ascribed to mutant KR4S (Racker et al., 1985;
Pollock et al., 2005; Rajalingam et al., 2007; Levine and Puzio-
Kuter, 2010). Interestingly, gene sets enriched among unique Braf’
genes also include metabolism, consistent with previously
established links between oncogenic BRAF and metabolic
deregulation (Yun et al., 2009); however, additional gene sets
included immune response signaling, consistent with additional roles
for oncogenic BRAF (Sumimoto et al., 2006) (supplementary
material Table S5). Gene sets found to be enriched in Apc-specific
genes included development (supplementary material Table S6),

I.-“ i ! '1
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B
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consistent with the role of aberrant APC in WNT-B-catenin
signaling and development (Clevers, 2006), as well as several gene
sets associated with small-molecule transport, a role to our
knowledge not fully characterized for aberrant APC. Gene sets
enriched in 7p53-specific genes included ubiquitylation and
proteolysis pathways (supplementary material Table S7), consistent
with the central role of these pathways in regulating endogenous
TP53 (Lee and Gu, 2010). Taken together, these findings indicate
that lesions in our GEMM alleles of interest result in gene signatures
characteristic of known or putative biological roles for each allele.

Generation and validation of GEMM allelic signatures
We defined GEMM allele-specific scores as a difference of average
gene expression between the top 100 up- and top 100 downregulated
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Fig. 2. Multivariable analysis identifies genes associated with each allele from the GEMM cohort. (A) Venn diagram depicting the number of unique or
shared genes associated with each GEMM allele. Red, upregulated genes; blue, downregulated genes. (B-E) Clustering of GEMMs based on expression

profiles of genes associated with each allele.

genes from the corresponding signature. The score for each
individual GEMM allelic signature (Kras, Braf, Apc, Tp53;
supplementary material Tables S8-S11, respectively) was computed
in each of the models (A: Apc; AK: Apc, Kras; AKP: Apc, Kras,
Tp53; AB: Apc, Braf, ABP: Apc, Braf, Tp53; AP: Apc, Tp53; WT,
wild type; supplementary material Table S1). As expected, the
models containing a given mutation had the highest score for that
allelic signature in the discovery set (Fig. 3A-D). For instance, the
GEMM A4pc signature score was high in all GEMM models, because
all models contain this mutation (Fig. 3A), whereas the GEMM
Tp53 signature was high in models containing 7p53, including AP,
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ABP and AKP, but low in A, AB and AK (Fig. 3B). In the case of
the GEMM Kras signature, the score was high in models containing
Kras, including AK and AKP (Fig. 3C). The highest Braf'score was
found in models containing Braf, including AB and ABP (Fig. 3D).
Interestingly, the GEMM Kras score was also high in models with
Braf and Apc mutation (AB), but not in those containing Braf, Apc
and Tp53 mutation (ABP) (Fig. 3C), suggesting that the addition of
Tp53 to the Apc, Braf mutant background might result in less
reliance on MAPK-driven signaling. Similar trends were seen in
other genotypes, with 7p53 mutation leading to a systematically
lower signature score compared with their counterparts without the
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mutation (4pc signature in AP versus A, Fig. 3A; Kras signature in
AKP versus AK, Fig. 3C; ABP versus AB, Fig. 3D). A potential
explanation for these observations could include the increased
presence of genomic instability, a well-known consequence of
aberrant 7p53.

We next applied the signature to an independent GEMM CRC
sample set consisting of acute activation of shared alleles, including
Apc, Tp53 and Kras. Consistent with the findings in our discovery
cohort, our GEMM allelic signatures scored highest in GEMMs
derived from an independent cohort that contained the
corresponding mutant allele (supplementary material Fig. S1A-C),
further validating their predictive utility.

Overlap of allele-specific GEMM Kras and Braf signatures
with clinically annotated CRC datasets

To assess the extent to which our GEMMs recapitulate the genetic and
biological features of human CRC, and to assess the utility of this
collection for preclinical studies, we compared their genomic
signatures to those of clinically annotated human CRC datasets. To
this end, we utilized the Pan-European Trials in Alimentary Tract
Colon Cancers (PETACC-3), a large Phase III randomized trial in
which 688 patients with stage II or IIl CRC were characterized by
genomic and mutational analysis, including KRAS and BRAF.
Because the mutant Kras allele in the GEMM cohort (Kras™S--612P)
is a gain-of-function mutation, for the purpose of comparison we
considered all KRAS gain-of-function mutations in the PETACC-3
dataset, with the caveat that different types of KRAS mutations
potentially have unique biological characteristics (Kirk, 2011). As
indicated in Fig. 4A, the average GEMM Kras signature score was
significantly higher in patients with the KRAS mutant than those with
wild-type KRAS. Given the variability in the GEMM Kras signature

score among individuals with wild-type KRAS and the fact that our
Kras signature scored high in our Braf-containing models, possibly
picking up on common MAPK pathway mechanisms, these patients
were further annotated based on BRAF mutation or similarity to a
published BRAF-like signature (Popovici et al., 2012). Interestingly,
of the KRAS wild-type patients, both BRAF mutant (Fig. 4A, red
circles) as well as those with a high BRAF-like signature score
(Fig. 4A, green circles) tended to display a higher signature score,
supporting our hypothesis that, in addition to distinguishing KRAS
mutant patients, the GEMM Kras signature also captures those with
high MAPK pathway activity. Together, these data indicate that the
GEMM signature is enriched in patients with KRAS mutation, as well
as BRAF mutation or a high degree of similarity to a BRAF-like
signature, the latter of which is potentially indicative of a common
biology shared among KRAS and BRAF mutant patients.

To determine whether our GEMM Kras signature is representative
of human KRAS mutant CRC tumors, we compared it to a human
KRAS signature derived in the multivariable model with KRAS and
BRAF mutation as covariates in PETACC-3 patients. Consistent with
the GEMM, the PETACC-3 KRAS signature score was higher among
KRAS mutant patients than KRAS wild-type patients, whereas, again,
BRAF mutant and BRAF-like patients tended to score highest among
the KRAS wild-type population (Fig. 4B). The GEMM and PETACC-
3 KRAS signature scores showed a high degree of correlation both
among GEMMs (Fig. 4C, R?>=0.74) and among patients (Fig. 4D,
R?=0.32). These findings suggest that the Kras signature derived from
a relatively homogeneous background such as the GEMM might be
capable of capturing common and disease-relevant biology present in
human KRAS patients.

Interestingly, our GEMM Braf signature score did not correlate
with the human BRAF signature score of Popovici et al. (Popovici
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et al., 2012), nor was it able to predict BRAF mutant tumors in the
PETACC-3 data. Also, the recent BRAF signature derived from
human samples did not predict correctly Braf mutant status in our
GEMMs (data not shown). This, together with the results of the Braf’
signature pathway analysis pointing to proliferation, shows that our
Apc-based Braf models are potentially less representative of the
human BRAF mutant population. This is consistent with the low
frequency of concomitant BRAF and APC lesions observed in
human cases (Cancer Genome Atlas Network, 2012).

Clinical characteristics of patient samples based on GEMM
Kras signature score

We assessed differences in available clinical variables among all
individuals in the PETACC-3 cohort. Patient populations were defined
based on each GEMM signature score into allele-like and non-allele-
like groups (threshold 0 on inter-quartile range normalized scores).
GEMM Kras-like tumors exhibited a statistically significant
enrichment for various characteristics, including mucinous histology,
KRAS mutant, BRAF mutant, right-side, stage 3, and similarity to a
BRAF-like population shown previously to be associated with poor
prognosis (Popovici et al., 2012) (supplementary material Table S12),
implicating the ability of the GEMM Kras signature at distinguishing
aspects of advanced disease.

GEMM Kras signature is associated with poor outcome

To determine whether the GEMMs are representative of advanced
disease, we examined survival differences among annotated patients
in PETACC-3. Differences in overall survival (OS), relapse-free
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survival (RFS) and survival after relapse (SAR) were compared. To
validate our findings, we performed a similar assessment on an
independent publicly available sample cohort (GEO GSE14333)
(Jorissen et al., 2009), consisting of 115 stage II/IIl human CRC
samples with gene expression profiling and survival data. Of the
four core GEMM signatures generated (Apc, Tp53, Braf, Kras), the
Kras signature score produced the highest hazard ratios for OS and
SAR in the PETACC-3 dataset, and among the highest hazard ratios
for OS, RFS and SAR in the GSE14333 dataset (Table 1),
suggesting that it is most indicative of advanced disease. OS, RFS
and SAR based on GEMM Kras signature was plotted for the
PETACC-3 dataset (Fig. S5A-C) and for the GSE1433 dataset
(Fig. 5D-F). Additional Kaplan-Meier plots for GEMM Braf, Apc
and Tp53 signatures in PETACC-3 as well as GSE144333 can be
found in supplementary material Figs S2 and S3, respectively.
Because the GEMM Kras signature was associated with some
prognostic clinical variables (e.g. stage), we also fitted a
multivariable survival model with GEMM Kras-like signature,
BRAF mutant, KRAS mutant, mucinous status, grade and MSI,
within stage-3 patients of the PETACC-3 dataset (stage 2 patients
were enriched for relapsed patients, so were not representative of the
population). The GEMM Kras signature remained significant for
both OS and RFS (supplementary material Table S13). Together,
these findings suggest that our GEMM Kras signature could offer
insight into survival characteristics in two independent large human
CRC patient cohorts.

Given that KRAS mutant CRC patients have been shown to be
heterogeneous (Budinska et al., 2013; Sadanandam et al., 2013) and
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Table 1. Survival characteristics associated with each GEMM
signature

PETACC-3 GSE14333

Parameter HR P-value HR P-value
Kras-like vs non Kras-like

oS 1.64 0.00077 2.72 0.00656

RFS 1.46 0.00251 3.25 0.00132

SAR 1.49 0.01204 4.28 0.01616
Braf-like vs non Braf-like

(O] 1.58 0.00142 0.88 0.71205

RFS 1.72 0.00001 1.54 0.22355

SAR 0.9 0.48413 0.94 0.89929
Tp53-like vs non Tp53-like

(O] 0.64 0.00144 0.93 0.84505

RFS 0.59 0.00001 0.31 0.00128

SAR 1.1 0.55328 1.08 0.88514
Apc-like vs non Apc-like

oS 0.73 0.02836 2.72 0.01102

RFS 0.75 0.01871 1.45 0.28122

SAR 0.94 0.68965 1.71 0.30573

GEMM Apc, Tp53, Kras and Braf signatures were applied to the PETACC-3
and GSE14333 datasets as described in Fig. 5, and OS, RFS and SAR were
compared for each respective signature. Shown are P-values and hazard
ratios (HR) for each parameter.

given the ability of the GEMM Kras signature to distinguish patients
with poor prognosis, we sought to determine whether this signature
could further delineate clinical features, specifically in a KRAS
mutant patient population. Although not statistically significant, a
trend toward worse prognosis was observed for KRAS mutant
patients with high GEMM Kras signature score for OS, RFS and
SAR (Fig. 6A-C, P=0.480, P=0.398 and P=0.341, respectively).
Together, these data indicate that the GEMM Kras signature can
distinguish a subpopulation of patients with poor prognosis, perhaps
owing to its ability to further distill a heterogeneous patient
population to the core underlying biology beyond simply the status

GEMM Kras signature

GEMM Kras signature

of a given driver lesion, much like the recent BRAF signature
(Popovici et al., 2012) with which it is correlated.

GEMM Kras signature is predictive of sensitivity to targeted
inhibitors

To determine the utility of the GEMM Kras signature as a
preclinical model selection tool, we assessed its ability to predict
response to targeted inhibitors in a panel of cell lines. Given the
clinical potential in applying MEK inhibitors to treat various tumor
types, including CRC, we sought to determine whether the GEMM
signature was predictive of response to these inhibitors as
determined by a publicly available study of drug sensitivity
across a comprehensive collection of cancer cell lines
(http://www.cancerrxgene.org), with a focus on CRC. A high
GEMM Kras signature score was associated with increased
sensitivity of CRC cell lines to two independent MEK inhibitors
used in the study, PD-0325901 and AZD6244 (Fig. 7A,B,
respectively). To independently validate these findings, we selected
representative cell lines with relatively high and low GEMM Kras
signature scores (high: LS-1034, LS-513; low: Colo-320, SW948),
and assessed cell viability following a full-dose response of these
MEK inhibitors. The cell lines with higher GEMM Kras signatures
displayed relatively greater sensitivity than those lines with lower
GEMM Kras signatures to the MEK inhibitors PD-0325901 and
AZD6244 (Fig. 7C,D, respectively). This supports our hypothesis
that the GEMM Kras signature is associated with an increased
dependency on MAPK signaling, and therefore an enhanced
sensitivity to pathway inhibition via selective targeting of MEK.
This is consistent with the known ‘driver’ phenotype of mutant
KRAS and the increased dependency on the MAPK pathway
observed in several KRAS mutant cell lines. Interestingly, the
GEMM Kras signature score added predictive utility beyond simply
KRAS mutation status of the cell lines: a signature score positively
correlated with sensitivity to MEK inhibition, even within a set of
KRAS mutant cell lines. Taken together, these findings provide
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KRAS mutant population. Survival times were cut at 84 months.

motivation for using the GEMM Kras signature for predicting
response to targeted inhibitors of the MAPK pathway, including
those targeting MEK.

DISCUSSION

The identification of core ‘driver’ lesions among tumor indications
provides a means for segmenting patients and, in some cases,
selecting treatment regimens. Despite advances in patient
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stratification and treatment selection, there are still sizeable
segments of human disease with limited effective treatment options.
One such segment is defined by the presence of KRAS mutations,
constituting roughly 30-40% of sporadic CRC (Jorissen et al., 2009;
Cancer Genome Atlas Network, 2012). Further compounding this
problem is the lack of informative preclinical models in which to
conduct rapid drug discovery efforts.

Next-generation GEMMs have gained prominence as preclinical
cancer models (DuPage et al., 2009; Heyer et al., 2010; Politi and
Pao, 2011). Specific advantages of these models include the ability
to selectively activate latent alleles of interest, effectively modeling
the stochastic gain of activating mutations and/or loss of tumor
suppressors commonly observed in sporadic human cancers. Our
GEMM collection contains combinations of genes frequently
mutated or lost in human CRC, including 4Apc, Tp53, Braf and Kras,
thereby allowing us to model a broad spectrum of human disease.
Adding to the utility of these models, primary tumors are used as
substrate to generate tumor-derived cell lines that maintain much of
the biology of the original tumors, and retain key alleles of interest
(Martin et al., 2013). Further, these cell lines serve as a platform for
in vitro and in vivo interrogation because they are amenable to
growth in subcutaneous space, in sites common for metastasis such
as the liver, and in the native colonic environment of syngeneic,
immunocompetent recipients (Martin et al., 2013). As in any
GEMM, there are also clear drawbacks to these models, such as the
limited number of defined genetic lesions and tumor heterogeneity
relative to their human counterparts, in large part due to the inherent
nature of an inbred model. In addition, owing to their historically
short lifetime as preclinical models, their translational value of has
yet to be fully realized. Thus, it is important to understand the role
of these models as a complementary tool in a larger comprehensive
preclinical drug discovery program.

In the current study, we investigated the genomic characteristics
of primary tumors from our collection of CRC GEMMs containing
genetic lesions that are present in a large portion of human disease
cases. The genomic profiles of these tumors properly segregated
based on their core genotypes, with each genotype containing
unique distinguishing signatures. Our Braf models were exclusively
generated along with loss of Apc, a condition likely not indicative
of human CRC progression as indicated by a recent assessment of
human CRC mutational data (Cancer Genome Atlas Network, 2012)
and also reflected in our GEMM Braf signature failing to classify
BRAF mutant clinical samples.

The GEMM Kras signature was effectively validated within an
independent collection of GEMMs, as it properly distinguished Kras
mutant models from non-mutant. A more detailed analysis of the
GEMM Kras signature revealed that it was enriched in human CRC
patients with advanced disease and poor prognosis. The signature was
also able to further stratify the KRAS mutant segment of a large
clinical cohort, suggesting that a comprehensive signature can provide
additional power in further segregating a patient population of interest,
beyond simply the status of a given driver lesion, and indicating that
there are likely additional underlying characteristics that account for
severity of disease beyond the mutation status of KRAS. Finally, the
signature provided additional utility in predicting sensitivity to
targeted MEK inhibition across a panel of CRC cell lines, because
those lines with a high signature score tended to display increased
sensitivity to two independent MEK inhibitors, suggesting a utility in
predicting pathway dependence. The correlation was maintained even
within a set of cell lines that harbor KRAS mutation: KRAS mutant cell
lines with relatively higher signature scores displayed increased
sensitivity compared with mutant lines with lower signature scores.
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GEMM Kras signature is predictive of sensitivity to MEK inhibition

Fig. 7. GEMM Kras signature predicts sensitivity to
targeted MEK inhibition. The top 100 most significant
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This approach could potentially be used to identify additional pathway
dependencies and corresponding therapeutic sensitivities. Taken
together, this study highlights instances in which signatures generated
from the GEMMs are applicable to recapitulating biological
characteristics of human disease, including prognosis and response to
targeted therapeutics. Although several limitations preclude the use of
GEMMs as a stand-alone discovery model, the features described
herein provide further insight into the power of these GEMMs of
sporadic CRC as a companion preclinical discovery model in a
comprehensive drug discovery effort.

MATERIALS AND METHODS
This research protocol was approved by our attending veterinarian, and by
the Pfizer Institutional Animal Care and Use Committee (IACUC).

CRC GEMMs

The generation and genotyping of Apc (ApctXC), Tp53 (Tp531091%), Kras
(Kras“S“612PY and Braf (Braf¥*"°F) genetically engineered mice has been
previously described (Hung et al., 2010).

CRC GEMM tumor samples and gene expression data

Murine primary tumor samples from GEMMs treated with AdCre, and
normal colon tissue from untreated wild-type mice were collected. Wild-type
mouse colon tissue used for RNA extraction and microarray analysis was
enriched for epithelial cells. Briefly, colons were opened lengthwise, cut into
3-5 mm fragments, and washed in HBSS-glucose. Fragments were then
resuspended in 20 ml HBSS-glucose-dispase-collagenase solution, placed
into a conical tube and agitated on a shaking platform for 25 minutes at
25°C. The digested tissue was further disaggregated by hand pipetting and
vigorous shaking for 3 minutes and inspected under an inverted microscope.
Subsequently, enzymes were neutralized with 50 ml DMEM-sorbitol and
crypt cell suspensions were separated from intestinal fragments and passed
through a 70-um cell strainer. The epithelial-enriched fraction was briefly
centrifuged and used for RNA extraction and microarray analysis. RNA was
isolated and processed for hybridization on Mouse Affymetrix GeneChip

Concentration [uM]

430 2.0 arrays (Affymetrix, Santa Clara, CA) as previously described
(Martin et al., 2013). All gene expression data can be found at the Gene
Expression Omnibus (www.ncbi.nlm.nih.gov/geo/) under accession number
GSES50794. Our training set consisted of Affymetrix Mouse 430 2.0 gene
expression profiles of 33 primary tumors representing the following
genotypes: Apc (7), Apc/Kras (6), Apc/Kras/Tp53 (8), Apc/Tp53 (3),
Apc/Braf (4), Apc/BraflTp53 (5) and nine normal colon tissue samples.

The validation set consisted of Affymetrix Mouse 430 2.0 gene expression
profiles of 15 primary tumors of genotypes: Apc (3), Apc/Kras (6),
Apc/Tp53(6) and three normal colon tissues.

Clinical and cell line data

803 stage II or III human CRC gene expression profiles from both the
PETACC-3 trial [688 formalin-fixed paraffin-embedded samples profiled on
ALMAC CRC DSA platform (Almac, Craigavon, UK) (Budinska et al.,
2013)] and Moftit samples [115 fresh frozen samples profiled on Affymetrix
HG U133+ 2.0 platform (Jorissen et al., 2009)] with available clinical and
survival data were used to test whether our GEMM models are
representative of human disease. The PETACC-3 data are available from the
Array Express database under the accession number E-MTAB-990; the
Moffit data are available from the GEO database under accession number
GSE14333. Cell line gene expression profiles with drug sensitivity
(http://www.cancerrxgene.org) (Garnett et al., 2012) profiled on Affymetrix
HG U133A platform (Affymetrix, Santa Clara, CA) were downloaded from
the Array Express database under the accession number E-MTAB-783.

Microarray data normalization and data filtering

All Affymetrix gene expression data were normalized and summarized using
the function three step of affyPLM R package (www.bioconductor.org) with
default settings, background correction, quantile normalization and median
polish probe summarization. ALMAC gene expression profiles from the
PETACC-3 trial were processed as previously described (Popovici et al.,
2011; Popovici et al., 2012). In each dataset, one probeset with the highest
variability was selected as a representative of each EntrezGene ID. The
variability for each probeset was estimated by robust linear regression (rlm
function in R package MASS) as the robust scale estimate (RSE). This
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resulted in the following number of EntrezGene IDs: 21,758 in GEMM
datasets, 14,926 in PETACC-3 dataset, 20,752 in GSE 14333 dataset and
11,237 in the cell line dataset. For all analyses with clinical data, an
overlapping set of 13,265 EntrezGene IDs between the two clinical datasets
(from ALMAC and Affymetrix platforms) was used. For signature
development, mouse EntrezGene IDs were matched to their human
homologs, reducing the number of EntrezGene IDs to 15,888 and intersected
with 13,265 EntrezGene IDs of clinical datasets, leading to a final subset of
11,745 EntrezGene 1Ds.

Statistical analysis, clustering and classifier development

A multivariable linear additive model was built on a GEMM training set of
15,888 EntrezGene IDs to estimate mutation-allele-specific (Apc, Kras, Braf,
Tp53) effects, with WT in all alleles as baseline. The genes that were assigned
a statistically significant effect in a given mutation made up the mutation-
specific gene list. Unsupervised hierarchical clustering with average linkage
and Pearson correlation as a measure of similarity was used to cluster sets of
the top 500 most variable EntrezGene IDs and then the top 500 most variable
allele-specific genes and samples. For classifier construction, the final subset
of 11,745 human homolog EntrezGene IDs was used.

The top 100 up- and downregulated genes from multivariable analysis
specific for a given allele were used to define the allele-specific score,
defined as a difference of average gene expression between up- and
downregulated genes of the allele. The rule score >0 served as classifier
defining allele-like group, except for the KRAS mutant subpopulation, where
the median of the KRAS-like score was taken as threshold. Prior to
application of the classifier and consequent survival analysis, the genes in
the datasets were median-centered and normalized by inter-quartile range.

MSigDB analysis

Gene lists associated with each mutant allele (Kras, Braf, Apc, Tp53)
generated from the multivariable analysis above (P<0.01 regulated for each
allele) were uploaded to the MSigDB analysis tool [Broad Institute
(http://www.broadinstitute.org/gsea/msigdb/index.jsp)]. Enrichment in
MSigDB gene sets from all major canonical pathway collections were
assessed and ranked by P-value. The top 10-20 MSigDB gene sets with the
most significant enrichment for each allelic gene list were identified.

Comparison of GEMM Kras signature score and cell line
sensitivity

GEMM Kras signature score classifier was applied to normalized,
EntrezGene ID summarized cell line dataset (http://www.cancerrxgene.org).
For this purpose, 66 upregulated and 74 downregulated EntrezGene IDs
from the original GEMM Kras classifier that were found on the Affymetrix
HG U133A platform were used to calculate the GEMM Kras score for each
CRC cell line in this dataset. This score was then plotted with the
corresponding ICsy values of drug response to the MEK inhibitors PD-
0325901 and AZD6244 for each cell line, as reported in this dataset, and a
linear model was fitted.

Independent confirmation of cell line sensitivity to MEK
inhibitors

An independent validation of sensitivity to MEK inhibitors PD-0325901 and
AZD6244 based on GEMM Kras signature score was performed by
selecting representative cell lines with relatively high GEMM Kras signature
scores (LS-1034, LS-513) and low signature scores (Colo320, SW948).
Briefly, cell lines were seeded at 1000 cells/well in 96-well culture plates in
growth medium with 10% FBS. Cells were incubated overnight and treated
with DMSO (0.1% final) or serial diluted compound for 4 days. Cell
viability was assessed adding Cell Titer Glo reagent (CTG, Promega,
Madison, WI) and plates were incubated at room temperature for
30 minutes. Luminescence signals were read and ICs, values were calculated
by plotting luminescence intensity to drug concentration in nonlinear curves
using GraphPad Prism (GraphPad, La Jolla, CA).

Survival analysis

Outcome variables were overall survival (OS), relapse-free survival (RFS)
and survival after relapse (SAR). Survival probabilities were estimated using
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the Kaplan-Meier method, and Cox proportional hazards model and Wald
test were used to assess association of GEMM Kras signature with outcome
variables. Cox proportional hazards model was used also for multivariable
model. Survival times were cut at 84 months.

Gene expression data
All gene expression data can be found at the Gene Expression Omnibus
(www.ncbi.nlm.nih.gov/geo/) under accession number GSES0794.
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Abstract | Patient-derived xenografts (PDXs) have emerged as an important
platform to elucidate new treatments and biomarkers in oncology. PDX models are
used to address clinically relevant questions, including the contribution of tumour
heterogeneity to therapeutic responsiveness, the patterns of cancer evolutionary
dynamics during tumour progression and under drug pressure, and the
mechanisms of resistance to treatment. The ability of PDX models to predict
clinical outcomes is being improved through mouse humanization strategies and
the implementation of co-clinical trials, within which patients and PDXs
reciprocally inform therapeutic decisions. This Opinion article discusses aspects
of PDX modelling that are relevant to these questions and highlights the merits of
shared PDX resources to advance cancer medicine from the perspective
of EurOPDX, an international initiative devoted to PDX-based research.

Response to anticancer therapies varies
owing to the substantial molecular
heterogeneity of human tumours and to
poorly defined mechanisms of drug efficacy
and resistance'. Immortalized cancer cell
lines, either cultured in vitro or grown as
xenografts, cannot interrogate the complexity
of human tumours and only provide
determinate insights into human disease, as
they are limited in number and diversity, and
have been cultured on plastic over decades®.
This disconnection in scale and biological
accuracy contributes considerably to attrition
in drug development®>.

Surgically derived clinical tumour
samples that are implanted in mice
(known as patient-derived xenografts
(PDXs)) are expected to better inform
therapeutic development strategies. As
intact tissue — in which the tumour
architecture and the relative proportion
of cancer cells and stromal cells are both
maintained — is directly implanted
into recipient animals, the alignment
with human disease is enhanced. More
importantly, PDXs retain the idiosyncratic
characteristics of different tumours
from different patients; hence, they can

effectively recapitulate the intra-tumour
and inter-tumour heterogeneity that
typifies human cancer®~.

Exhaustive information on the key
characteristics and the practical applications
of PDXs can be found in recent reviews'*".
In this Opinion article, we discuss basic
methodological concepts, as well as challenges
and opportunities in developing ‘next-
generation’ models to improve the reach of
PDXs as preclinical tools for in vivo studies
(TABLE 1). We also elaborate on the merits of
PDXs for exploring the intrinsic heterogeneity
and subclonal genetic evolution of individual
tumours, and discuss how this may influence
therapeutic resistance. Finally, we examine
the utility of PDXs in navigating complex
variables in clinical decision-making, such
as the discovery of predictive and prognostic
biomarkers, and the categorization of
genotype—drug response correlations in
high-throughput formats. Being primarily
co-authored by leading members of the
EurOPDX Consortium (see Further
information), we provide a perspective on
the value of PDX models as an important
resource for the international cancer research
community towards the realization of a
precision medicine paradigm (BOX 1; TABLE 2).

Modelling cancer phenotypes
Interrogating intra-tumour heterogeneity
and evolutionary dynamics. Cancer

is increasingly being recognized as an
ecosystem of cells that constantly evolves
following Darwinian laws. Owing to cancer
cell intrinsic mutability, an incipient tumour
clone gives rise to a progeny of genetically
heterogeneous subclones, some of which
will thrive while others shrink, depending
on their ability to cope with environmental
selection pressures™. This is of particular
relevance for cancer treatment, as most
patients will eventually succumb to the
disease owing to the appearance of resistant
tumour subclones. Despite the considerable
clinical impact of tumour heterogeneity',
little is known about how it affects response
to cancer therapy and how it may change
during treatment at both the genomic and
the phenotypic levels'®*. These issues
highlight the need for preclinical models that
capture the heterogeneous nature of human
cancers and their ongoing evolution.
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Table 1| Modelling cancer phenotypes with PDX models

PDX model

Primary tumour
specimens
implanted s.c.

Primary tumour
specimens
implanted
orthotopically
(PDOX)

Metastatic
tumour
specimens
implanted s.c.

Metastatic
tumour
specimens
implanted
orthotopically
at the
metastatic site

PDX models of
MRD

Clinical
trial-associated
xenografts
(CTAXs)

CTC-derived
PDX models

Humanized
PDX models

Open clinical question

* Interrogation of primary or acquired
resistance mechanisms

e Discovery of prognostic and predictive
biomarkers

* Drug response

e |dentification of targetable molecular
alterations

e Characterization of intra-tumour
clonal evolution

* Mechanisms of metastasis

* Study site-specific dependence of
therapy

* Monitoring the effects of adjuvant
therapy on occult metastasis

e Stromal contribution to response

* Interrogation of primary or acquired
resistance mechanisms

e Discovery of prognostic and predictive
biomarkers

* Drug response

e |dentification of targetable molecular
alterations

e Characterization of intra-tumour
clonal evolution

* Mechanisms of metastasis

¢ Drugresistance

* Genetic and cellular mechanisms of
tumour growth

* Drug response in the setting of
metastatic disease

e Stromal contribution to response

® Drugresistance

¢ Discovery of prognostic and predictive
biomarkers

¢ Biological and pharmacological studies

e |dentification of targetable molecular
alterations

¢ Discovery of prognostic and predictive
biomarkers

* Drugresistance

* Drug response

* |dentification of targetable molecular
alterations

* Mechanisms of metastasis

* Molecular tumour heterogeneity

e Discovery of prognostic and predictive
biomarkers

e Study of the genetic evolution of the
tumour

e |dentification of targetable molecular
alterations

Investigation of immune therapeutics

Advantages

* Intact primary tumour tissue that maintains
tumour architecture

e Captures clonal diversity

* Easy to measure tumour responses

e Intravital tumour imaging

e Intact primary tumour tissue that maintains
primary tumour architecture

e Local growth of primary tumour in proper
anatomical context

* Spontaneous distant metastases from primary
tumour

* Presence of primary and metastatic tumour niche

 Recapitulates the entire metastatic process from
the appropriate anatomical site

* Ability to mimic clinical scenarios, for example,
surgical removal of primary tumour or adjuvant
therapy

Intact metastatic tumour tissue that maintains
tumour architecture

Intact metastatic tumour tissue that maintains
tumour architecture

e Studies can help us to understand the molecular
bases of and optimize therapies for MRD

 Higher tumour take rate when compared with
untreated cancers

* Enables the study of clonal evolution and cancer
stem cell behaviour

* Possibility of establishing xenografts at different
clinical stages during patient tumour progression

* Permits the parallel testing of novel drug
combinations

* Minimally invasive sampling

* Ability to monitor cancer burden and drug
susceptibility in metastatic and late-stage
settings

* Recapitulates donor patient’s response to
treatment

e Facilitates investigation of the biology of
otherwise inaccessible tumour specimens

Recapitulates human immune system in mice

Challenges

* Lack of proper anatomical niche

¢ Not all grades of tumour engraft
s.c. Generally, higher grade,
more aggressive tumours
engraft more easily

* Access to imaging technologies
to visualize tumour in
longitudinal studies

* Microsurgical skills

e Large collections and
high-throughput screens
difficult to implement

Lack of tumour metastatic niche

* Access to imaging technologies
to visualize tumour in
longitudinal studies

* Microsurgical skills

e Large collections and
high-throughput screens
difficult to implement

PDXs are never therapy naive

e Limited quantity and quality of
tissue

e Limited number of successfully
generated PDXs

* APDX derived from a single
biopsy sample may not
represent the patient’s tumour

* Low concentration in peripheral
blood of patients with different
solid tumours

* Access to technologies to
isolate all CTCs (both epithelial
and mesenchymal)

e Technically challenging

* Requires lengthy mouse
humanization procedures

 Hurdles to achieve complete
human immune system
reconstitution

e See Supplementary information
S1 (table) for further details

CTC, circulating tumour cell; MRD, minimal residual disease; PDX, patient-derived xenograft; PDOX, patient-derived orthotopic xenograft; s.c., subcutaneously.
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Box 1| The EurOPDX Consortium and other related initiatives

EurOPDX (see Further information; established in 2013) is a collaborative network of 16 European
academic institutions with expertise in basic, preclinical, translational and clinical oncology.
Participating laboratories are affiliated with comprehensive cancer centres within which
preclinical experimentation is closely associated with clinical activities. This allows for the efficient
sharing of patient specimens — together with fully annotated clinical information — and facilitates
the collection of tumours with unique characteristics (for example, rare types, exceptional
responders and therapy-refractory cases). Currently sustained by membership fees organized by a
consortium agreement, EurOPDX aims to obtain competitive infrastructural funding to further
implement collaborative research projects and to formalize external access procedures to models.
The consortium agreement also sets forth general rules for confidentiality and intellectual
property issues to regulate activities among EurOPDX members (co-ownership of results) and
between EurOPDX and potential partners, including other patient-derived xenograft (PDX)
consortia and industry.

Main objectives

¢ To create a uniquely extensive collection of characterized PDX models. The collection consists
of more than 1,500 subcutaneous and orthotopic models from more than 30 different
pathologies (see TABLE 2). The models and their molecular annotation are currently being made
publicly available through the cBioPortal, and are accessible for collaboration upon signature of a
material transfer agreement. Systematic derivation of primary cultures and organoids for in vitro
studies is planned.

To provide a platform for population-scale studies to discover low-prevalence genetic alterations
with clinically actionable potential; to explore mechanisms of therapeutic resistance in
molecularly defined tumour subtypes; and to develop predictive biomarkers for personalized
cancer treatment.

To harmonize working practices. This entails several aspects: first, standardization of biobanking
procedures, including systematic assessment of genetic identity by single nucleotide
polymorphism (SNP) DNA fingerprinting. Second, the implementation of common rules for PDX
expansion and archiving; discussions are ongoing to limit PDX propagation to a maximum of five
passages, but exceptions will be considered for tumour types known to deteriorate after
freezing-thawing steps and for models characterized by very indolent growth, for which
expansions up to five passages would take exceedingly long. Third, optimization of
inter-laboratory reproducibility through proof-of-concept studies by which models from the
same source are tested independently. And finally, the definition of a set of minimal information
to be linked to each PDX.

Other major PDX initiatives

e US National Cancer Institute (NCI) repository of patient-derived models (see Further
information).

e US Pediatric Preclinical Testing Consortium (PPTC; see Further information), a US National
Cancer Institute (NCl)-centralized and NCI-funded collection for in vivo testing of paediatric
anticancer drug candidates.

e Children’s Oncology Group (COG,) cell culture and xenograft repository (see Further
information), a COG-based resource that provides validated cell lines and PDXs from paediatric
cancers.

e Public Repository of Xenografts (PRoXe; see Further information), an open-source repository of
leukaemia and lymphoma PDXs'®. Many of the models are being licensed to the Jackson
Laboratories for industry-scale purposes, including distribution on a fee-for-service basis.

* Novartis Institutes for Biomedical Research PDX Encyclopedia (NIBR PDXE), an industry-led
initiative that includes approximately 1,000 models®. Clinical, pathological and PDX-level data
from this collection are currently being incorporated into PRoXe'®.

also occurs®*?. Such intra-tumour and
inter-tumour variability affects therapeutic

For example, breast cancer is a
constellation of at least 10 different genomic
subtypes, each with distinct drivers and
variable intra-tumour heterogeneity'>*"?,
Recent evidence has suggested that each
breast cancer comprises multiple tumour
cell populations with distinct evolutionary
trajectories that are likely to be affected by
treatment pressure”-**. Genomic evolution
between primary and recurrent tumours

in the preclinical and clinical settings.
Although some engraftment-associated
selection has been documented**’, PDX
models of breast cancer seemingly preserve
most of the genomic clonal architecture of
the original patient sample and also seem
to resemble patient counterparts at the

responses, and hence needs to be considered

transcriptomic, epigenomic and histological
levels, as well as in terms of shared signalling
pathways®*-2 Notably, the majority

of tumour subclones that change upon
engraftment do not include known breast
cancer oncogenic drivers”. This suggests
that, although engraftment pressure is
observed, it is evolutionarily neutral, as it
does not affect intra-tumour heterogeneity
when considering the clonal representation
of relevant genes. These features probably
underpin the successful use of breast cancer
PDXs to predict clinical drug responses’ and
mechanisms of acquired resistance®*.

As discussed below, an advantage of
PDX models is that they can be generated
with a limited amount of material; for
example, using fine-needle biopsies
(TABLE 1). However, these methods may be
confounding when the studied tumour
type is particularly heterogeneous (such as
melanoma). For example, within one tumour
or metastasis, multiple melanoma subclones
can exist, each harbouring different genetic
and/or epigenetic alterations™ . Simply
taking a single biopsy sample can result
in a PDX that does not represent the
heterogeneity of the patient’s tumour>*.
Notably, regional genetic variability can
be exacerbated by PDX serial propagation,
producing divergent responses in tumour
measurements within a single cohort of
treated mice®*. Methods to overcome
this limitation include good, standardized
preclinical designs (those with adequate
statistical power and proper randomization),
as well as the mixing of heterogeneous
tumour masses before implantation, such
as through the use of single-cell suspension
injections or rough tumour homogenates.

The direct derivation of PDXs from
circulating tumour cells (CTCs) may
represent another tool to further interrogate
tumour heterogeneity. The numbers of
cancer cells shed by tumours into the
bloodstream may be exceedingly low,
and the biological and clinical relevance
of CTCs in sustaining malignant disease
has been questioned*. However, as CTCs
are shed by tumours on a stochastic
rather than a deterministic basis*, they
are expected to better recapitulate the
distribution of different subclonal tumour
populations (TABLE 1).

Intra-tumoural heterogeneity may also be
non-genetic and intrinsic to the hierarchical
organization of some tumours, in which a
small subpopulation of cancer stem cells
(CSCs) may be responsible for long-term
tumorigenicity**-**. CSCs are thought to
be chemoresistant and the main cause of
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recurrence and distant metastasis*-*%. Much
of the supporting evidence originates from
PDX models that were directly derived

from various clinical samples, including
CTCs, ascites fluid and pleural effusion cells,
and surgical biopsy samples*->*. PDX models
have provided evidence of CSC colonization

in metastatic sites and have also highlighted
the role and importance of the surrounding
tumour stroma, a niche that is known to
influence CSC behaviour by cell-to-cell
contacts and through the secretion of
pro-tumorigenic ligands and cytokines®*"*".
An ongoing debate exists as to whether

PERSPECTIVES

CSCs recapitulate the full characteristics of
stem cells (that is, they are undifferentiated
cells with limitless replicative potential,
which partly self-perpetuate to maintain

a tumorigenic reservoir and which partly
differentiate to give rise to a diverse progeny
of non-tumorigenic cells) or simply identify

Table 2 | Facts and figures about the EurOPDX collection*

Primary tumour Total number

Average engraftment rate: treatment

Engraftment rates: neoadjuvant

Tumour type Subtype
or organ or metastasis
CRC Allsubtypes  Primary
included . .
Liver metastasis
Pancreas Allsubtypes  Primary
(PDAC) included . .
Liver metastasis
Breast ER* Primary
(including .
ER*HER2") Metastasis
TNBC Primary
Metastasis
HER2*only  Primary
Metastasis
Skin All subtypes  Primary
melanoma included .
Metastasis
(cutaneous, liver
and lung)
Ovary Allsubtypes  Primary
included .
Metastasis
Gastric Allsubtypes  Primary
included
Endometrial Allsubtypes  Primary
included .
Metastasis
Lung NSCLC Primary and
metastasis
SCLC Primary and
metastasis
HNSCC Allsubtypes  Primary
included .
Metastasis
Glioblastoma  Allsubtypes Primary
included
Uveal Allsubtypes  Primary
melanoma included . .
Liver metastasis
Testicular Allsubtypes Primary and
included metastasis
(lymph node,
lung and brain)
Uterine High grade  Primary
sarcoma .
Metastasis
Renal Allsubtypes  Primary
included

of established naive and adjuvant samples (%) samples (if relevant) (%)

ECES Subcutaneous Orthotopic Subcutaneous Orthotopic

291 52-75 80 NA NA

444 73-91 90 84 NA

211 54-71 70 NA NA

24 60-100 90 NA NA

24 4-7 7 20 NA

20 25-49 33-47 NA NA

78 30-34 60-86 72 86

26 60 50-66 NA NA

16 26 NA 13 NA

5 NA 33 NA NA

8 67-90 29 NA NA

161 72-90 83-85 NA NA

123 40-85* 68 62* NA

19 47-85* 80 NA NA

87 41-50 70 34 NA

67 43-55 74 NA NA

10 10-60°% 95 NA NA

59 50-70 (primary) 52 NA NA

12 50 75 Not applicable  Not applicable

50 45 65 NA NA

13 83 NA NA NA

52 Not applicable 95-100 Not applicable  NA

12 32 NA Not applicable  Not applicable

14 65 NA Not applicable  Not applicable

18 NA 35 NA NA

3 75 NA Not applicable  Not applicable
100 NA Not applicable  Not applicable

8 30 NA NA NA

CRC, colorectal cancer; ER, oestrogen receptor; HNSCC; head and neck squamous cell carcinoma; NA, not available; NSCLC, non-small-cell lung cancer; PDAC,
pancreatic ductal adenocarcinoma; SCLC, small-cell lung cancer; TNBC, triple-negative breast cancer. *The data presented represent the range of implantation
rates obtained across EurOPDX partner laboratories as of October 2016. *Highest take rates obtained with the high-grade serous ovarian cancer subtype. STake
rates of 10-15% for abdominal, pelvic lymph node and peritoneal metastases, 60% for vaginal metastases.
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a more robust or proliferative population

of ‘tumour-initiating’ cells selected by
engraftment. To address this quandary;, it
will be important to compare the results of
side-by-side fate-mapping experiments and
transplantation assays to analyse whether the
cells endowed with tumorigenic potential
after transplantation also exhibit other
typical stem-like properties, such as the
ability to self-renew, asymmetric cell division
and differentiation potential®.

PDX models of treatment-resistant disease.
There are primarily two ways in which PDX
models can be used to interrogate primary
and acquired resistance. One strategy is to
derive models from patients’ samples before
the initiation of therapy and again at the
time of treatment resistance. Alternatively,
models can be developed from pretreatment
tumour samples, and resistance can be
recapitulated in the PDX upon iterative
cycles of exposure to the drug, as previously
observed in genetically engineered mouse
(GEM) models*. Using cycles of drug
exposure in pretreatment PDX models,
paired analysis of PDX models of cisplatin-
sensitive and cisplatin-resistant testicular
germ cell cancer (TGCC) proposed potential
alternatives for the treatment of cisplatin-
refractory TGCG, including anti-angiogenic
therapy®” and the blockade of the
platelet-derived growth factor receptor-f§
(PDGFRp)-AKT pathway*.

PDX models have also proved useful
in identifying mechanisms of resistance to
targeted therapies in oestrogen receptor
(ER)-positive breast cancer. The analysis of
four hormone-resistant PDX tumours, which
were obtained from two ER-positive breast
cancer PDX models by continuous treatment
with tamoxifen or by oophorectomy-
mediated hormone depletion, revealed that
hormone resistance was associated with
various forms of deregulated ER-mediated
gene transcription®. Taking a similar
approach, PDX models of ER-positive breast
cancer have been used to investigate jagged 1
(JAG1)-NOTCH4 signalling as a means for
attenuating sensitivity to hormonal therapy®
and to identify mechanisms of acquired
resistance to cyclin-dependent kinase 4
(CDK4) and CDKG6 blockade®.

Patients with advanced cancer who
acquire resistance to several lines of
treatment mostly present with multiple
metastatic lesions that are not amenable
to resection, and may harbour different
resistance pathways. Generating PDX models
that recapitulate such complex scenarios
of therapy-resistant metastatic tumours

has become feasible for several tumours
(TABLE 1). For example, the analysis of
biopsy specimens and corresponding PDXs
from different drug-resistant metastases
in patients with melanoma who had been
treated with a BRAF inhibitor resulted in
the identification of multiple resistance
mechanisms both within individual lesions
and among separate samples from the same
patient®. The resistance mechanisms
identified in PDXs were also found in the
original patient samples®, and clinically
resistant tumours were also treatment-
refractory when grown as PDXs*. These
studies provide proof of principle for the
heterogeneous nature of acquired resistance
in individual patients with melanoma
and further attest to the ability of PDX
models to predict clinical outcomes.
Similar results have been observed in
lung adenocarcinomas®.

Although PDXs generally retain
drug-sensitivity profiles that are similar
to those of the corresponding patient
tumour?3*¥¢26  PDX models derived from
treatment-resistant tumours can become
sensitive again upon xenografting, owing to
the effect of the so-called ‘drug holiday’ in
which treatment is discontinued after tumour
implantation to facilitate engraftment. Some
resistance mechanisms are thus reversible
in the absence of drug, as shown for
melanoma®® and lung adenocarcinoma®.
This suggests that treatment-resistant
PDXs should be exposed to continuous
treatment immediately after implantation,
although this is a cost- and labour-intensive
approach. However, uninterrupted therapy
might also result in the further selection of
a subpopulation of tumour cells, resulting
in aloss of intra-tumour heterogeneity
and genetic variation in the PDX tumours
compared with the original tumours.

In response to the need for more
sophisticated models, several groups
(for example, see REF. 67) have developed
protocols and networks to generate clinical
trial-associated xenografts (CTAXs) (TABLE 1).
These advanced PDX models are currently
being derived from image-guided biopsy
samples taken at different time points during
disease progression and following new lines
of treatment in the context of clinical trials.
Such models will be extremely valuable in
evaluating how the molecular evolution
of advanced tumours is associated with
innate or acquired drug resistance, and
will be important for studying the tumour
heterogeneity and clonal selection that
results from drug treatment. In principle,
CTAXs may also serve as personalized cancer

models to test drug combinations that aim
to overcome acquired resistance, generating
information that could be transferred back
to the donor patient for therapeutic decisions
(see below). However, this opportunity might
be hindered by limitations such as the low
engraftment success rates for some tumour
types and the disconnection between the time
needed for PDX expansion and treatment
(which can be long, especially for tumours
with indolent growth in mice) and the
rapidity of disease progression in patients.
Finally, PDXs that are established from
tumours resistant to conventional therapies
delivered in the neoadjuvant setting are of
special interest (TABLE 1). In triple-negative
breast cancer, the establishment and
molecular profiling of PDXs from residual
cancer cells that persist after neoadjuvant
treatment (minimal residual disease (MRD))
may lead to the identification of targetable
molecular alterations in the chemotherapy-
resistant component of the tumour, which
may mirror micro-metastases that are
destined to clinically recur %. Despite often
being limited in size due to prior exposure
to cytotoxic therapy, triple-negative breast
tumours from patients treated in the
neoadjuvant setting engraft much more
efficiently than do treatment-naive tumours
(72% and 34%, respectively) (TABLE 2). Given
the high engraftment efficiency and rapid
growth of PDXs from drug-tolerant MRD
tissues, at least in the case of breast cancer,
these models represent an unprecedented
opportunity to identify genomic alterations
and associated targeted therapies before
tumour recurrence in patients.

Next-generation PDX models
Humanized PDX models to evaluate cancer
immunotherapies. The importance of the
immune system in tumour progression
and treatment highlights the need for
PDX models to facilitate the preclinical
assessment of cancer immune therapies®.
However, to avoid immune rejection of
xenotransplants by the host, PDX models are
primarily generated by transplanting tumour
fragments into immunodeficient mice.
The absence of many components of the
immune system in these mice, and the loss
of endogenous human immune cells upon
propagation of the human tumour tissue
over multiple passages’”", limit the utility
of such models to explore the role of the
immune system in tumour progression and
to test novel immune-based therapies™.
Humanized mice (also known as human
haemato-lymphoid chimeric mice and
human immune system (HIS) models)
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Figure 1| Strategies to generate humanized PDXs. Sources of immune cells include tumour-
infiltrating lymphocytes (TILs), peripheral blood mononuclear cells (PBMCs) and CD34-positive
haematopoietic stem cells (HSCs); HSCs may be purified from mobilized adult peripheral blood, bone
marrow or umbilical cord blood. Engrafted TILs or PBMCs generate mainly circulating human leuko-
cyte antigen (HLA)-restricted T cells and natural killer (NK) cells (top row). This system is characterized
by a vigorous graft-versus-host reaction that narrows the experimental window to approximately
2-5 weeks. Despite this limitation, the system is useful for certain analyses, such as monitoring the
recruitment of T lymphocytes to tumours by therapeutic antibodies'’’. Fully humanized systems
(bottom four rows) use severely immunodeficient mouse strains such as NOG (NOD-Cg-Prkdcs
l12rgmtsus/JicTac)'’t, NSG (NOD.Cg-Prkdcs< [12rg™"i"/Sz])*’* and BRG (C.Cg-Rag1t™mMem
IL2rg™"1/Sz))17317* Mice with a NOD (non-obese diabetic) background have functionally deficient NK
cells. SCID (severe combined immunodeficiency) is a loss-of-function mutation that affects DNA-
dependent protein kinase (DNA-PK), a DNA repair enzyme involved in V(D)) recombination during
Tcelland B cell development. As a consequence, SCID mice have reduced levels of T cells and B cells.
Inactivation of the interleukin-2 (IL-2) receptor y-chain leads to impaired T cell and B cell development
and prevents the generation of NK cells. Recombination-activating gene 1 (RAG1) is necessary for V(D)
J recombination; thus, RAG1 inactivating mutations affect T cell and B cell development. All these
different strains show subtle differences to support the engraftment of functional human immune
cells’”. Injection of human CD34-positive HSCs into these mice leads to the generation of major histo-
compatibility complex (MHC)-restricted T cells and B cells, as well as to limited amounts of monocytes,
macrophages, neutrophils and dendritic cells. In addition, these mouse strains have been improved
by genetic modifications for the production of a variety of human cytokines that stimulate the differ-
entiation of additional haematopoietic lineages. For example, strains such as NOG-GM3 (which
expresses human IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF; also known
as CSF2)1"%, NSG-SGM3 (which expresses human IL-3, GM-CSF and SCF (also known as KIT ligand))*’®
and MISTRG (which expresses IL-3, GM-CSF, macrophage CSF (M-CSF; also known as CSF1), signal
regulatory protein-a (SIRPa) and thrombopoietin (THPO))""” produce increased numbers of human
myeloid and mast cells, regulatory T cells and NK cells (see Supplementary information S1 (table)).
PDXs, patient-derived xenografts.

are immunocompromised mice in which
selected immune components have been
introduced to generate a competent human
immune system with different degrees

of immune reconstitution. One methodology
for the generation of humanized mice
involves the transplantation of total
peripheral blood from healthy human donors
or patients (peripheral blood lymphocyte

(PBL) models) or, in particular applications,
the infusion of tumour-infiltrating
lymphocytes (TILs) (FIC. 1). Although these
procedures are known to cause severe graft-
versus-host disease (GvHD) beginning

2-5 weeks after injection””*, seriously
limiting the useful investigative time window
of these models and the translational value of
these studies”, PBL and TIL mice can be
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used for cost-effective short-term testing of
novel immune therapeutics and for assessing
short-term adverse effects.

Alternatively, HIS mice can be generated
through the transplantation of CD34-positive
human haematopoietic stem cells (HSCs)
or precursor cells isolated from umbilical
cord blood, bone marrow and peripheral
blood, either alone or in combination with
additional human immune tissues (bone
ossicles or human thymic tissue)” into
immunodeficient mice (FIG. 1). Compared
with PBL- and TIL-derived models,
transplantation with HSCs results in a more
complete haematopoietic reconstitution, as
HSCs give rise to various lineages of human
blood cells throughout the life of the animal.
Methods for transplantation depend on
the source of HSCs, the co-transplantation
of immune tissues, the mouse strain and
the age of the recipient mice”>’%. In order
to avoid the immune reactions caused
by human leukocyte antigen (HLA)
mismatch, the ideal source of HSCs is the
same patient from whom the PDX has
been established. However, isolating HSCs
from cancer patients may prove daunting:
on the one hand, bone marrow biopsies
are difficult in debilitated individuals; on
the other hand, growth factor-stimulated
bone marrow mobilization for HSC
collection from peripheral blood might
foster tumour progression”. Moreover,
even when applicable, the low yield of HSCs
obtainable from cancer patients severely
limits the number of mice than can be
humanized. An attractive alternative is
the in vitro expansion of HSCs®, although
this procedure could introduce biological
perturbations that affect stemness and
differentiation potential.

Whereas various strains of
immunodeficient mice are used to
transplant solid tumour tissue, not all of
these strains are suitable for generating
HIS models. The survival of human
immune cells is highly dependent on
the compatibility of the ‘do-not-eat-me’
signals (CD47-signal-regulatory protein-a
(SIRPa)) on phagocytes in the host®'. The
most commonly used mice to generate
compatible HIS models are those derived
from the non-obese-diabetic (NOD)-severe
combined immune deficiency (SCID)-
interleukin-2 receptor common y-chain
(IL2-Ry)-deficient (NSG; also known as
NOD.Cg-Prkdc I12rg™™"1/Sz]) strain
and the NOD/Sci-SCID/IL-2Ry strain
(NOG; also known as NOD-Cg-Prkdc=¢
I12rg™1Su8/JicTac). Substantial efforts are
thus being made to develop novel GEM
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strains that not only express human-specific
do-not-eat-me signals but also express
human-specific cytokines or HLAs. These
mouse strains differ upon transplantation
in durability and quality of engraftment
of the human immune system”. Some
key examples of how humanized models
are currently evolving to support PDX
transplantation towards application in the
immune-oncology space are presented as
online supplementary information (see
Supplementary information S1 (table)).

Modelling metastatic disease. Subcutaneous
transplantation usually fails to reproduce the
organ-specific tropism of distant metastases
that is observed in patients. Therefore,
models of metastatic disease are typically
generated through orthotopic procedures.
These include the transplantation of
fragments of the primary tumour into

the same location in the mouse, which

is usually followed by the development

of spontaneous metastases, or the direct
transfer of metastatic lesions into the same
organ in the host (TABLE 1). Patient-derived
orthotopic xenografts (PDOXs; also known
as orthoxenografts) of primary tumours can
reproducibly lead to local invasive growth
and metastases, often identical to those
observed in the patient®™*. PDOX models
for most cancer indications have typically
been developed from surgical specimens.
More recently, however, they have been
successfully derived from biopsy samples,
despite the limited quantity and quality of
tissue available®.

Advantages of orthotopic models
include the ability to investigate tumour-
host interactions at the relevant site of
primary and secondary tumour growth,
the development of patient-like metastases,
the ability to interrogate site-specific
dependence of therapy, and the potential to
conduct clinically relevant studies, such as
monitoring the effects of adjuvant therapy
on occult metastases (TABLE 1). Nevertheless,
orthotopic models remain relatively
rare, probably owing to the non-trivial
microsurgical procedures that are required
for organ-specific transplantation.
Furthermore, the incorporation of clinically
relevant imaging modalities and appropriate
in vivo imaging probes is necessary to
visualize tumour orthotopic implants and
metastatic progression in deep tissues and
to ensure timely therapeutic intervention
when animals develop disease symptoms®®.

PDOX models of breast cancer are
particularly amenable for modelling
metastasis. They primarily rely on

mammary fat pad injection of primary
tumour samples, which successfully
recapitulates the entire metastatic

process from the appropriate primary
anatomical site®*s”. PDOX models of brain
metastases and primary brain tumours are
challenging. To prevent the default seeding
of intravenously injected tumour cells in
the lung and to ensure colonization of the
central nervous system, intra-cardiac left
ventricular inoculation of tumour cells is
required®. Cells may also be implanted
intracranially to overcome the blood—
brain barrier®. Orthotopic homing and
the metastatic potential of cancer cells

can be boosted by genetic modification;
for example, colorectal cancer PDX

cells engineered to express C-C motif
chemokine receptor 9 (CCRY) efficiently
localize to the mouse colon after tail-vein
injection, attracted by the abundance of
the CCR9 ligand C-C motif chemokine
ligand 25 (CCL25) in the intestine, and
then spontaneously metastasize to the
liver®. Genetic manipulation is useful to
develop models of spontaneous metastasis
for mechanistic studies in vivo; however,
the introduction of exogenous molecules to
patient-derived material may affect some
properties of the original tumour, thus
reducing translational relevance.

Whether PDOX models more accurately
recapitulate clinical response to anticancer
drugs compared with conventional
subcutaneous PDX models remains to be
established. One report showed that the
antitumoural effects of a microtubule-
stabilizing drug on PDX models of brain
metastases from non-small-cell lung
cancer were different in orthotopic versus
subcutaneous implants®, but results remain
anecdotal. It is conceivable that therapies
that target components of the tumour
microenvironment, such as endothelial cells
and immune cells, would be better evaluated
in an orthotopic context. Conversely, the
therapeutic response of ‘oncogene-addicted
tumours, which intrinsically rely on
activating mutations for their growth and
survival, is likely to be less dependent on
anatomical location and more influenced
by the underlying cancer genetic makeup.
Indeed, despite their heterotopic location,
subcutaneous PDXs from BRAF-mutant
melanoma®®! and HER2 (also known as
ERBB2)-amplified colorectal cancer®’>%
mimic the therapeutic response observed
in patients. Sharing results from different
experimental models within the EurOPDX
consortium will allow us to shed some light
on this important question.

CTC-derived PDX models. As mentioned
above, a step forwards for minimally
invasive tumour sampling is the isolation
and characterization of CTCs, detected at
low concentrations in the peripheral blood
of patients with different solid tumours*.
Although the role of CTCs in metastasis
development is still uncertain®, their
levels ostensibly correlate with patient
survival and response to therapy®*. These
features mean that CTCs are promising
tools to monitor cancer burden and drug
susceptibility in metastatic and late-stage
disease, when repetitive biopsies are not
indicated. Technological advances now allow
the isolation of viable CTCs, which maintain
tumorigenicity when xenografted into
immunocompromised mice®”~** (TABLE 1).
Several reports have demonstrated the
feasibility of establishing CTC-derived PDX
models by directly injecting freshly isolated
and enriched CTCs from patients with
different cancers into immunocompromised
mice. Using various CTC-capture techniques
(such as epithelial cell adhesion molecule
(EPCAM) or cytokeratin-based selection of
cancer cells derived from epithelial tissues or
microfluidic-based leukocyte depletion'*'"!),
CTC-derived xenografts are now practicable
for breast cancer”, prostate cancer'®, gastric
cancer'?”, small-cell lung cancer (SCLC)*®
and melanoma®'. Moreover, it has also been
shown that ex vivo cultivated and fully
molecularly characterized breast'* and
colorectal'” CTCs maintain their tumorigenic
potential. Notably, both freshly isolated CTCs
and CTC-derived PDXs genetically and
histologically mirror the original tumour and
retain analogous drug sensitivities™*”%%100102-
195, For example, PDXs that are established
from chemotherapy-naive circulating SCLC
cells recapitulate donor patients’ response to
both platinum and etoposide®. In patients
with ER-positive breast cancer, CTCs have
also proved to be a useful model to study
the genetic evolution of the tumour and to
identify novel drug susceptibilities'®.
Although technically challenging,
the use of CTC-derived PDX models
opens new possibilities for translational
research. In addition to being a source of
information regarding disease prognosis'®,
tumour heterogeneity'®”'%, evolution'” and
dissemination"®"!, CTC-derived PDXs hold
promise for precision medicine applications
(TABLE 1). For example, CTCs from women
with treatment-refractory ER-positive
breast tumours have been recently analysed
to investigate the functional and phenotypic
consequences of prolonged anti-hormonal
therapies, and xenografts from such CTCs
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Figure 2 | PDX preclinical study designs. a | Large collections of patient-
derived xenograft (PDX) models (‘xenopatients’) now allow population-based
studies to be carried out, which better mimic the inter-tumour heterogeneity
that is seen in patients and are more predictive of clinical efficacy than con-
ventional xenografts of immortalized cancer cell lines. PDX molecular char-
acterization and correlation with therapeutic response also facilitates
biomarker discovery, as well as the identification of primary (and acquired)
resistance mechanisms. These studies can lead to new hypotheses and
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support the initiation of new clinical trials. b | For some cancer types for which
avatar models can be developed, co-clinical avatar studies allow for simul-
taneous drug testing in mice and patients for real-time adaptive therapeutic
decisions. ¢ | In the ‘biofacsimile’ or ‘proxy’ study format, integrative systems-
based bioinformatics analysis can be used to pinpoint the best-matched PDX
for a given patient from a collection of molecularly profiled models. PDX-
associated information is then leveraged to instruct clinical treatment options
and/or to derive prognostic indicators. NGS, next-generation sequencing.

have been used to design new therapies

to overcome resistance'"?. Similarly, the
next-generation sequencing of tumours,
complemented with genomic analysis

of CTCs and CTC-derived PDX mouse
models, has proved to be a powerful platform
for developing precision medicine strategies
in patients with melanoma®’. This approach
has, in specific cases, facilitated the clinical
implementation of alternative therapeutic

strategies informed by the preclinical models®".

PDXs for clinical decision-making

PDX population xenopatient trials. Across
tumours of the same origin, genetic lesions
that sustain tumorigenesis (and that therefore
associate with response to targeted drugs)
often involve many different oncogenes, each
of which is mutated at a low frequency'.
Furthermore, genotype-based prediction

of drug response is not unequivocal.

Despite harbouring the genetic lesion that

is known to correlate with drug response,
many tumours do not regress owing to the
presence of signals that compensate for target
inhibition'. Collectively, this information

indicates that the genetic selection of tumours
for the application of targeted therapies
requires representative study populations and
suitable pharmacogenomic platforms.
Provided that they are generated in high
numbers and extensively characterized at the
molecular level, PDXs can act as a powerful
resource for large-scale genotype-response
correlations and therapeutic studies in
genetically defined tumour subsets. Several
recent studies testify to this potential; in
late-stage colorectal cancer, for example,
a systematic assessment of response to
antibodies targeting epidermal growth
factor receptor (EGFR) using PDX models
(‘xenopatients’) derived from hundreds
of individual tumours was coupled to
candidate-gene or whole-exome sequencing
analyses. Through this effort, several genetic
determinants of resistance to EGFR blockade
were discovered, including amplifications
or mutations in genes encoding druggable
kinases®”!'>11¢, Similarly, more dynamic
features such as expression changes in
pro-survival genes and the activation of
compensatory feedback loops during

treatment were identified as mechanisms
of tumour adaptation to EGFR family''”"'®
or MEK'"" inhibition in colorectal cancer.
The flexibility of PDXs also enabled
preclinical testing of drug combinations in
models displaying some of these resistance
traits, with a permutation capability that
was clearly beyond the number of testable
hypotheses in humans (FIC. 2).

An analogous population-based drug
screen has recently been carried out in
more than 1,000 PDX models representing
a wide range of solid cancers (the ‘PDX
Encyclopaedia’)’. Some genetic hypotheses
and biomarkers of drug sensitivity, which
emerged from cultured cancer cell lines,
were successfully validated in this large
panel of PDX models (FIC. 2). Notably,
experiments in PDXs also enabled the
identification of therapeutic candidates that
in vitro model systems failed to capture’.

In all these studies, responses obtained in
mice were highly consistent with responses
in patients. For example, the distribution
of tumour regression, disease stabilization
and progression in colorectal cancer
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Table 3 | Comparative quantitative data of response rates in PDXs versus human patients

Tumour Clinical question Comparative response rates
type PDXs
CRC* Response to EGFR antibody monotherapy * PR:50f 47 (10.6%)
in genetically unselected CRC PDXs® or * SD: 14 of 47 (29.8%)
unselected chemorefractory patients with * PD: 28 of 47 (59.6%)
CRC178
CRC* * PDXs!8: response to EGFR antibody ® PR:310f 125 (24.8%)
monotherapy in KRAS, NRAS and BRAF * SD: 60 of 125 (48%)
wild-type models * PD: 34 of 125 (27.2%)
e Patients'’®: response to EGFR antibody plus
chemotherapy in chemorefractory patients
with KRAS, NRAS and BRAF wild-type CRC
NSCLC  Co-clinicaltrial, PDX versus donor patient®: *1PR
response to EGFR small-molecule inhibitors *1SD
in four representative cases of six established *2PD
PDXs
Breast  Co-clinical trial, PDX versus donor patient®: * Doxorubicin: 4 PD
cancer  response to several therapies ® Docetaxel: 1 PR and 6 PD

 Anti-HER2 combination therapy
(trastuzumab and lapatinib): 1 PR

Patients

*PR:12 0f111(10.8%)
©SD:240f111(21.6%)
*PD:59 0f 111 (53.2%)
* Not evaluated: 16 of 111 (14.4%)

* PR: 15 of 56 (26.8%)
*SD: 29 0f 56 (51.8%)
*PD: 12 0f 56 (21.4%)

*1PR
*1SD
*2PD

* Doxorubicin: 4 PD

® Docetaxel: 1 PR and 6 PD

* Anti-HER2 combination therapy
(trastuzumab and lapatinib): 1 PR

CRC, colorectal cancer; EGFR, epidermal growth factor receptor; NSCLC, non-small-cell lung cancer; PD, progressive disease; PDX, patient-derived xenograft;
PR, partial response; SD, stable disease. *Data represent separate PDX and patient population studies.

xenopatients receiving EGFR antibodies
was similar to that found in the clinic, and
treatment-refractory tumour grafts were
enriched for known genetic predictors of
therapeutic resistance in patients® (TABLE 3);
moreover, in analogy with clinical studies'®,
the addition of an EGFR small-molecule
inhibitor to the EGFR antibody increased
tumour regression''®. Similarly, PDXs from
BRAF-mutant melanomas underwent
substantial shrinkage when treated with
BRAF inhibitors, a response that was further
magnified - as in patients — by the addition
of a MEK inhibitor®'?'. PDX platforms

have recently been used for the systematic
identification of cancer vulnerabilities
through RNA interference-based genetic
screens in tumour grafts, which have revealed
new oncogenic drivers in melanoma'* and
pancreatic tumours'>.

PDX population trials may be highly
informative, but they are also expensive
and technically cumbersome, and the
trade-off between sufficient sample size to
ensure adequate coverage of inter-patient
heterogeneity and experimental feasibility
requires careful study design. To reduce
the number of animal replicates while
preserving statistical power, reproducibility
studies have been conducted to compare
response calls made on a single mouse with
majority responses in reference cohorts
composed of many animals. Thus, a
strong concordance between single-mouse
responses and majority responses has been
found, with a prediction accuracy varying
from 75%'** to 95%°. Accordingly, ‘one

animal per model per treatment’ (1x1x1)
approaches have recently been advocated®'*.
Alternative strategies to reduce
experimental burden could rely on
step-wise approaches, in which large-scale
pharmacogenomic screens are carried out
using less laborious formats (such as cancer
cell lines) followed by in vivo validation
in selected, molecularly relevant PDX
models. In this regard, it is noteworthy
that patient-derived material from human
tumours, such as colorectal, pancreas and
prostate cancers'**'*, can be grown and
nearly indefinitely expanded as three-
dimensional (3D) organoids. These can be
easily transplanted to establish PDXs, and
vice versa, and are amenable to drug screens
in a semi-high-throughput manner'.
Albeit more difficult to establish and
propagate, two-dimensional (2D) primary
cultures of dissociated cancer cells from
both patient samples and PDXs are also
being attempted with a similar rationale
and objectives'®. In this vein, a platform for
drug testing in short-term cultured breast
cancer cells from PDXs has recently been
developed and shown to predict in vivo
drug response®.

PDX co-clinical avatar trials. The term
co-clinical trial refers to simultaneous
clinical and preclinical trials with
anticancer agents in patients with a
tumour type of a defined genetic makeup
and a mouse model with similar genetic
abnormalities’®’. The underpinning idea is
that the comparison of responses between

the patients and the preclinical model will
help to define the mechanism of action

of a given drug, as well as biomarkers of
response. Originally implemented with
GEM models, the co-clinical trial concept
has been expanded to include PDX models
(‘avatars’), which are generated from cancer
patients enrolled in clinical trials and, in
parallel, treated with the same drug or
drugs that the patient is receiving® (FIC. 2).
In general, these studies aim to develop a
PDX model from newly diagnosed patients
and use it to explore therapies that can

be administered to the patient at the time
of disease progression. Ongoing trials
cover different tumour settings, including
sarcomas (NCT02720796)'*, head and
neck carcinomas (NCT02752932)"%,
ovarian cancer (NCT02312245)"” and
pancreatic cancer (NCT02795650)"%%.
Although a cogent argument exists for
implementing avatar trials, and several case
reports have provided data to support the
concept'** !, the logistical difficulties and
technical hurdles are likely to limit the broad
applicability of this approach (see above).

PDX models in biomarker development.
The validation of mechanisms that

link specific biomarkers to treatment
efficacy will have direct clinical effects,
allowing patient stratification for tailored
treatment protocols. Large-scale PDX trial
formats, such as the PDX Encyclopaedia’
mentioned above, represent a more accurate
approach to identify predictive biomarkers
compared with the use of cell lines (TABLE 1).
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A transcriptional profiling study on 85 PDX
models of nine different cancer types
treated with nine separate cancer drugs
identified 1,578 genes, the expression of
which correlated with sensitivity to at

least one drug; 333 of these genes showed
significant association with sensitivity to
two or more drugs, and 32 genes predicted
response to six or seven drugs'#. This type
of study provides an initial set of biomarkers
that require further evaluation in clinical
material to determine translatability into a
clinically useful assay.

Epigenetic biomarkers, such as DNA
methylation, can also be assessed in
PDXs as possible response predictors.

A study that included 28 glioblastoma
PDOXs showed that the poly(ADP-ribose)
polymerase (PARP) inhibitor veliparib
significantly enhances the efficacy of
temozolomide (TMZ) chemotherapy only
in models with O-6-methylguanine-DNA
methyltransferase (MGMT) promoter
hyper-methylation'*. On the basis of these
data, MGMT promoter hyper-methylation
was included as an eligibility criterion for
TMZ and veliparib combination treatment
in an ongoing phase II/III glioblastoma
clinical trial (NCT02152982)',

Determinants of therapeutic sensitivity
can be identified at the protein level using
pathway analysis in PDXs: a proteomic
survey of 20 PDX models of glioblastoma
and their parental tumours identified a
subset of cases with comparable proteomic
profiles displaying high levels of expression
and phosphorylation of EGFR and its
downstream signalling proteins'*. The
expression and phosphorylation status of
EGFR and downstream targets might be
used as a predictive biomarker of response
to EGFR inhibition in preclinical trials and,
if successful, included in future clinical trials
aiming to inhibit EGFR signalling in patients
with glioblastoma.

PDX models are also useful for the
preclinical identification of metabolic
biomarkers using magnetic resonance
spectroscopy (MRS). This technique
has recently been used to demonstrate
differences in metabolic characteristics
between molecular subtypes of breast
cancer**'”, Elevated phosphocholine levels
and low glycerophosphocholine levels have
been proposed to be metabolic markers of
aggressive disease in breast cancer based on
in vitro studies'*®. However, MRS on intact
tissue from PDX models of poor-prognosis
basal-like breast cancer displays an inverted
metabolic profile, with high glycerophospho-
choline concentration rather than high

phosphocholine concentration'*¢'¥.

These observations suggest that proper
tumour architecture, as maintained in

PDXs, influences choline metabolism.
Accordingly, a strong correlation between
PDX models and clinical material was
observed in the expression of genes that

are involved in key metabolic pathways'*.
MRS technology also holds potential for

in vivo non-invasive detection of metabolic
biomarkers through tailored techniques

such as 31P MRS or hyperpolarized 13C
MRS"1%, Recently, a proof-of-principle
study demonstrated the ability of in vivo MRS
to distinguish basal-like from luminal-like
breast cancer PDXs non-invasively using 31P
MRS imaging'*'.

For some cancer types, the ability of
tumours to successfully engraft in mice can
be considered per se as a surrogate biomarker
of risk for disease progression. For example,
in mammary tumours, the ability to generate
stable tumour grafts significantly predicted
reduced survival®'*2, and gene expression
signatures associated with successful PDX
engraftment correlated with worse survival
outcome when tested in prognostically
annotated data sets of triple-negative
breast cancer'*. Similarly, tumour grafts
of pancreatic ductal adenocarcinoma
displayed higher expression of metastasis-
associated genes compared with samples
that failed engraftment, and patient donors
of successfully engrafted tumours had
shorter survival'®.

It is now well established that human
tumour stromal cells are replaced by mouse
counterparts following engraftment'.

As a consequence of this substitution,
species-specific RNA sequencing-based
expression profiling of PDXs offers a
unique opportunity to distinguish mouse
stroma-derived transcripts from human
cancer cell-derived transcripts without

the need to physically separate the two
components before RNA extraction. Such
analyses led to the identification of stromal-
associated transcriptional signatures in
colorectal cancer that are associated with
poor prognosis and treatment resistance'.
The negative prognostic significance

of tumour stromal transcriptional
signatures and their value for therapeutic
decision-making and patient follow-up have
also been described in other reports'>”',

Challenges and opportunities

Ideal animal models for preclinical
experimentation in oncology should fulfil
several criteria: reflecting the diversity of
cancer patients at the epidemiological and

PERSPECTIVES

molecular levels; retaining, to the highest
possible extent, the functional, phenotypic
and genotypic characteristics of human
tumours; faithfully predicting response to
therapies, and recapitulating mechanisms of
innate and acquired resistance; and allowing
for experimental flexibility.

Although PDXs fulfil several of these
criteria and can be further improved to
meet additional requirements, certain
inherent limitations remain difficult to
address. A major obstacle is the necessity
of using immunocompromised mice
to circumvent xenograft rejection. This
requirement hampers the use of current
PDX models to assess immunotherapeu-
tics. Although emerging humanization
procedures are now expected to overcome
some of the most important concerns (see
Supplementary information S1 (table)),
issues still remain with the incorporation
of particular immune cell types, immune
responses and lymphoid structures
into these humanized models and with
the eradication of xenogeneic GVHD.

It is expected that the development of

novel immune-deficient mice will take
advantage of emerging technologies

based on engineered nuclease enzymes

for genome editing (such as transcription
activator-like effector nuclease (TALEN)
and CRISPR-Cas9). These modifications
will include the replacement or introduction
of combinations of human-specific cytokine
receptors and adhesion molecules, as well as
more comprehensive sets of HLA class I and
HLA class IT molecules.

As mentioned above, serial passaging
of tumours leads to the substitution of
human stroma by murine components, and
mouse-derived cytokines and growth factors
in some cases do not crossreact with receptors
that are expressed by human (cancer)
cells'*12, This makes the contribution
of the tumour microenvironment to
drug response difficult to assess in PDXs.
Moreover, the lack of a species-compatible
tumour stroma complicates the identification
of pharmacodynamic markers of target
inactivation for drugs that intercept
cancer-related microenvironmental processes,
such as angiogenesis and inflammation.
Although mouse humanization procedures
seek to reconstitute the human immune
system, the replacement of stromal elements
such as endothelial cells and fibroblasts
with their human counterparts is currently
daunting, if not unfeasible.

PDX-based efforts for cancer
precision medicine also require
adequate logistics, from proper archival
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biobanking to continuous propagation

of live biospecimens, intensive animal
experimentation and systematic integration
of therapeutic results with high-content
molecular annotation. The perception

of this complexity and the awareness

that resource sustainability cannot be
maintained by individual academic
laboratories have fuelled initiatives

for creating and implementing shared
large-scale PDX platforms, including the
European EurOPDX resource, the US
National Cancer Institute (NCI) repository
of patient-derived models, the Public
Repository of Xenografts (PRoXe), the
Children’s Oncology Group (COG) cell
culture and xenograft repository, and the
Pediatric Preclinical Testing Consortium
(PPTC) (BOX 1).

When dealing with such large multi-
institutional platforms, standardized
methodological procedures should be
carried out to ensure reproducibility and
to streamline readouts so that they are
interpretable across different laboratories
(BOX 1). Further, therapeutic outcomes should
be univocally deciphered and stringently
interpreted. Retardation of tumour growth
during therapy typically results in tumours
that are smaller than controls at end point,
but larger than they were before starting
treatment; although this may well suggest
that the therapy is biologically active (because
it affects cancer cell proliferation), it is not
an indication that the therapy is clinically
effective; indeed, this kind of response would
be clinically defined as ‘disease progression’
or, at best, ‘disease stabilization’ In the
EurOPDX experience, even manifest effects of
tumour growth inhibition — as observed, for
example, after blockade of MEK in PDXs of
KRAS-mutant colorectal cancer'” — did not
translate into clinical benefit when analogous
therapies were applied to patients'®®. By
contrast, overt regression in PDXs predicted
positive results in the clinic: the finding that
an antibody and small molecule combination
against HER2 induced massive regressions in
HER2-amplified colorectal tumour grafts®'"”
has recently been translated into a successful
clinical trial, with the vast majority of patients
achieving tumour shrinkage when treated
with the same regimen®. It has also become
increasingly clear that the use of quantitative
metrics to classify response (equivalent to
clinical Response Evaluation Criteria in Solid
Tumours (RECIST)) should be implemented
to more precisely assess therapeutic effects
in PDX trials. Modified RECIST criteria for
mouse xenograft applications have recently
been described’. ‘Best response’ is defined as

Box 2 | Data management and integration

By combining the flexibility of preclinical analysis with the instructive value of population-based
studies, patient-derived xenografts (PDXs) offer unprecedented opportunities for drawing
statistically robust correlations between genetic or functional traits and sensitivity to anticancer
drugs. However, the advantages of high-throughput studies with PDX-based approaches may
become major hurdles when dealing with large-scale data management, analysis and utilization.
The deployment of PDX models for translational studies often requires their stratification into
existing predictive or prognostic molecular classes and subgroups as derived on tumours from
patients. The portability of the stratification criteria from human to mice, and vice versa, is not
trivial, owing to multiple sources of biological and genomic variation, which may be introduced in
the process of engrafting and propagating patient tumour material into murine hosts.

Data management issues

Data complexity and dynamics. The representation of cancer data in classical oncogenomic portals
is normally static: the results obtained by analysing such public resources are not fed back to
refine, update or complement the original information. The possibility to incrementally stratify and
integrate multiple layers of information generated from the same original sample by diverse
laboratories at different times represents one of the key added values of PDX-based approaches.
This implies the need for further dimensions of complexity to interrogate an almost infinite number

of variables and to implement decision-making algorithms in case of data inconsistency across

experiments!®°.

Data normalization and annotations. The joint utilization of human and PDX data requires the
standardization of sample metadata such as clinical and molecular ontologies. Through this effort,
data derived from different experiments, technologies and platforms can be normalized against
common categories and used to interrogate samples with integrative queries exploring

heterogeneous data domains.

Data analysis issues

Population selection bias. Owing to the different engraftment efficacies inherent to each tumour
sample, the population of xenografts might not recapitulate the full distribution of tumour
phenotypic or molecular variables observed in patients. Any prior-dependent statistical models
should be adapted to the new distribution of subclasses within the PDX population. This implies the
necessity to identify the missing or underrepresented subgroups through analytical investigation
of multidimensional parameters (genomics, transcriptomics, histopathology, and so on).

Loss of human immune and stromal cells. Although both stromal and immune components are
replaced over time by murine analogues, the haematopoietic elements show important differences

in their spatial distribution®’

or may be missing overall*®'®®. This affects the signal received from

molecular profiling, and could require the application of specific algorithms for signal correction to

avoid or reduce artefacts and biases*****°.

the minimum value of percentage tumour
volume change, compared with tumour
volume at baseline, for treatment durations
equal to or longer than 10 days, and ‘best
average response’ is the minimum value of the
mean percentage of tumour volume change,
as measured at each evaluation time point
along treatment, compared with baseline’.
Such definitions, coupled with specific
tumour volume cut-offs, have been applied
to categorize complete response, partial
response, stable disease and progressive
disease in tumour-bearing mice. These
modified RECIST criteria capture response
kinetics, robustness and durability, and thus
improve the ability of preclinical studies to
accurately predict patient outcome.
Extended and detailed molecular
annotation is a prerequisite for precision
oncology paradigms. However, the
accumulation of multiple layers of genomic
information requires the development of
computational systems with common or

interoperable standards for normalization,
correction and retrieval of complex data
sets. The issue of big data collection,
harmonization and storage is particularly
important when working with large PDX
collections, in which one original tumour
from a single patient gives rise, upon serial
passages, to many descendants that expand
at an exponential rate (BOX 2). In EurOPDX,
efforts are ongoing to aggregate cancer
genomic profiles obtained through different
technologies in different laboratories and

to implement a user-friendly, open-source
portal that showcases the molecular
characteristics of the participating collections
(BOX 1). Importantly, besides the detection of
individual variants with clinically actionable
potential, multi-dimensional molecular
information from existing PDX models can
be subjected to systems-based bioinformatics
analysis to extract algorithms that identify
key biological parameters'®. Preliminary
evidence suggests that such algorithms can
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be subsequently used to identify one or

more ‘biofacsimile’ or ‘proxy’ PDX models
for individual patients, and PDX-associated
information may be leveraged to instruct
treatment options and/or to derive predictive
indicators in the clinic'® (FIC. 2).

All these considerations underscore the
opportunities offered by PDX models to
illuminate new angles of translational cancer
research, but they also put forward the
challenges that are intrinsic to this approach,
and the need for finding new ways to
maximize PDX potential. Industry-led PDX
ventures rely on common and extensively
tested operating procedures, backed by
considerable funding, which ensures scalable,
homogeneous and reproducible experimental
schemes; however, pharmaceutical initiatives
are typically bound to preclinical testing
of proprietary compounds and may face
obstacles in publishing results, especially
when data relate to sensitive commercial or
patenting issues. Conversely, owing to their
multi-institutional nature, scholarly consortia
usually suffer from heterogeneous character-
ization of their PDX collections, a flaw that
is hardly corrected by the relatively limited
resources provided by government or charity
grants; however, PDX academic efforts enjoy
flexibility in drug testing and unfettered
scientific reporting (including reporting of
negative results, which avoids the duplication
of effort and reduces costs). As EurOPDX
members working in academia, we share
with our colleagues of PRoXe the concern
that “academic centers are ill suited to bear
the burden of housing, expanding, archiving,
characterizing, and disseminating PDXs
to investigators (academic and industrial)
across the world” (REF. 165). Meanwhile, we
believe that joining forces, incorporating
models, coordinating methodologies, and
improving the public shareability and
visibility of molecular data in an academic-
oriented rather than in an industry-scale
format are viable objectives that will foster
not only a stronger collaborative spirit
in cancer medicine, but also a change of
mind-set within institutional authorities and
industrial stakeholders. EurOPDX started as
a crowd-funded initiative of scientists with
common goals, complementary skills and
similar needs, and is now growing in a more
structured manner thanks to enterprise-wide
development plans. Ultimately, we envision a
virtuous circle in which new knowledge from
bottom-up efforts such as ours and others
will inform clinical decision making, which
in turn will orient public and private financial
interests to secure further sustainability of
PDX-based activities. Successful examples

in other contexts of biomedical research,
such as TRANSAUTOPHAGY (see Further
information; a European consortium for
multidisciplinary research and translation
of knowledge on autophagy) and GENiIE
(see Further information; a network of
scientists using Caenorhabditis elegans as
amodel organism), bode well to achieve
this ambition.

Annette T. Byrne and Monika A. Jarzabek are members
of the EurOPDX Consortium and are at the Royal
College of Surgeons in Ireland, Dublin 2, Ireland.

Denis G. Alférez and Robert B. Clarke are members of
the EurOPDX Consortium and are at the Breast Cancer
Now Research Unit, Division of Molecular and Clinical
Cancer Sciences, Manchester Cancer Research Centre,
University of Manchester, Manchester M20 4QL, UK.

Fredéric Amant, Daniela Annibali and Els Hermans are
members of the EurOPDX Consortium and are at the
Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
Fréderic Amant is also at The Netherlands Cancer
Institute, Plesmanlaan 121, 1066CX Amsterdam,

The Netherlands.

Joaquin Arribas, Joan Seoane and Laura Soucek are
members of the EurOPDX Consortium and are at the
Vall d’Hebron Institute of Oncology, 08035 Barcelona,
the Universitat Autonoma de Barcelona, 08193
Bellaterra, and the Institucié Catalana de Recerca i
Estudis Avancats (ICREA), 08010 Barcelona, Spain.
Joaquin Arribas and Joan Seoane are also at
CIBERONC, 08035 Barcelona, Spain.

Andrew V. Biankin and David K. Chang are members of
the EurOPDX Consortium and are at the Wolfson Wohl
Cancer Research Centre, Institute of Cancer Sciences,
University of Glasgow, Glasgow G61 1QH, UK.

Alejandra Bruna, Carlos Caldas and Oscar M. Rueda
are members of the EurOPDX Consortium and are at
Cancer Research UK Cambridge Institute,

Cambridge Cancer Centre, University of Cambridge,
Cambridge CB2 ORE, UK.

Eva Budinska is a member of the EurOPDX Consortium
and is at the Institute of Biostatistics and Analyses,
Faculty of Medicine, and Research Centre for Toxic
Compounds in the Environment, Faculty of Science,
Masarykova Univerzita, 625 00 Brno, Czech Republic.

Hans Clevers is at the Hubrecht Institute, University
Medical Centre Utrecht, and Princess Maxima Center for
Pediatric Oncology, 3584CT Utrecht, The Netherlands.

George Coukos and Dominique Vanhecke are members
of the EurOPDX Consortium and are at

Lausanne Branch, Ludwig Institute for Cancer Research
at the University of Lausanne, 1066 Lausanne,
Switzerland.

Virginie Dangles-Marie is a member of the EurOPDX
Consortium and is at the Institut Curie, PSL Research
University, Translational Research Department,
75005 Paris, and Université Paris Descartes,
Sorbonne Faris Cité, Faculté de Pharmacie de Paris,
75006 Faris, France.

S. Gail Eckhardt is at the University of Colorado Cancer
Center, Aurora, Colorado 80045, USA.

Eva Gonzalez-Suarez is a member of the EurOPDX
Consortium and is at the Cancer Epigenetics and
Biology Program, Bellvitge Biomedical Research

Institute IDIBELL, 08908 L’Hospitalet de Llobregat,
Barcelona, Spain.

PERSPECTIVES

Manuel Hidalgo is a member of the EurOPDX
Consortium and is at Beth Israel Deaconess Medical
Center, Boston, Harvard Medical School, Boston,
Massachusetts 02215, USA.

Steven de Jong is a member of the EurOPDX
Consortium and is at the University Medical Centre
Groningen, University of Groningen, 9713GZ
Groningen, The Netherlands.

Jos Jonkers, Kristel Kemper and Daniel S. Peeper are
members of the EurOPDX Consortium and are at

The Netherlands Cancer Institute, Plesmanlaan 121,
1066CX Amsterdam, The Netherlands.

Luisa Lanfrancone and Pier Giuseppe Pelicci are
members of the EurOPDX Consortium and are at the
Department of Experimental Oncology, European
Institiute of Oncology, 20139 Milan, Italy.

Gunhild Mari Mcelandsmo and Jens Henrik Norum are
members of the EurOPDX Consortium and are at Oslo
University Hospital, Institute for Cancer Research,
0424 Oslo, Norway.

Elisabetta Marangoni and Sergio Roman-Roman are
members of the EurOPDX Consortium and are at
Institut Curie, PSL Research University, Translational
Research Department, 75005 Paris, France.

Jean-Christophe Marine is a member of the EurOPDX
Consortium and is at the Laboratory for Molecular
Cancer Biology, Department of Oncology, Katholieke
Universiteit Leuven, and the Center for Cancer Biology,
VIB, 3000 Leuven, Belgium.

Enzo Medico, Andrea Bertotti and Livio Trusolino are
members of the EurOPDX Consortium and are at the
Candiolo Cancer Institute IRCCS and Department of
Oncology, University of Torino, 10060 Candiolo,
Torino, Italy.

Héctor G. Palmer, Alejandro Piris-Gimenez and Violeta
Serra are members of the EurOPDX Consortium and
are at the Vall d’Hebron Institute of Oncology and
CIBERONC, 08035 Barcelona, Spain.

Alberto Villanueva is a member of the EurOPDX
Consortium and is at the Program Against Cancer
Therapeutic Resistance (ProCURE), Catalan Institute of
Oncology ICO, Bellvitge Biomedical Research Institute
IDIBELL, 08098 L'Hospitalet de Llobregat, Barcelona,
and Xenopat S.L., Business Bioincubator, Bellvitge
Health Science Campus, 08907 L’Hospitalet

de Llobregat, Barcelona, Spain.

Emilie Vinolo is at Seeding Science SAS,
75020 Paris, France.

Correspondence to A.TB. and L.T.
annettebyrne@rcsi.ie;

livio.trusolino @ircc.it

doi:10.1038/nrc.2016.140
Published online 20 Jan 2017

1. deBono, J. S. & Ashworth, A. Translating cancer
research into targeted therapeutics. Nature 467,
543-549 (2010).

2. Daniel, V. C. et al. A primary xenograft model of small-
cell lung cancer reveals irreversible changes in gene
expression imposed by culture in vitro. Cancer Res. 69,
3364-3373 (2009).

3. Arrowsmith, J. Trial watch: phase Il failures: 2008—
2010. Nat. Rev. Drug Discov. 10, 328-329 (2011).

4. Arrowsmith, J. & Miller, P. Trial watch: phase Il
and phase Ill attrition rates 2011-2012. Nat. Rev.
Drug Discov. 12, 569 (2013).

5. Paul, S. M. et al. How to improve R&D productivity: the
pharmaceutical industry’s grand challenge. Nat. Rev.
Drug Discov. 9, 203-214 (2010).

6.  Bertotti, A. et al. A molecularly annotated platform of
patient-derived xenografts (“xenopatients”) identifies
HER?2 as an effective therapeutic target in cetuximab-

NATURE REVIEWS | CANCER

VOLUME 17 | APRIL 2017 | 265

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.


http://cost-transautophagy.eu/
http://worm-genie.eu/
mailto:annettebyrne%40rcsi.ie?subject=
mailto:livio.trusolino%40ircc.it?subject=
http://dx.doi.org/10.1038/nrc.2016.140

PERSPECTIVES

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

32.

33.

34,

resistant colorectal cancer. Cancer Discov. 1, 508-523
(2011).

Bertotti, A. et al. The genomic landscape of response
to EGFR blockade in colorectal cancer. Nature 526,
263-267 (2015).

DeRose, Y. S. et al. Tumor grafts derived from women
with breast cancer authentically reflect tumor
pathology, growth, metastasis and disease outcomes.
Nat. Med. 17, 1514-1520 (2011).

Gao, H. et al. High-throughput screening using patient-
derived tumor xenografts to predict clinical trial drug
response. Nat. Med. 21, 1318-1325 (2015).
Hidalgo, M. et al. Patient-derived xenograft models:
an emerging platform for translational cancer research.
Cancer Discov. 4, 998-1013 (2014).

Siolas, D. & Hannon, G. J. Patient-derived tumor
xenografts: transforming clinical samples into mouse
models. Cancer Res. 73, 5315-5319 (2013).

Tentler, J. J. et al. Patient-derived tumour xenografts
as models for oncology drug development. Nat. Rev.
Clin. Oncol. 9, 338-350 (2012).

Day, C. P, Merlino, G. & Van Dyke, T. Preclinical mouse
cancer models: a maze of opportunities and challenges.
Cell 163, 39-53 (2015).

Tabassum, D. P. & Polyak, K. Tumorigenesis: it takes a
village. Nat. Rev. Cancer 15, 473-483 (2015).
Aparicio, S. & Caldas, C. The implications of clonal
genome evolution for cancer medicine. N. Engl. J. Med.
368, 842-851 (2013).

Almendro, V. et al. Inference of tumor evolution during
chemotherapy by computational modeling and in situ
analysis of genetic and phenotypic cellular diversity.
Cell Rep. 6, 514527 (2014).

Kreso, A. & Dick, J. E. Evolution of the cancer stem cell
model. Cell Stem Cell 14, 275-291 (2014).

Kreso, A. et al. Variable clonal repopulation dynamics
influence chemotherapy response in colorectal cancer.
Science 339, 543-548 (2013).

Marusyk, A., Almendro, V. & Polyak, K. Intra-tumour
heterogeneity: a looking glass for cancer? Nat. Rev.
Cancer 12,323-334 (2012).

Maley, C. C. et al. Genetic clonal diversity predicts
progression to esophageal adenocarcinoma. Nat. Genet.
38, 468-473 (2006).

Curtis, C. et al. The genomic and transcriptomic
architecture of 2,000 breast tumours reveals novel
subgroups. Nature 486, 346—-352 (2012).

Dawson, S. J., Rueda, O. M., Aparicio, S. & Caldas, C.
A new genome-driven integrated classification of
breast cancer and its implications. EMBO J. 32,
617-628 (2013).

Shah, S. P. et al. The clonal and mutational evolution
spectrum of primary triple-negative breast cancers.
Nature 486, 395-399 (2012).

Eirew, P. et al. Dynamics of genomic clones in breast
cancer patient xenografts at single-cell resolution.
Nature 518, 422-426 (2015).

Nik-Zainal, S. et al. The life history of 21 breast
cancers. Cell 149, 994—-1007 (2012).

Bhang, H. E. et al. Studying clonal dynamics in
response to cancer therapy using high-complexity
barcoding. Nat. Med. 21, 440-448 (2015).
Jeselsohn, R. et al. Emergence of constitutively active
estrogen receptor-o. mutations in pretreated advanced
estrogen receptor-positive breast cancer. Clin. Cancer
Res. 20, 1757-1767 (2014).

Murtaza, M. et al. Multifocal clonal evolution
characterized using circulating tumour DNA in a case
of metastatic breast cancer. Nat. Commun. 6, 8760
(2015).

Bruna, A. et al. A biobank of breast cancer explants
with preserved intra-tumor heterogeneity to screen
anticancer compounds. Cell 167, 1-15 (2016).
Marangoni, E. et al. A new model of patient tumor-
derived breast cancer xenografts for preclinical assays.
Clin. Cancer Res. 13, 3989-3998 (2007).

Li, S. et al. Endocrine-therapy-resistant ESR1 variants
revealed by genomic characterization of breast-
cancer-derived xenografts. Cell Rep. 4, 1116—1130
(2013).

Cassidy, J. W., Caldas, C. & Bruna, A. Maintaining
tumor heterogeneity in patient-derived tumor
xenografts. Cancer Res. 75, 2963-2968 (2015).
Cottu, P. et al. Acquired resistance to endocrine
treatments is associated with tumor-specific molecular
changes in patient-derived luminal breast cancer
xenografts. Clin. Cancer Res. 20, 4314—4325 (2014).
Ter Brugge, P. et al. Mechanisms of therapy resistance
in patient-derived xenograft models of
BRCA1-deficient breast cancer. J. Nat/ Cancer Inst.
108, djw148 (2016).

35.

36.

37.

38.

39.

40.

42.

43,

4,

45,

46.

47.

48.

49.

50.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Kemper, K. et al. Intra- and inter-tumor heterogeneity
in a vemurafenib-resistant melanoma patient and
derived xenografts. EMBO Mol. Med. 7, 1104-1118
(2015).

Shi, H. et al. Acquired resistance and clonal evolution
in melanoma during BRAF inhibitor therapy. Cancer
Discov. 4, 80-93 (2014).

Tirosh, I. et al. Dissecting the multicellular ecosystem
of metastatic melanoma by single-cell RNA-seq.
Science 352, 189-196 (2016).

Kemper, K. et al. BRAF'5°°t kinase domain duplication
identified in therapy-refractory melanoma patient-
derived xenografts. Cell Rep. 16, 263277 (2016).
Nguyen, L. V. et al. DNA barcoding reveals diverse
growth kinetics of human breast tumour subclones in
serially passaged xenografts. Nat. Commun. 5, 5871
(2014).

Joosse, S. A., Gorges, T. M. & Pantel, K. Biology,
detection, and clinical implications of circulating tumor
cells. EMBO Mol. Med. 7, 1-11 (2015).

Massague, J. & Obenauf, A. C. Metastatic colonization
by circulating tumour cells. Nature 529, 298-306
(2016).

Lapidot, T. et al. A cell initiating human acute myeloid
leukaemia after transplantation into SCID mice.
Nature 367, 645-648 (1994).

Pece, S. et al. Biological and molecular heterogeneity
of breast cancers correlates with their cancer stem cell
content. Cell 140, 62-73 (2010).

Reya, T., Morrison, S. J., Clarke, M. F. &

Weissman, I. L. Stem cells, cancer, and cancer stem
cells. Nature 414, 105—-111 (2001).

Li, C, Lee, C. J. & Simeone, D. M. Identification of
human pancreatic cancer stem cells. Methods Mol. Biol.
568, 161-173 (2009).

Lawson, D. A. et al. Single-cell analysis reveals a stem-
cell program in human metastatic breast cancer cells.
Nature 526, 131-135 (2015).

Li, X. et al. Intrinsic resistance of tumorigenic breast
cancer cells to chemotherapy. J. Nat/ Cancer Inst. 100,
672-679 (2008).

Todaro, M. et al. Colon cancer stem cells dictate tumor
growth and resist cell death by production of
interleukin-4. Cell Stem Cell 1, 389—-402 (2007).
Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A.,
Morrison, S. J. & Clarke, M. F. Prospective
identification of tumorigenic breast cancer cells.
Proc. Natl Acad. Sci. USA 100, 3983-3988
(2003).

Fan, F. et al. The requirement for freshly isolated
human colorectal cancer (CRC) cells in isolating CRC
stem cells. Br. J. Cancer 112, 539-546 (2015).
Borovski, T., De Sousa, E. M. F.,, Vermeulen, L. &
Medema, J. P. Cancer stem cell niche: the place to be.
Cancer Res. 71, 634—-639 (2011).

Charafe-Jauffret, E. et al. ALDH 1-positive cancer stem
cells predict engraftment of primary breast tumors
and are governed by a common stem cell program.
Cancer Res. 73, 7290-7300 (2013).
Miranda-Lorenzo, I. et al. Intracellular
autofluorescence: a biomarker for epithelial cancer
stem cells. Nat. Methods 11, 1161-1169 (2014).
Sainz, B. Jr et al. Microenvironmental hCAP-18/LL-37
promotes pancreatic ductal adenocarcinoma by
activating its cancer stem cell compartment. Gut 64,
1921-1935 (2015).

Magee, J. A., Piskounova, E. & Morrison, S. J. Cancer
stem cells: impact, heterogeneity, and uncertainty.
Cancer Cell 21, 283-296 (2012).

Rottenberg, S. et al. Selective induction of
chemotherapy resistance of mammary tumors in a
conditional mouse model for hereditary breast cancer.
Proc. Natl Acad. Sci. USA 104, 12117-12122
(2007).

Castillo-Avila, W. et al. Sunitinib inhibits tumor growth
and synergizes with cisplatin in orthotopic models of
cisplatin-sensitive and cisplatin-resistant human
testicular germ cell tumors. Clin. Cancer Res. 15,
3384-3395 (2009).

Juliachs, M. et al. The PDGFRB—AKT pathway
contributes to CDDP-acquired resistance in testicular
germ cell tumors. Clin. Cancer Res. 20, 658-667
(2014).

Simoes, B. M. et al. Anti-estrogen resistance in human
breast tumors is driven by JAG1-NOTCH4-dependent
cancer stem cell activity. Cell Rep. 12, 1968—-1977
(2015).

Herrera-Abreu, M. T. et al. Early adaptation and
acquired resistance to CDK4/6 inhibition in estrogen
receptor-positive breast cancer. Cancer Res. 76,
2301-2313 (2016).

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

1.

72.

73.

T4.

75.

76.

77.

78.

79.

80.

81.

82.

Kim, K. T. et al. Single-cell mRNA sequencing identifies
subclonal heterogeneity in anti-cancer drug responses
of lung adenocarcinoma cells. Genome Biol. 16, 127
(2015).

Cottu, P. et al. Modeling of response to endocrine
therapy in a panel of human luminal breast cancer
xenografts. Breast Cancer Res. Treat. 133, 595-606
(2012).

Zhang, X. et al. A renewable tissue resource of
phenotypically stable, biologically and ethnically
diverse, patient-derived human breast cancer
xenograft models. Cancer Res. 13, 4885-4897
(2013).

Das Thakur, M. et al. Modelling vemurafenib
resistance in melanoma reveals a strategy to forestall
drug resistance. Nature 494, 251-255 (2013).

Sun, C. et al. Reversible and adaptive resistance to
BRAFV6%E inhibition in melanoma. Nature 508,
118-122 (2014).

Stewart, E. L. et al. Clinical utility of patient-derived
xenografts to determine biomarkers of prognosis and
map resistance pathways in EGFR-mutant lung
adenocarcinoma. J. Clin. Oncol. 33, 24722480
(2015).

Stebbing, J. et al. Patient-derived xenografts for
individualized care in advanced sarcoma. Cancer 120,
2006-2015 (2014).

Balko, J. M. et al. Molecular profiling of the residual
disease of triple-negative breast cancers after
neoadjuvant chemotherapy identifies actionable
therapeutic targets. Cancer Discov. &, 232-245
(2014).

Zacarias-Fluck, M. F. et al. Effect of cellular senescence
on the growth of HER2-positive breast cancers. J. Nat!
Cancer Inst. 107, djv020 (2015).

Bankert, R. B., Egilmez, N. K. & Hess, S. D. Human-
SCID mouse chimeric models for the evaluation of
anti-cancer therapies. Trends Immunol. 22, 386—-393
(2001).

Hylander, B. L. et al. Origin of the vasculature
supporting growth of primary patient tumor
xenografts. J. Trans/ Med. 11, 110 (2013).

Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer
immunoediting: integrating immunity’s roles in

cancer suppression and promotion. Science 331,
1565-1570 (2011).

Guichelaar, T. et al. Human regulatory T cells do not
suppress the antitumor immunity in the bone marrow:
a role for bone marrow stromal cells in neutralizing
regulatory T cells. Clin. Cancer Res. 19, 1467-1475
(2013).

King, M. A. et al. Human peripheral blood leucocyte
non-obese diabetic-severe combined
immunodeficiency interleukin-2 receptor gamma chain
gene mouse model of xenogeneic graft-versus-host-
like disease and the role of host major
histocompatibility complex. Clin. Exp. Immunol. 157,
104-118 (2009).

Holzapfel, B. M., Wagner, F,, Thibaudeau, L.,
Levesque, J. P. & Hutmacher, D. W. Concise review:
humanized models of tumor immunology in the 21st
century: convergence of cancer research and tissue
engineering. Stem Cells 33, 1696—1704 (2015).
Drake, A. C., Chen, Q. & Chen, J. Engineering
humanized mice for improved hematopoietic
reconstitution. Cell. Mol. Immunol. 9, 215-224 (2012).
Reinisch, A., Gratzinger, D., Hong, W.-J. &

Majeti, R. A. Novel humanized bone marrow niche
xenotransplantation model allows superior
engraftment of human normal and malignant
hematopoietic cells and reveals myelofibrosis-initiating
cells in the HSC compartment. Blood 124, 349
(2014).

Rongvaux, A. et al. Human hemato-lymphoid system
mice: current use and future potential for medicine.
Annu. Rev. Immunol. 31, 635-674 (2013).

Voloshin, T. et al. G-CSF supplementation with
chemotherapy can promote revascularization and
subsequent tumor regrowth: prevention by a CXCR4
antagonist. Blood 118, 3426-3435 (2011).

Morton, J. J. et al. XactMice: humanizing mouse bone
marrow enables microenvironment reconstitution in a
patient-derived xenograft model of head and neck
cancer. Oncogene 35, 290-300 (2016).

Takenaka, K. et al. Polymorphism in Sirpa modulates
engraftment of human hematopoietic stem cells.

Nat. Immunol. 8, 1313-1323 (2007).

Du, Q. et al. Establishment of and comparison
between orthotopic xenograft and subcutaneous
xenograft models of gallbladder carcinoma. Asian Pac.
J. Cancer Prev. 15, 3747-3752 (2014).

266 | APRIL 2017 | VOLUME 17

www.nature.com/nrc

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



83.

84.

85.

86.

87.

88.

89.

90.

92.

93.

94.

95.

96.

97.

98.

99.

100.

o

102.

103.

104.

105.

106.

Hoffman, R. M. Patient-derived orthotopic
xenografts: better mimic of metastasis than
subcutaneous xenografts. Nat. Rev. Cancer 15,
451-452 (2015).

Dai, L., Lu, C., Yu, X. I, Dai, L. J. & Zhou, J. X.
Construction of orthotopic xenograft mouse models
for human pancreatic cancer. Exp. Ther. Med. 10,
1033-1038 (2015).

Ambrogio, C. et al. Combined inhibition of DDR1 and
Notch signaling is a therapeutic strategy for KRAS-
driven lung adenocarcinoma. Nat. Med. 22, 270-277
(2016).

de Jong, M., Essers, J. & van Weerden, W. M. Imaging
preclinical tumour models: improving translational
power. Nat. Rev. Cancer 14, 481-493 (2014).

lorns, E. et al. A new mouse model for the study of
human breast cancer metastasis. PLoS ONE 7,
e47995 (2012).

Gupta, P., Adkins, C., Lockman, P. & Srivastava, S. K.
Metastasis of breast tumor cells to brain is suppressed
by phenethyl isothiocyanate in a novel metastasis
model. PLoS ONE 8, 67278 (2013).

Lee, H. W. et al. Patient-derived xenografts from non-
small cell lung cancer brain metastases are valuable
translational platforms for the development of
personalized targeted therapy. Clin. Cancer Res. 21,
1172-1182 (2015).

Chen, H. J. et al. Comprehensive models of human
primary and metastatic colorectal tumors in
immunodeficient and immunocompetent mice by
chemokine targeting. Nat. Biotechnol. 33, 656—-660
(2015).

Girotti, M. R. et al. Application of sequencing, liquid
biopsies, and patient-derived xenografts for
personalized medicine in melanoma. Cancer Discov. 6,
286-299 (2016).

Nunes, M. et al. Evaluating patient-derived colorectal
cancer xenografts as preclinical models by comparison
with patient clinical data. Cancer Res. 75, 1560-1566
(2015).

Sartore-Bianchi, A. et al. Dual-targeted therapy with
trastuzumab and lapatinib in treatment-refractory,
KRAS codon 12/13 wild-type, HER2-positive
metastatic colorectal cancer (HERACLES): a
proof-of-concept, multicentre, open-label, phase 2
trial. Lancet Oncol. 17, 738-746 (2016).

Krebs, M. G. et al. Evaluation and prognostic
significance of circulating tumor cells in patients

with non-small-cell lung cancer. J. Clin. Oncol. 29,
1556-1563 (2011).

Scher, H. I. et al. Circulating tumour cells as prognostic
markers in progressive, castration-resistant prostate
cancer: a reanalysis of IMMC38 trial data. Lancet
Oncol. 10, 233-239 (2009).

Zhang, L. et al. Meta-analysis of the prognostic value
of circulating tumor cells in breast cancer. Clin. Cancer
Res. 18,5701-5710 (2012).

Baccelli, I. et al. Identification of a population of
blood circulating tumor cells from breast cancer
patients that initiates metastasis in a xenograft assay.
Nat. Biotechnol. 31, 539544 (2013).

Hodgkinson, C. L. et al. Tumorigenicity and genetic
profiling of circulating tumor cells in small-cell lung
cancer. Nat. Med. 20, 897-903 (2014).

Yap, T. A., Lorente, D., Omlin, A., Olmos, D. &

de Bono, J. S. Circulating tumor cells: a
multifunctional biomarker. Clin. Cancer Res. 20,
2553-2568 (2014).

Alix-Panabieres, C. & Pantel, K. Challenges in
circulating tumour cell research. Nat. Rev. Cancer 14,
623-631 (2014).

. lgnatiadis, M., Lee, M. & Jeffrey, S. S. Circulating

tumor cells and circulating tumor DNA: challenges
and opportunities on the path to clinical utility.

Clin. Cancer Res. 21, 47864800 (2015).

Williams, E. S. et al. Generation of prostate cancer
patient derived xenograft models from circulating
tumor cells. J. Vis. Exp. 104, €53182 (2015).
Toyoshima, K. et al. Analysis of circulating tumor cells
derived from advanced gastric cancer. Int. J. Cancer
137,991-998 (2015).

Yu, M. et al. Cancer therapy. Ex vivo culture of
circulating breast tumor cells for individualized testing
of drug susceptibility. Science 345, 216-220 (2014).
Cayrefourcq, L. et al. Establishment and
characterization of a cell line from human circulating
colon cancer cells. Cancer Res. 75, 892—-901 (2015).
Aggarwal, C. et al. Relationship among circulating
tumor cells, CEA and overall survival in patients

with metastatic colorectal cancer. Ann. Oncol. 24,
420-428 (2013).

107.

108.

109.

12

12

12

12

12

12

12

13

o

2.

3.

5.

6.

7.

9.

0.

Vishnoi, M. et al. The isolation and characterization
of CTC subsets related to breast cancer dormancy.
Sci. Rep. 5, 17533 (2015).

Krebs, M. G. et al. Molecular analysis of circulating
tumour cells-biology and biomarkers. Nat. Rev.
Clin. Oncol. 11, 129—144 (2014).

Markou, A. et al. PIK3CA mutational status in
circulating tumor cells can change during disease
recurrence or progression in patients with breast
cancer. Clin. Cancer Res. 20, 5823-5834 (2014).

. Giuliano, M. et al. Circulating and disseminated tumor

cells from breast cancer patient-derived xenograft-
bearing mice as a novel model to study metastasis.
Breast Cancer Res. 17, 3 (2015).

. Torphy, R. J. et al. Circulating tumor cells as a

biomarker of response to treatment in patient-derived
xenograft mouse models of pancreatic
adenocarcinoma. PLoS ONE 9, e89474 (2014).

. Jordan, N. V. et al. HER2 expression identifies

dynamic functional states within circulating breast
cancer cells. Nature 537, 102—-106 (2016).
Garraway, L. A. & Lander, E. S. Lessons from the
cancer genome. Cell 153, 17-37 (2013).

. Trusolino, L. & Bertotti, A. Compensatory pathways in

oncogenic kinase signaling and resistance to targeted
therapies: six degrees of separation. Cancer Discov. 2,
876-880 (2012).

Bardelli, A. et al. Amplification of the MET receptor
drives resistance to anti-EGFR therapies in colorectal
cancer. Cancer Discov. 3, 658—-673 (2013).

. Kavuri, S. M. et al. HER2 activating mutations are

targets for colorectal cancer treatment. Cancer Discov.
5,832-841 (2015).

. Leto, S. M. et al. Sustained inhibition of HER3 and

EGFR is necessary to induce regression of
HER2-amplified gastrointestinal carcinomas.
Clin. Cancer Res. 21, 5519-5531 (2015).

. Zanella, E. R. et al. IGF2 is an actionable target that

identifies a distinct subpopulation of colorectal cancer
patients with marginal response to anti-EGFR
therapies. Sci. Transl Med. 7, 272ra12 (2015).

. Sun, C. et al. Intrinsic resistance to MEK inhibition in

KRAS mutant lung and colon cancer through
transcriptional induction of ERBB3. Cell Rep. 7,
86-93 (2014).

. Weickhardt, A. J. et al. Dual targeting of the epidermal

growth factor receptor using the combination of
cetuximab and erlotinib: preclinical evaluation and
results of the phase Il DUX study in chemotherapy-
refractory, advanced colorectal cancer. J. Clin. Oncol.
30, 1505-1512 (2012).

. Long, G. V. et al. Combined BRAF and MEK inhibition

versus BRAF inhibition alone in melanoma. N. Engl.
J. Med. 371, 1877-1888 (2014).

Bossi, D. et al. In vivo genetic screens of patient-
derived tumors revealed unexpected frailty of the
transformed phenotype. Cancer Discov. 6, 650-663
(2016).

Carugo, A. et al. In vivo functional platform targeting
patient-derived xenografts identifies WDR5-Myc
association as a critical determinant of pancreatic
cancer. Cell Rep. 16, 133-147 (2016).

. Murphy, B. et al. Evaluation of alternative in vivo drug

screening methodology: a single mouse analysis.
Cancer Res. 716, 5798-5809 (2016).

Migliardi, G. et al. Inhibition of MEK and PI3K/mTOR
suppresses tumor growth but does not cause tumor
regression in patient-derived xenografts of RAS-
mutant colorectal carcinomas. Clin. Cancer Res. 18,
2515-2525 (2012).

Boj, S. F. et al. Organoid models of human and
mouse ductal pancreatic cancer. Cell 160, 324-338
(2015).

Gao, D. et al. Organoid cultures derived from patients
with advanced prostate cancer. Cell 159, 176-187
(2014).

. Huang, L. et al. Ductal pancreatic cancer modeling

and drug screening using human pluripotent stem cell-
and patient-derived tumor organoids. Nat. Med. 21,
1364—-1371 (2015).

Sato, T. et al. Long-term expansion of epithelial
organoids from human colon, adenoma,
adenocarcinoma, and Barrett’s epithelium.
Gastroenterology 141, 1762-1772 (2011).

van de Wetering, M. et al. Prospective derivation of a
living organoid biobank of colorectal cancer patients.
Cell 161, 933-945 (2015).

. Weeber, F. et al. Preserved genetic diversity in

organoids cultured from biopsies of human colorectal
cancer metastases. Proc. Natl Acad. Sci. USA 112,
13308-13311 (2015).

13

134.

135.

136.

137.

138.

139.

140.

o~

142.

143.

144,

145.

146.

14

148.

149.

150.

a

152.

153.

154.

155.

o

hat

PERSPECTIVES

Hubert, C. G. et al. A three-dimensional organoid
culture system derived from human glioblastomas
recapitulates the hypoxic gradients and cancer stem
cell heterogeneity of tumors found in vivo. Cancer Res.
76, 2465-2477 (2016).

. Crystal, A. S. et al. Patient-derived models of acquired

resistance can identify effective drug combinations for
cancer. Science 346, 1480—-1486 (2014).

Nardella, C., Lunardi, A., Patnaik, A., Cantley, L. C.
& Pandolfi, P. P. The APL paradigm and the “co-clinical
trial” project. Cancer Discov. 1, 108-116 (2011).

US National Library of Medicine. ClinicalTrials.gov
https://clinicaltrials.gov/ct2/show/NCT02720796
(2016).

US National Library of Medicine. ClinicalTrials.gov
https://clinicaltrials.gov/ct2/show/NCT02752932
(2016).

US National Library of Medicine. ClinicalTrials.gov
https://clinicaltrials.gov/ct2/show/NCT02312245
(2016).

US National Library of Medicine. ClinicalTrials.gov
https://clinicaltrials.gov/ct2/show/NCT02795650
(2016).

Azaro, A. et al. A first-in-human phase | trial of
LY2780301, a dual p70 S6 kinase and Akt Inhibitor,
in patients with advanced or metastatic cancer.
Invest. New Drugs 33, 710-719 (2015).

Juric, D. et al. Convergent loss of PTEN leads to
clinical resistance to a PI(3)Ka: inhibitor. Nature 518,
240-244 (2015).

. Morelli, M. P. et al. Prioritizing phase | treatment

options through preclinical testing on personalized
tumorgraft. J. Clin. Oncol. 30, e45—e48 (2012).
Zembutsu, H. et al. Genome-wide cDNA microarray
screening to correlate gene expression profiles

with sensitivity of 85 human cancer xenografts

to anticancer drugs. Cancer Res. 62, 518-527
(2002).

Gupta, S. K. et al. Delineation of MGMT
Hypermethylation as a biomarker for veliparib-
mediated temozolomide-sensitizing therapy of
glioblastoma. J. Natl Cancer Inst. 108, djv369 (2016).
US National Library of Medicine. ClinicalTrials.gov
https://clinicaltrials.gov/ct2/show/NCT02152982
(2016).

Brown, K. E. et al. Proteomic profiling of patient-
derived glioblastoma xenografts identifies a subset
with activated EGFR: implications for drug
development. J. Neurochem. 133, 730-738
(2015).

Crinde, M. T. et al. Interplay of choline metabolites
and genes in patient-derived breast cancer xenografts.
Breast Cancer Res. 16, R5 (2014).

Moestue, S. A. et al. Distinct choline metabolic profiles
are associated with differences in gene expression for
basal-like and luminal-like breast cancer xenograft
models. BMC Cancer 10, 433 (2010).

Glunde, K., Jie, C. & Bhujwalla, Z. M. Molecular
causes of the aberrant choline phospholipid
metabolism in breast cancer. Cancer Res. 64,
4270-4276 (2004).

Nelson, S. J. et al. Metabolic imaging of patients with
prostate cancer using hyperpolarized [1-'*C]pyruvate.
Sci. Transl. Med. 5, 198ra108 (2013).

Klomp, D. W. etal. 31P MRSl and THMRS at 7T:
initial results in human breast cancer. NMR Biomed.
24,1337-1342 (2011).

. Esmaeili, M. et al. In vivo 3'P magnetic resonance

spectroscopic imaging (MRSI) for metabolic profiling
of human breast cancer xenografts. J. Magn. Reson.
Imaging 41, 601-609 (2015).

Eyre, R. et al. Patient-derived mammosphere and
xenograft tumour initiation correlates with
progression to metastasis. J. Mammary Gland

Biol. Neoplasia http://dx.doi.org/10.1007/s10911-
016-9361-8 (2016).

Moon, H. G. et al. Prognostic and functional
importance of the engraftment-associated genes in
the patient-derived xenograft models of triple-
negative breast cancers. Breast Cancer Res. Treat.
154, 13-22 (2015).

Garrido-Laguna, . et al. Tumor engraftment in nude
mice and enrichment in stroma- related gene
pathways predict poor survival and resistance to
gemcitabine in patients with pancreatic cancer.

Clin. Cancer Res. 17,5793-5800 (2011).

Delitto, D. et al. Patient-derived xenograft models for
pancreatic adenocarcinoma demonstrate retention of
tumor morphology through incorporation of murine
stromal elements. Am. J. Pathol. 185, 1297-1303
(2015).

NATURE REVIEWS | CANCER

VOLUME 17 | APRIL 2017 | 267

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.


https://clinicaltrials.gov/ct2/show/NCT02720796
https://clinicaltrials.gov/ct2/show/NCT02752932
https://clinicaltrials.gov/ct2/show/NCT02312245
https://clinicaltrials.gov/ct2/show/NCT02795650
https://clinicaltrials.gov/ct2/show/NCT02152982
http://dx.doi.org/10.1007/s10911-016-9361-8
http://dx.doi.org/10.1007/s10911-016-9361-8

PERSPECTIVES

156

157.

158.

159.

160.

16

162.

164.

165.

166.

167.

168.

169.

170.

17

172.

. Isella, C. et al. Stromal contribution to the colorectal

cancer transcriptome. Nat. Genet. 47, 312-319
(2015).

Calon, A. et al. Stromal gene expression defines poor-
prognosis subtypes in colorectal cancer. Nat. Genet.
47,320-329 (2015).

Dunne, P. D. et al. Challenging the cancer molecular
stratification dogma: intratumoral heterogeneity
undermines consensus molecular subtypes and
potential diagnostic value in colorectal cancer.

Clin. Cancer Res. 22, 4095-4104 (2016).
Bhargava, M. et al. Scatter factor and hepatocyte
growth factor: activities, properties, and
mechanism. Cell Growth Differ. 3, 11-20

(1992).

Pennacchietti, S. et al. Microenvironment-derived
HGF overcomes genetically determined sensitivity to
anti-MET drugs. Cancer Res. 14, 6598-6609
(2014).

. Mestas, J. & Hughes, C. C. Of mice and not men:

differences between mouse and human immunology.
J. Immunol. 172, 2731-2738 (2004).

Brodeur, J. et al. Knock-in of human HGF into the
mouse genome maintains endogenous HGF
regulation and supports the growth of HGF-
dependent human cancer cell lines. Cancer Res. 69,
abstr. 305 (2009).

. Zimmer, L. et al. Phase | expansion and

pharmacodynamic study of the oral MEK inhibitor
R0O4987655 (CH4987655) in selected patients

with advanced cancer with RAS—RAF mutations.

Clin. Cancer Res. 20, 42514261 (2014).

Eckhardt, S. G. et al. Challenges, opportunities, and
lessons learned in the bench-to-bedside translation of
xenopatient studies. Clin. Cancer Res. 22 (16 Suppl.),
abstr. IA20 (2016).

Townsend, E. C. et al. The public repository of
xenografts enables discovery and randomized

phase Il-like trials in mice. Cancer Cell 29, 574-586
(2016).

Baralis, E., Bertotti, A., Fiori, A. & Grand, A. LAS:

a software platform to support oncological data
management. J. Med. Syst. 36 (Suppl. 1), S81-S90
(2012).

Chou, J. et al. Phenotypic and transcriptional fidelity
of patient-derived colon cancer xenografts in
immune-deficient mice. PLoS ONE 8, 79874 (2013).
Ito, R., Takahashi, T., Katano, I. & Ito, M. Current
advances in humanized mouse models. Cell. Mol.
Immunol. 9, 208-214 (2012).

Conway, T. et al. Xenome — a tool for classifying
reads from xenograft samples. Bioinformatics 28,
i172-i178 (2012).

Bacac, M. et al. A novel carcinoembryonic antigen
T-cell bispecific antibody (CEA TCB) for the treatment of
solid tumors. Clin. Cancer Res. 22, 3286-3297
(2016).

. Ito, M. et al. NOD/SCID/y,"" mouse: an excellent

recipient mouse model for engraftment of human cells.
Blood 100, 3175-3182 (2002).

Shultz, L. D. et al. Human lymphoid and myeloid cell
development in NOD/LtSz-scid IL2Ry™" mice engrafted
with mobilized human hemopoietic stem cells.

J. Immunol. 174, 6477-6489 (2005).

173.Shultz, L. D., Brehm, M. A, Garcia-Martinez, J. V.
& Greiner, D. L. Humanized mice for immune
system investigation: progress, promise and
challenges. Nat. Rev. Immunol. 12, 786-798
(2012).

174. Traggiai, E. et al. Development of a human adaptive

immune system in cord blood cell-transplanted mice.

Science 304, 104—107 (2004).

Ito, R. et al. Establishment of a human allergy model

using human IL-3/GM-CSF-transgenic NOG mice.

J. Immunol. 191, 2890-2899 (2013).

. Billerbeck, E. et al. Development of human

CD4*FoxP3+ regulatory T cells in human stem cell

factor-, granulocyte-macrophage colony-stimulating

factor-, and interleukin-3-expressing NOD-SCID

IL2Ry™" humanized mice. Blood 117, 3076—-3086

(2011).

Rongvaux, A. et al. Development and function

of human innate immune cells in a humanized

mouse model. Nat. Biotechnol. 32, 364-372

(2014).

178. Cunningham, D. et al. Cetuximab monotherapy and

cetuximab plus irinotecan in irinotecan-refractory

metastatic colorectal cancer. N. Engl. J. Med. 351,

337-345 (2004).

Kawazoe, A. et al. A retrospective observational study

of clinicopathological features of KRAS, NRAS, BRAF

and PIK3CA mutations in Japanese patients with

metastatic colorectal cancer. BMC Cancer 15, 258

(2015).

175.

17

(9}

177.

179.

Acknowledgements

The authors would like to thank all members of the EurOPDX
Consortium who also contributed to this article, and in par-
ticular S. Corso, S. Giordano, P. P. Lopez-Casas, K. Moran-
Jones and F. Nemati. The Caldas laboratory would like to
thank the PGE team for their support, especially Lisa, Steve
and Yi. A.T.B. is supported by Science Foundation Ireland
under grants 13/CDA/2183 and 15/TIDA/2963 and further
receives funding from the Irish Cancer Society Collaborative
Cancer Research Centre BREAST-PREDICT Grant
CCRC13CAL. D.G.A. and R.B.C. are supported by Breast
Cancer Now. FA., E.H. and J.C.M. received KULeuven GOA
funding (GOA/14/012) and a research grant from Stichting
tegen Kanker. J.A. is funded by the Breast Cancer Research
Foundation, the Spanish Association Against Cancer (AECC)
and the Instituto de Salud Carlos Ill (P116/00253 and CIBER-
ONC). A.V.B. and D.K.C. are supported by Cancer Research
UK (C29717/A17263), the Wellcome Trust (10372/Z/14/Z),
the Scottish Genomes Partnership — SEHHD-CSO
1175759/2158447, the Howat Foundation and Pancreatic
Cancer UK. A.B., C.C. and O.M.R. have been supported by
funding from Cancer Research UK and by the European Union
to the EUROCAN Network of Excellence (FP7; grant number
260791). E.B. is supported by the CETOCOEN PLUS project
(CZ.02.1.01/0.0/0.0/15_003/0000469) and the RECETOX
Research Infrastructure (LM2015051). G.C. and D.V. were
funded by NIH transformative RO1CA156695 and European
Research Council (ERC) Advanced grant
1400206AdG-322875. S.G.E. receives support from NCI
grant TUM1CA186688 for early-phase trials through the
ET-CTN. E.G.S. is supported by the Spanish Ministry of
Economy and Competitivity MINECO and from the ISCIII
(SAF2014-55997; PIE13/00022, co-funded by FEDER funds/

European Regional Development Fund (ERDF) — a way to
build Europe), by a Career Catalyst Grant from the Susan
Komen Foundation (CCR13262449) and by a European
Research Council Consolidator grant (CoG682935). M.AJ. is
supported by an Irish Health Research Board Health Research
Award (#HRA-POR-2014-547). S.D.J. is supported by the
Dutch Cancer Society (grants RUG 2010-4833, RUG 2011-
5231, RUG 2012-5477 and RUG 2014-6691). J.J. is funded
by the Dutch Cancer Society (NKI 2011-5197 and EMCR
2014-7048), the Netherlands Organisation for Scientific
Research (Zenith 93512009, Vici 91814643,
CancerGenomiCs.nl) and the European Research Council (ERC-
SyG CombatCancer). K.K. and D.S.P. are supported by the
Dutch Cancer Society (NKI-2013-5799). L.L. and P.G.P. are
funded by ERC Advanced Grant 341131 and lItalian
Association for Cancer Research (AIRC) Investigator
Investigator Grant 14216.G.M.M. receives funds from the
Norwegian Cancer Society (421851) and the Research Council
of Norway (222262/F20). J.H.N. is funded by the Research
Council of Norway under grant 250459/F20. H.G.P. is sup-
ported by the Instituto de Salud Carlos Ill and the Miguel
Servet Program (MSI114/00037). V.S. is supported by the
Instituto de Salud Carlos Il (P113/01714 and the Miguel
Servet Program CP14/00028), by a Career Catalyst Grant
from the Susan Komen Foundation CCR15330331 and the
FERO Foundation. L.S. was funded by Worldwide Cancer
Research (WCR/AICR Grant #13-1182), the European
Research Council (CoG Grant #617473), the Instituto de
Salud Carlos Il (FIS Grant #P113/01705) and the FERO
Foundation. A.V. is supported by the Instituto de Salud Carlos
11 (P113/0133 and PIE13/00022 (Oncoprofile)), Fundacion
Mutua Madrilefna AP150932014 and a grant from the
Spanish Association Against Cancer from Barcelona, AECC.
A.B. is supported by AIRC (Investigator Grant project 15571).
L.T. and E.M. are supported by the AIRC (Special Programme
Molecular Clinical Oncology 5 x 1000, project 9970, and
Investigator Grant projects, 14205 to L.T. and 12944 to EXM.)
and also receive funding from the Fondazione Piemontese per
la Ricerca sul Cancro-ONLUS (5 x 1000 Italian Ministry of
Health 2011).

Competing interests statement
The authors declare competing interests: see Web version
for details.

DATABASES
Children’s Oncology Group (COG) cell culture and

xenograft repository: http://www.cogcell.org/xenografts.php
Public Repository of Xenografts (PRoXe):

http://www.proxe.org

US National Cancer Institute (NCI) repository of patient-
derived models: https://dtp.cancer.gov/repositories/

FURTHER INFORMATION

EurOPDX: http://www.europdx.eu

GENiE: http://worm-genie.eu/

TRANSAUTOPHAGY: http://cost-transautophagy.eu/
US Pediatric Preclinical Testing Consortium (PPTC):
http://www.ncipptc.or

SUPPLEMENTARY INFORMATION
See online article: S1 (table)
ALL LINKS ARE ACTIVE IN THE ONLINE PDF

268 | APRIL 2017 | VOLUME 17

www.nature.com/nrc

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.


http://www.nature.com/nrc/journal/vaop/ncurrent/full/nrc.2016.140.html#affil-auth
http://www.cogcell.org/xenografts.php
http://www.proxe.org
https://dtp.cancer.gov/repositories/
http://www.europdx.eu
http://worm-genie.eu/
http://cost-transautophagy.eu/
http://www.ncipptc.org/
http://www.nature.com/nrc/journal/vaop/ncurrent/full/nrc.2016.140.html#supplementary-information

[12] Popovici V, Budinska E, Capkova L, Schwarz D, Dusek L, Feit J, Jaggi R. Joint
analysis of histopathology image features and gene expression in breast cancer. BMC
Bioinformatics. 2016 May 11;17(1):209. doi: 10.1186/s12859-016-1072-z. PMID: 27170365;

PMCID: PMC4864935.

80



Popovici et al. BMC Bioinformatics (2016) 17:209
DOI 10.1186/512859-016-1072-z

Joint analysis of histopathology image

BMC Bioinformatics

@ CrossMark

features and gene expression in breast cancer

Vlad Popovici'”, Eva Budinska'?, Lenka Capkova', Daniel Schwarz!, Ladislav Dusek', Josef Feit'

and Rolf Jaggi®

Abstract

Background: Genomics and proteomics are nowadays the dominant techniques for novel biomarker discovery.
However, histopathology images contain a wealth of information related to the tumor histology, morphology and
tumor-host interactions that is not accessible through these techniques. Thus, integrating the histopathology images
in the biomarker discovery workflow could potentially lead to the identification of new image-based biomarkers and
the refinement or even replacement of the existing genomic and proteomic signatures. However, extracting
meaningful and robust image features to be mined jointly with genomic (and clinical, etc.) data represents a real

challenge due to the complexity of the images.

Results: We developed a framework for integrating the histopathology images in the biomarker discovery workflow
based on the bag-of-features approach — a method that has the advantage of being assumption-free and data-driven.
The images were reduced to a set of salient patterns and additional measurements of their spatial distribution, with
the resulting features being directly used in a standard biomarker discovery application. We demonstrated this
framework in a search for prognostic biomarkers in breast cancer which resulted in the identification of several
prognostic image features and a promising multimodal (imaging and genomic) prognostic signature. The source

code for the image analysis procedures is freely available.

Conclusions: The framework proposed allows for a joint analysis of images and gene expression data. Its application
to a set of breast cancer cases resulted in image-based and combined (image and genomic) prognostic scores for

relapse-free survival.

Keywords: Histopathology images, Image analysis, Biomarker discovery, Gene expression, Multimodal data mining

Background

The recent technological progress made scanning the
whole pathology slides affordable and its integration in
the routine pathology workflow feasible. This resulted
in a revived interest in developing new computational
methods for nuclear morphometry and tissue architecture
characterization, as well as for developing new tissue-
based biomarkers [1]. In the last decade, genomic and
proteomic techniques have been the methods of choice
for novel biomarker discovery. When applied to the same
sample, the pathology imaging and *omics technologies

*Correspondence: popovici@iba.muni.cz

Tnstitute of Biostatistics and Analyses, Faculty of Medicine, Masarykova
Univerzita, Kamenice 5, 62500 Brno, Czech Republic

Full list of author information is available at the end of the article

( BioNMed Central

allow the investigation of the underlying biology from
different perspectives, increasing the chances for iden-
tifying effective biomarkers. Ideally, these perspectives
could be integrated in a common data analytical frame-
work, to enable a joint (or multimodal) data mining and
decision [2].

Traditionally, the methods for analyzing pathology
images focused on extracting quantitative measures for a
set of predefined morphological parameters (e.g. count-
ing, classifying and characterizing the nuclei) and on
reproducing the expert’s decision in diagnostic applica-
tions (for a review see Gurcan et al. [3]). More recently, a
number of applications of pathology image analysis com-
bined image-based quantitative features with genomic
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information. For example, Yuan et al. [4] showed that
nuclear morphometry is an independent prognostic factor
that can improve a genomic signature. A similar approach
is discussed by Kong et al. [5] in the case of glioblas-
toma where they show how nuclear and cytoplasmic
features can be linked to genomic profiles and sur-
vival outcome. More advanced techniques combine sev-
eral image-derived characteristics, such as co-localization
of tumor nuclei and lymphocyte infiltration [6]. In all
these cases however, the imaging features were prede-
fined and based on previous known associations between
histopathology and diagnostic/prognostic.

Our interest is in developing a more general compu-
tational framework that would allow the integration of
the standard histopathology images in the biomarker dis-
covery workflow and in which the image features would
be learned in a data-driven fashion, enabling a prior-
free data mining. The main challenge when analyzing the
pathology images stems from their high complexity and
size, and seeming incompatibility with *omics data. In
the present work we propose to use the bag-of-features
approach [7] for reducing the dimensionality of the images
and extracting salient features. This approach has already
been used in histopathology image classification appli-
cations [8, 9] and has the main advantage of allowing
an unsupervised learning of image representation. The
features extracted describe mostly the textural appear-
ance of small neighborhoods and may be combined with
other types of features (e.g. nuclear morphometry) in later
stages of image analysis, but these approaches will not
be discussed here. As an alternative to bag-of-features,
one could use deep learning methods for learning image
features as proposed by Ciresan et al. [10] or Cruz-Roa
et al. [11]. However, these methods require a larger
sample size and were applied in a supervised learning
context.

We propose a novel representation of histopathology
images which extends the standard bag-of-features with
a number of derived measurements aimed at capturing
more global characteristics of the tissue sample. In addi-
tion, we introduce an objective criterion for optimizing
the image representation. The new computational frame-
work is demonstrated in a biomarker discovery scenario,
where prognostic features (both imaging and gene expres-
sion) for relapse-free survival in breast cancer are sought.
We see the application of this approach as a succession
of two independent steps, not necessarily performed on
the same data corpus. In the first step, a histopathol-
ogy image representation is learned from a collection of
images representative for the pathology under investiga-
tion. In the second step, the images of interest are recoded
based on the constructed representation and the resulting
image features are jointly analyzed with the molecular and
clinical data.
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Methods

Data

The data used in this study is a subset of the data from
Moor et al. [12], selected solely based on the availability of
the material for analysis. Overall there were n = 196 stan-
dard pathology (haematoxylin-eosin-stained) slides with
breast tissue sections, not all containing a tumoral compo-
nent and not necessarily from different cases. All images
were obtained by whole-slide scanning of the pathology
slides at 40x magnification, resulting in color images of
about 150,000 x 100, 000 pixels.

These data were partitioned into an image model learn-
ing set (n = 131) and a biomarker discovery/data mining
set (m = 65). In the biomarker discovery set we kept
unique cases for which the slides contained > 70 % tumor
component and the clinical, survival and gene expression
data were all available. The expression profiles of 47 target
genes (including 5 control genes) were obtained by quanti-
tative real-time PCR (qRT-PCR). A full description of the
data set is available in Moor et al. [12] and the major char-
acteristics of the biomarker discovery set used here are
given in Additional file 1.

We computed the genomic prognostic signature
(PRO_10) as described in Antonov et al. [13] for all the
cases with full genomic profiles.

Image processing

Preprocessing

All images were downscaled to an equivalent of 2.5x mag-
nification by subsampling the Gaussian-filtered higher
resolution images (the 4-th level in a Gaussian pyramid).
In the resulting images a mask corresponding to the tis-
sue regions was obtained by adaptive thresholding in the
green channel. The mask was subsequently refined by
morphological operations: erosion with a circular struc-
turing element with radius 13 followed by gap filling and
removal of small objects.

For each image we estimated the intensity of haema-
toxylin (H) staining by deconvolving the RGB-images as
described by Ruifrok et al. [14]. The intensity levels of
the haematoxylin image (H-image) were adjusted by adap-
tive histogram equalization. Finally, the background pixels
were masked out using the tissue region mask computed
as above. In all subsequent image processing steps, only
the H-images were used.

Learning the image representation

The bag-of-features [7] approach has two main stages:
(i) learning an appropriate codebook for representing the
images of interest and (ii) re-coding the images based
on the frequencies of each codeblock (codeword from
the codebook). Thus, the resulting representation of the
image is a histogram of the codeblocks. For the current
application, we extended this representation to include
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several derived features. We point out that once an appro-
priate image representation is learned, it can be applied
unchanged to other similar image collections thus this
step does not need to be repeated on each new data set.

Codebook learning The codebook is a collection of rep-
resentative local descriptors {Cj, . . ., Cx} obtained as cen-
ters of K clusters resulting from k-means clustering of a
number of image local descriptors (i.e. a vector quanti-
zation procedure). For this, the images are decomposed
in a set of local neighborhoods for which descriptor vec-
tors are computed. The local descriptors range from pixels
intensities to responses to filter banks or other textu-
ral descriptor. For the histopathology images, the Gabor
wavelets provide a good set of descriptors, so they were
adopted in the present work. Each local neighborhood
of size w x w was convolved with a bank of 24 Gabor
filters [15],

X2 4 g2

5 2y ) X exp (27'rvj(x cos @ + ysin 6))
o

G(x,y;v,0,0) = exp (—

wherej = /=1, v was the frequency, @ the orientation and
o the bandwidth of the Gaussian kernel. These parame-
ters were set to o € {1,2+/2},0 € {k%|k =0,...,3}and
v € {3/4,3/8,3/16}, respectively. They were kept fixed
throughout all the experiments. For each filter response,
its mean and standard deviations were recorded, thus each
local neighborhood w x w was represented by 48 values
(24 means and 24 standard deviations). A comparison of
Gabor wavelets with other local descriptors, in the con-
text of histopathology image analysis, is given by Budinska
etal. [9].

The size of the codebook (i.e. the number of clusters in
k-means clustering), K, is a free parameter that has to be
chosen/guessed at the moment of codebook construction
[8]. It can also be optimized for the problem at hand [9]
using, for example, the Gap statistic [16]. Here we took
advantage of having available a number of examples for
different tissue components (fat, fat foamy macrophages,
comedo necrosis, connective tissue and carcinoma infil-
trating fat — for examples see Additional file 1) which we
used as reference categories. The goal was to choose the
size of the dictionary K in such a way that the represen-
tations of these categories are sparse and have a minimal
overlap. For each image i, let y; = {j | if codeblock C;
is used in coding the sample i}, be the set of codeblocks
used in its coding. Then we define the following quantities
(where | - | denotes the cardinality of a set):

e total Jaccard index,

ly: N yjl
JUO =052 3Ty
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where the sum is taken over all pairs (i, j) of images
from different reference categories;
e total sum of within-cluster distances,

K
ST =Gl

k=1 iecluster k

D(K) =

where x; are the descriptor vectors.

With these quantities, we defined an (empirical) objec-
tive function:

~1
nene — 1) —logJ(K)—log /D(K)—0.75log K,

Y (K) =log
where 7, is the number of reference categories (in our case
n. = 5). The overall goal of our image recoding step is
to find a low dimensional (sparse) representation which
still bears enough information for discriminating major
tissue components. For this, we minimize J(K), i.e. the
overlap between the representations of the reference cat-
egories. At the same time, we require tight clusters (small
within-cluster total distances D(K)) and sparse represen-
tation (small K). Hence, the desired value for K is the one
that maximizes W (K), where we note that the first term is
constant (included to bring the values closer to 0) and that
the scaling factor 0.75 is used to reduce the influence of K.

Image recoding Once a suitable K is found and a code-
book is constructed by k-means clustering, the standard
bag-of-feature approach represents the images as code-
block histograms. However, in this coding, all spatial
information about the distribution of the codeblocks is
lost. Consider the situation in Fig. 1a: all four images have
the same number of patches assigned to the same code-
block, but the spatial arrangement is very different. In
order to characterize these spatial differences, we extend
the image representation with a number of statistics on
the distribution of the codeblocks. For a given image
and for each codeblock k € {1,...,K}, we construct
a binary image in which 1s represent regions assigned
to the codeblock and Os everything else. In these binary
images, the connected components (4-neighbor connec-
tivity) define individual objects and for each of them we
compute the area (in pixels) and the compactness index
(ratio of the squared perimeter to the area of the object).
Finally, for each image and each codeblock, we compute
(i) the median area, (ii) the maximum area, (iii) the ratio of
the maximum area to the total area of the objects, (iv) the
skewness of the distribution of the area values and (v) the
mean compactness. Thus, for each codeblock in an image,
aside from its frequency, we add five new values aimed
at characterizing the distribution of the codeblock in the
image. We will refer to these additional quantities as the
“extended set of features” The final representation of an
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Fig. 1 Codeblocks and codebook. a An example of four different hypothetical distributions of the codeblocks leading to identical frequencies. To

cope with such situations, the distribution of codeblocks is also taken into account through extended image features. b A visual representation of the
obtained codebook. The 70 image patches are the closest to the codeblocks obtained after k-means clustering. The three groups of codeblocks (with
29,20 and 21 elements, respectively) correspond to the major clusters in Fig. 2 and the ordering of the image patches is the same as in the clustering

image has a length of 6K K values for the codeblock his-
togram (the standard representation) and 5K values of the
extended representation.

Joint data mining

The new representation of the images allows for direct
application of standard data mining techniques. In the
case of multi-modality data mining, the choice of a proper
similarity metric/measure is of crucial importance. Two
main strategies may be attempted for defining a proper
similarity: combination of single, modality-specific, met-
rics or building/learning a fully multi-modality metric.
The first approach has the advantage of using established
metrics usually resulting in easily interpretable mod-
els and facilitating the comparison with known results.
The second approach promises to build a similarity met-
ric that better exploits the multi-modality nature of the
data. These ideas can be implemented, for example, in
the context of kernel machines (such as Support Vec-
tor Machines) where composite kernels (based on closure
properties — see [17] p.75) would represent a possible
implementation of the first approach and multiple kernel
learning [18] an implementation of the latter.

In the present work and in order to demonstrate the
general analytical framework, we make use of standard
statistical tools. We aim at identifying image features that
could be linked to expression levels of the genes of inter-
est (genotype-phenotype association) and potential image
biomarkers that alone or in combination with gene expres-
sion can be used for defining a prognostic signature.
Besides the gene expression, we also used a prolifera-
tion gene signature PRO_10 [12, 13], which was shown to
be prognostic in various cohorts of patients with breast
cancer.

To test the association between image features and
tumor size (T) and grade (G) we dichotomized the clin-
ical variables (T: {T1, T2} vs {T3, T4}, and G: {G1,G2}

vs. G3, respectively) and used two-sided t-test, with 0.05
significance level. The association of image features with
gene expression was assessed based on correlation test
(Pearson) with significance level 0.05 and the condition
that the correlation coefficient was at least 0.5 (in absolute
value). We also used canonical correlation analysis (CCA)
to study the associations between image features and
molecular data with significance level of 0.05 for Wilks’
test. The association between image features and survival
outcome (relapse-free survival — RFS) was tested using
Cox proportional hazard models (log-likelihood test),
with significance level of 0.05. The hazard ratios were
estimated from interquartile range-standardized variables
(both image and genomic variables). To test if an image
feature improves the prognostic value of the gene signa-
ture, we tested the difference between the models with
and without the variable of interest using likelihood ratio
tests. To assess the difference in survival between two
groups we used log-rank tests. We binarized the variables
by their median value, into high- and low- expressions or
values. Since the work reported here is purely exploratory
and the sample size is rather small, no adjustment for mul-
tiple hypotheses testing was performed. We used hierar-
chical clustering (Ward method) with Euclidean distance
between samples to cluster the codeblocks.

All statistical analyses were performed in R package for
statistical computing (http://www.r-project.org) version
3.2.2.

Results
Codebook
The image analysis methods described above were imple-
mented in a Python package (available at https://github.
com/vladpopovici/WSItk), using the scikit-image
[19] and Mahotas [20] libraries.

For the codebook construction we used only the mod-
eling set of images, none of the image used in the data
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mining phase being used for learning the codebook. From
each image, a set of 3000 random patches of size 32 x 32
was extracted and the corresponding Gabor descriptors
computed (vectors of 48 elements). These descriptor vec-
tors were clustered using the k-means algorithm to build
the codebooks. We estimated the optimal (in the sense
of the W objective function, described above) codebook
size by evaluating W (k) for k = 10,20,...,1000. The
optimal value was found to be K = 70 (see Additional
file 1 for a plot of W(k)) leading to 420 feature vec-
tors for each image. Since the codeblocks are centers of
the clusters (the means of descriptor vectors assigned to
the respective cluster), they might not necessarily cor-
respond to observed image regions. Thus we selected
the closest regions to the codeblocks (the corresponding
descriptor vectors were the closest to the codeblocks) to
provide an approximate visual representation of the code-
book - Fig. 1b. In the following, to designate a specific
codeblock from the codebook, we will use the notation
C.xy. We have extensively investigated the stability of
the learned codebooks and the resulting image repre-
sentations and we found the process to be stable — see
Additional file 1.

The hierarchical clustering of the codeblocks
(Fig. 2) revealed a rather structured content: three
major groups of codeblocks could be identified. We
tentatively labeled them as “proliferation patterns’,
“invasion/differentiation patterns/connective tissue” and
“sparse tumor nuclei/differentiation/fat” to indicate the
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major components in the clusters - without claiming a
precise histopathological characterization.

A number of codeblocks were found to be associated
with tumor size (C.10, C.18, C.29, C.38, C.41, and C.42)
and grade (C.09, C.34, C.43, C.45, C.48, and C.62).

Correlations between image features and gene expression
The association analysis between image features and gene
expression identified a number of significant (p < 0.05
and p > 0.5) pairwise correlations (all in the range
0.50 — 0.60). In all, eight different codeblocks were asso-
ciated with different genes, most of them with CCNEI
and CCNB2. The codeblock C.31 was associated with
most genes (CCNE1, CCNB2, BIRCS5, PRCI, SPAGS)
either by its frequency of appearance in the image or
by the skewness of its distribution. By summing the fre-
quencies corresponding to image features that are highly
correlated (e.g. C.38, C.31, C.01, C.51, C.41, C.68) the
correlations coefficients were improved to 0.65 — 0.70.
CCA confirmed the association between these image fea-
tures and gene expression data (Wilks’ test p = 0.026).
The image features C.10, C.19, C.57, and C.68 and the
genes CCNE1, CCNB2, and SPAGS5 had the strongest
impact on the canonical dimensions. These were also the
most stable image features-gene expression correlations
in the image representation stability experiments — see
Additional file 1.

Despite the fact that the PRO_10 gene signature is an
average of proliferation genes which were found to be

Codeblocks clustering

proliferation patterns

RS

C.41 C.64 C69 C.56 C.65

OOOOOOOOOLOLOLLOLOOLOLOLLLOLLLOLLLLOLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLOLLOLO

invasion/differentiation patterns/

connective tissue
sparse tumor nuclei/

differentiation/fat

« OO T=FTHNTATNOODNDNOONOONTONLONNNNOMNOMMMTONNNOOOT OO NOLIONODLANDNLD
MMONTOOTONNOONMI—INONANDMNOTAN~AN—ITTOOANNNNOONTOMNO—ANITNT~OONO—IAN~IOM—OTOMT—M

- EER

C.67 C.17 C.50

Fig. 2 Hierarchical clustering of the codebook. Clustering the codeblocks led to identification of three major clusters, to which generic terms have
been assigned. The codeblocks correlated with gene expression are marked with red dots. The codeblocks with potential prognostic value (in
univariate analysis) are marked with blue squares (dark blue for p-value < 0.01, light blue for 0.01 < p-value < 0.05
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correlated with image features, the correlations between
image features and PRO_10 did not reach the required
significance level in all but one case: the skewness of
codeblock C.31.

Survival analyses

The goal of the analyses performed was to assess the util-
ity of image-based variables for predicting relapse-free
survival independently, or combined with the PRO_10
signature. In the set of samples analyzed, the genomic
score is a strong prognostic marker (Cox regression:
p = 0.001, HR = 2.12,95 % CI = (1.29, 3.51)).

Univariate Cox proportional hazards models were fit for
each of the 420 image features resulting in the identifi-
cation of several significant associations with relapse-free
survival endpoint. The most prognostic image features
were C41, C.56, C.65, C.67, C.69, with p < 0.01 and
HR between 1.16 and 1.70. From the extended set of fea-
tures, the median area of the regions assigned to clusters
C.15 and C.26 were significantly associated with RFS (p <
0.05). The strongest predictor among the image features
was C.69 (p = 0.0018, HR = 1.7,95 % CI = (1.22,2.37)).

In combined models (image feature and genomic score)
a number of image features led to improved models (like-
lihood ratio test p < 0.05), most of them from the
extended set of features. From all these image features,
C.69 remained significant in the multivariate model (with
PRO_10) and had no significant interaction with the
genomic signature.

We defined an image score variable by averaging C.41,
C.56, C.65, C.67, C.69 which resulted in a stronger prog-
nostic factor (Cox regression: p = 0.0003 and HR =
1.76,95 % CI = (1.30,2.40) - see also Figure 3). In a
regression model including the genomic and the image
scores, both remained independent significant variables
(PRO_10: p = 0.05, image score: p = 0.007, no significant
interaction) and the model was signficantly better than the
corresponding univariate models (p = 0.013). In Fig. 4
the Kaplan-Meier curves for binarized (by median value)
scores are shown, together with corresponding p-values
(log-rank tests) and hazard ratios. Another visualization
of the prognostic scores is given in Fig. 5 where the
expected survival at 4 years is shown as a function of
the genomic, image-based, and combined scores, respec-
tively. Two examples of high risk cases, according to the
image-based score, are given in Additional files 2 and 3.

Discussion

The main challenge in introducing the histopathology
images in the general data mining biomarker discovery
framework stems from their high complexity and low level
of information representation. Thus, while the images
contain a huge amount of data (in the order of 101 pixels)
the extraction of information implies a considerable effort.
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Fig. 3 Regions assigned to the most prognostic codeblocks.

512 x 512 regions from two different samples with high image score
(high risk of relapse), at 2.5x magnification. The image patches
represented in full color were assigned to one of the C41, C.56, C.65,
C.67 or C.69 codeblocks. In Additional files 2 and 3, the corresponding
whole slide images are provided

Traditionally, this effort is performed by the expert pathol-
ogists or, more recently, by using quantitative methods for
measuring a set of predefined morphological aspects to
complement the pathology report. In this work, we took
a third approach, in which the image data is reduced to
a number of essential patterns (the codeblocks) whose
frequency and spatial distribution in the image is used
for data mining. The codeblocks are learned indepen-
dent of any prior knowledge about the images, potentially
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Fig. 4 Kaplan-Meier curves for binarized scores. The genomic (a), image-based (b) and combined scores () were binarized by the respective
median values into “low score” (low risk) and “high score” (high risk) categories. The combined score slightly improves on the genomic score

enabling the discovery of new image features not necessar-
ily assessed during the pathology review of the cases. The
obvious drawback is the difficulty of interpreting some of
the patterns and the possibility of having also artifacts in
the model. The adopted representation of local neighbor-
hoods in the image (responses to a bank of Gabor filters)
encouraged the identification of codeblocks with distinc-
tive textural appearance (Fig. 1). This local appearance
may be later on combined with a nuclei detector and clas-
sifier (as in Yuan et al. [4]), for example, to obtain a more
comprehensive characterization of the image.

By examining the similarities between codeblocks, we
identified three major aspects of the images that are cap-
tured: proliferation, invasion/differentiation (within con-
nective tissue) and isolated tumor nuclei (within regions
predominantly with fat component) (Fig. 2). This result
combined with the observation that the whole third clus-
ter did not contribute to the prognostic models, suggests a
possible refinement of the current method, in which these

regions with high fat content are discarded in an initial
preprocessing stage and a more detailed model is used to
characterize the remaining regions.

We demonstrated the integration of the image features
in a standard biomarker discovery scenario, in which
both image-genes correlations (precursors to genotype-
phenotype associations) as well as various survival prog-
nostic models were tested. Since the main purpose of this
exercise was to demonstrate the integration of image fea-
tures with genomic information and the sample size was
relatively modest, we did not adjust for multiple hypothe-
ses testing and restricted ourselves to an exploratory
analysis. Thus the associations found, while hypothesis-
generating, have to be taken with caution and more
validation is needed.

Most of the genes in the panel were related to pro-
liferation processes, thus it is not surprising that the
correlations with image features involved almost exclu-
sively these genes. The strongest associations were found
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with CCNE1 and CCNB2. Somehow surprising, no signif-
icant correlation was found with MKI67 gene, a common
marker (with Ki-67 specific staining) for proliferation.

A number of image features were found to be prog-
nostic for RFS and we proposed a simple image-based
prognostic score which averages five basic image fea-
tures. The new score is strongly prognostic and is not
correlated with the genomic score considered (PRO_10).
When combining the two scores in a multivariable
Cox regression, the two remained significant (with a
marginal significance for the genomic score) and inde-
pendent predictors (no significant interaction) leading to
an improved model. Thus, the image-based score can be
used either alone - as a first line predictor - or in com-
bination with the genomic predictor. These results also
demonstrate the complementarity of the two modalities -
histopathology imaging and genomics - and suggest
that refined predictors can be built by a combination
thereof.

It must be noted that the sample size and the num-
ber of events did not allow for more variables in the
regression models. Further analysis of the scores (either
image-based or combined) in the context of usual clin-
ical predictors (TNM-staging, hormonal status, etc.) is
required before a definite conclusion about its clinical util-
ity can be drawn. Nevertheless, the image-based score can
already be used in applications like searching or indexing
in histopathology image archives.

Conclusions

We proposed a general framework for integrating the
histopathology images in the routine genomic data anal-
ysis pipeline. The image features used are based on
the responses of Gabor filters applied to single channel
images. The approach can easily be extended to exploit
the full color information and to include other types of
features.

When applying our method to a data collection of breast
cancer samples, we were able to identify a number of
associations between image features and gene expression
levels. More importantly, several prognostic image fea-
tures were identified, some of them complementary to the
genomic score. Thus, we could build an image-based and
a combined survival score, improving on the performance
of the genomic score. These results must be validated in
larger data sets.

The code implementing the methods described is
made freely available and continues to be under active
development.

Availability of data and materials

The source code for the image analysis methods described
in the paper is available from the GitHub repository
https://github.com/vladpopovici/ W SItk.
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The data used to demonstrate the methods described is
not publicly available.
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Abstract

Motivation: Whole genome expression profiling of large cohorts of different types of cancer led to
the identification of distinct molecular subcategories (subtypes) that may partially explain the
observed inter-tumoral heterogeneity. This is also the case of colorectal cancer (CRC) where sev-
eral such categorizations have been proposed. Despite recent developments, the problem of sub-
type definition and recognition remains open, one of the causes being the intrinsic heterogeneity
of each tumor, which is difficult to estimate from gene expression profiles. However, one of the
observations of these studies indicates that there may be links between the dominant tumor
morphology characteristics and the molecular subtypes. Benefiting from a large collection of CRC
samples, comprising both gene expression and histopathology images, we investigated the possi-
bility of building image-based classifiers able to predict the molecular subtypes. We employed
deep convolutional neural networks for extracting local descriptors which were then used for con-
structing a dictionary-based representation of each tumor sample. A set of support vector machine
classifiers were trained to solve different binary decision problems, their combined outputs being
used to predict one of the five molecular subtypes.

Results: A hierarchical decomposition of the multi-class problem was obtained with an overall ac-
curacy of 0.84 (95%Cl=0.79-0.88). The predictions from the image-based classifier showed signifi-
cant prognostic value similar to their molecular counterparts.

Contact: popovici@iba.muni.cz

Availability and Implementation: Source code used for the image analysis is freely available from
https://github.com/higex/qpath.

Supplementary information: Supplementary data are available at Bioinformatics online.

The last two decades witnessed fundamental changes in the way we
investigate the biology of living organisms, with technological devel-
opments fueling major breakthroughs in our understanding of vari-
ous pathologies and paving the road towards a personalized
medicine. Currently, the researchers are armed with a battery of
techniques for interrogating the same biological reality at various
scales (from sub-cellular to whole population) and from very diverse

perspectives (clinical, imaging, genomic, proteomic, etc.) generating
high-throughput multimodal data. The bottleneck is now repre-
sented by our limited ability to interpret such data in an integrated
way (Li et al., 2016) and the need for a more inter-disciplinary ap-
proach is epitomized by large scale projects such as The Cancer
Genome Atlas (TCGA). In cancer research, one of the main goals it
to identify homogeneous groups of patients—i.e. to stratify the
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patient population—in the hope of finding the common causes and
tailored treatments. Traditional stratification of cancer patients is
based on histologic and morphologic assessment of the tumor sam-
ple and it still defines the golden standard. Lately, various molecular
biomarkers have been proposed for the same purpose. The two per-
spectives are partly overlapping and partly orthogonal, making their
integration more challenging. Our present work focusses on
translating a gene expression-based cancer patient population strati-
fication into an image-based biomarker, thus trying to bring tran-
scriptomics data into a histopathologic context.

Colorectal cancer (CRC) is the third most frequent cancer world-
wide and the second leading cause of cancer mortality in Europe,
with metastatic disease accounting for 40-50% of newly diagnosed
patients. At the same time, it is a highly heterogeneous disease in
terms of prognosis and its response to therapy. Using whole-genome
profiling of large data collections, several systems for sub-
categorization of CRC have been proposed recently (Budinskd ez al.,
2013; De Sousa et al., 2013; Marisa et al., 2013; Sadanandam et al.,
2013; Roepman et al., 2013). In general, they relied on clustering
the CRC tumors in order to identify patterns of co-regulation of
genes that could be indicative of common oncogenic pathways and
coherent treatment responses of these tumors. Our own analysis
(Budinsk4 et al., 2013) identified five stable tumor clusters (labeled
as Subtypes A, B,.. ., E), but also showed that a relatively high pro-
portion of cases remained unaccounted for by this system. A recent
effort (Guinney et al., 2015) to harmonize all these discoveries con-
firmed the presence of four distinct and reproducible subtypes across
all studies, labeled CMS1,..., CMS4, which match closely our
Subtypes A,. .., D (Guinney et al., 2015). The current golden stand-
ard for the identification of the molecular subtype of a given tumor
requires the interrogation of a large panel of genes and the applica-
tion of a genomic classifier. In the analyses reported here, we will
use the subtypes as defined in Budinska et al. (2013). There are sev-
eral reasons for this choice: first, since they were derived from the
same gene expression data that accompany the images we use, it is
hoped that the subtype assignment is less noisy. Second, in Budinskd
et al. (2013), it is noted that an expert pathologist, when presented
with the molecular categorization for a set of cases, was able to iden-
tify a number of morphological features that were preferentially en-
riched in one or a few of the subtypes hence, showing preliminary
evidence that such connections exist. And third, we are interested in
identifying the imaging support for the five previously identified
subtypes.

The problem of recognizing the tumor subtype based on imaging
data is not new and probably the most studied is the case of breast
cancer. For these cancers, five molecular subtypes are currently con-
sidered—Luminal A, Luminal B, basal, Her2-enriched and normal-
like (Perou et al., 2000)—and surrogate immunohistochemical stains
are available (corresponding to hormonal status of ER, PR and Her2
and the invasion marker Ki-67, respectively). Consequently, auto-
matic stain quantification is the strategy of choice for molecular sub-
type recognition from image data and it was shown to outperform
the human expert (Stdlhammar et al., 2016). A systematic review of
the connections between histological and molecular subtypes in
breast cancer is given in Weigelt er al. (2010). Other efforts concen-
trated on the recognition of the high-risk group of triple negative
breast cancers on various imaging platforms (Agner et al., 2014;
Dogan and Turnbull, 2012). The quantitative image analysis of
pathology slides can also serve as a main means for subtype defin-
ition. For example, Chang et al. (2011) found five subtypes of glio-
blastoma, one of which being predictive value and correlated with
the expression of several genes. Similarly, Lan ez al. (2015) propose

an alternative subtyping of ovarian cancer based on quantitative
analysis of tumor microenvironment. A general approach to the
identification of disease subtype based on morphologic analysis of
pathology slides is described in Cooper et al. (2012).

In the case of CRC, Budinska et al. (2013) showed that Subtype
A had either serrated or papillary architecture, Subtype B repre-
sented typical colorectal adenoma with complex tubular architec-
ture, Subtype C was mucinous or solid trabecular, Subtype D was a
mixture of desmoplastic and complex tubular architecture, and
Subtype E was mixed (see Budinskd et al., 2013 for example
images). However, these annotations did not lead to a strong
classifier.

This observation—that associations can be found between the
molecular subtypes and morphological traits of the tumors—consti-
tutes the starting point of our investigations reported here. Our
interest is to construct a histopathology image-based classifier able
to predict the molecular subtype of a given tumor section without
resorting to any other staining but the standard hematoxylin—eosine.
This classifier may be seen as a surrogate image biomarker (actually,
as we will see, a combination of several biomarkers) for the molecu-
lar subtypes and, to the best of our knowledge, it is the first such
biomarker to be proposed. This constitutes the main contribution of
our work reported here and it represents a largely improved result
from our earlier explorations (Budinskd et al., 2016). Equally im-
portant, our approach does not rely on predefined morpho-
pathological features: the feature selection is guided by the predic-
tion task. This would allow identifying potentially unknown (or
overlooked) image features but may also make the interpretation of
the models less obvious.

There are many potential application of such a system once es-
tablished and well tested. First, since it does not require any special
laboratory work, it could be easily integrated in the diagnostic
workflow to provide hints about the molecular subtype, with no
extra costs. It could also be used for sample stratification and selec-
tion for retrospective studies, where large collections of samples
could easily be filtered for the subtypes of interest without the need
of the much more expensive molecular profiling.

Currently, the molecular subtype is established by profiling the
expression of a set of genes from the DNA/RNA extracted from the
tumoral region of a tissue section and combining their values
through a genomic classifier. The whole process involves a number
of parameters (from defining the characteristics of the region to be
profiled—tumor content, presence/absence of stroma, etc.—to the
cut-offs of the classifiers) that are yet to be formalized, thus being
error-prone and leading to noisy labels. While we consider the mo-
lecular subtypes as the ground truth our image-based classifier is
measured against, one has to keep in mind the somehow fuzzy na-
ture of the class definition. These specific settings of our problem
make it even more challenging than the more classical applications
in the field of digital/computational pathology.

The rest of the paper is structured as follows: the data and the
methods used are described in Section 1, followed by the discussion
of the results in Section 2 and conclusions in Section 3.

1 Methods
1.1 Data

The present work is based on the data from a subset of the
PETACCS clinical trial (Van Cutsem ez al., 2009) samples. The trial
compared two treatment regimens (fluorouracil/leucovorin alone or
in combination with irinotecan) in CRC and found no differences
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between the two. The gene expression data for a set of 7 =688 sam-
ples was used (along with other data sets) in the derivation of the
molecular subtypes of CRC (Budinskd et al., 2013) and is publicly
available from ArrayExpress under accession number E-MTAB-990.
In (Budinskd et al., 2013) the molecular subtypes (denoted A-E)
were assigned to a number of 7=458 cases, the rest being con-
sidered ambiguous (or representing other low-prevalence subtypes)
and were labeled as ‘outliers’. From those 458 samples, 7 =300
cases were selected for this study based purely on technical consider-
ations (availability of histopathology tumor section, acceptable
whole slide image quality, tissue sample not too fragmented, etc.).
The ‘outlier’ (from a molecular subtype perspective) cases were not
considered in the present study.

All molecular subtypes were represented in this collection with
the following frequencies: (A) 21, (B) 140, (C) 37, (D) 81 and
(E) 21. The slides were annotated by an expert pathologist and these
annotations were present in the digital versions—a typical example
is given in Figure 1 (note the annotations delineating the loosely the
tumoral and normal tissue components).

From the whole collection of 300 images, a subset of 100 images
was selected by stratified random sampling to form the development
set. This development set was used for selecting the image represen-
tation model and, for designing, the classification approach. We did
not use the whole available data in order to reduce the likelihood of
obtaining a model too adapted to our particular collection of
samples (overfitted). For the same reason, we also preferred limiting
the number of experiments, comparing only several modeling
approaches. The remaining 200 images were added at a later stage
when the multi-class classifier performance was estimated by cross-
validation. Other strategies of selecting a development set (eventu-
ally larger, equal number of cases per class, etc.) could have been at-
tempted, with their own advantages and drawbacks, but we found
the chosen approach to provide a reasonable trade-off.

1.2 Image acquisition and preprocessing
All whole slide images of hematoxylin—eosin stained tumor sections
were acquired at 20x magnification, using a Hamamatsu
NanoZoomer C9600 scanner. The resulting images were com-
pressed by the image acquisition software using JPEG standard (at
80% quality) and stored in the proprietary NDPI format. The reso-
lution of the images was 455nm/pixel (equivalent of 55824 DPI) for
a typical size of 100000 x 50000 pixels (depending on the size of
the tissue section). The images were exported in standard TIFF for-
mat using OpenSlide software library (Satyanarayanan et al., 2013).
The images were down-scaled to an equivalent 10x magnifica-
tion and only tumoral regions were retained from each sample
(manually cut following the pathologist’s annotations)—the pixels

Fig. 1. Typical whole slide image from the data collection. At 10x magnifica-
tion, this image is 39 936 x 22 528 pixels in size. The regions marked with a ‘T’
correspond to tumoral component, while the ‘N’ annotation indicate normal
tissue

outside the tumors being set to zero. For example, the image in
Figure 1 contains two tumoral regions (marked with “T”). No further
preprocessing was applied to the images.

1.3 Local descriptors

We based our sample description on the aggregation of local infor-
mation over the tumor regions in the image. The choice of image
features plays a major role in the performance of image recognition/
classification system. Traditionally, most of such features are hand-
crafted, consisting of some dense sampling of local patches, like in
wavelet decomposition, Scale-Invariant Feature Transform (SIFT)
(Lowe, 1999), Local Binary Patterns (LBP) (Ojala et al., 1996), etc.
These local descriptors are later pooled into a global representations
by means of methods such as Bag-of-Visual-Words (BoVW) (Csurka
et al., 2004), Fisher Vector (FV) (Perronnin and Dance, 2007) or
Vector of Locally Aggregated Descriptors (VLAD) (Jégou et al.,
2010, 2012).

More recently, Convolutional Neural Networks (CNNs) (LeCun
et al., 1989, 2015) gained momentum due to the superior perform-
ance of the systems employing them and to the increasing availabil-
ity of dedicated software (and hardware) systems facilitating their
use. While the CNNs also require a number of design decisions
(such as their structure), they also have a large number of param-
eters that are learned from data, leading to adapted image descrip-
tions. Cimpoi ef al. (2016) provide a detailed comparison of deep
image features and some standard ones in the general context of tex-
ture classification. In biomedical imaging, there are a number of suc-
cessful recognition systems based on various CNNs architectures,
such as U-Net (Ronneberger et al., 2015). In general, training CNN-
based recognition systems requires a large number of labeled image
examples, the deeper the architecture more images being needed.
For example, the well-known image recognition systems like
ImageNet (Krizhevsky er al., 2012) or GoogleNet (Szegedy et al.,
2015) were trained on millions of images. Such large data collec-
tions are usually not available in biomedical field, thus the interest
in transferring general pre-trained CNN models to the medical ap-
plications. For example, van Ginneken et al. (2015) and Kawahara
et al. (2016) describe such successful systems that are based on pre-
trained CNN features.

An alternate route for obtaining local descriptors is represented
by the autoencoding methods, where an identity function is learned
under the constraint of a lower dimensional (or sparse) internal rep-
resentation. The parameters of the function are obtained through an
optimization process, where the distance (usually L,) between the
original and reconstructed image is minimized, eventually with
some additional constraints over the parameters. Examples of such
methods are represented predictive sparse decomposition methods
(as used in Chang et al., 2015, for example) and deep autoencoding
networks. We do not explore further this direction on the present
work.

For the problem addressed here, we chose to use a very deep
CNN trained on ImageNet data collection—imagenet-vgg-f
(Chatfield ez al., 2014)—as implemented in the MatConvNet library
(Vedaldi and Lenc, 2015) (for the architecture see http://www.
vlfeat.org/matconvnet/models/imagenet-vgg-f.svg). The network is
trained to predict the probability of an input color image of size 224
x 224 to belong to one of the 1000 categories. By using the output
of the next to last layer (relu7, before the classification layers), a
4096 element description vector can be obtained. Since we will use
Gaussian Mixture Models (GMMs—see Section 1.4) for building
the coding dictionary, such a high-dimensional space would require
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a prohibitively large number of samples for a good fit of the models,
so we choose to perform PCA to further reduce the dimension of the
local descriptor vectors by retaining the first d =128 coordinates
(chosen to be fixed, non-trainable). Thus, a local RGB patch of
224 x 224 pixels was reduced to a set of 128 values corresponding
to the projection of the 4096-value ImageNet vector onto the first
128 principal axes.

As a side note, we remark that the CNN-based descriptor vector
is itself the result of a combination of a number of filters applied to
even smaller neighborhoods. However, in this work, we consider
the basic neighborhood to be the 224 x 224 patch on which the
CNN is applied.

1.4 Aggregating local descriptors

Once a set of local descriptors is obtained from an image, they are
pooled into a summarizing feature vector supposed to capture the
global aspects of the image. The first step of the process involves the
re-coding of the image in terms of elements of a visual dictionary
(codebook), the same for all classes, which is followed by the com-
putation of the image representation.

For the construction of the codebook, k-means clustering and
GMDMs are the most common choices, and are typically used with ei-
ther the standard Bag-of-Visual-Words (Csurka et al., 2004) or other
aggregators. Jégou et al. (2012) give a comprehensive comparison of
various design choices. Here we shortly remind the main differences
between BoVW, FV and VLAD:

* Bag-of-Visual-Words typically uses k-means clustering for ob-
taining a codebook, with the K centroids from the clustering
being the codewords (visual words). Then the representation of
an image is simply the histogram of the number of local descrip-
tors assigned to each codeword, thus an image is reduced to a
K-dimensional vector. This histogram can be further normalized
using Manhattan or Euclidean normalization Jégou ez al. (2012).
One can also use a soft-coding scheme in which the patches are
assigned, for example, a code based on the distance to the cen-
troids (Sivic and Zisserman, 2003).

* Fisher Vector represents a generalization of BoVW as it encodes
higher order statistics of the distribution of the codewords. In
this case, the codebook is usually obtained as a GMM with K
components fitted via expectation maximization on the training
data. The FV encodes the gradient of a given sample’s likelihood
with respect to parameters of the fitted GMM, thus it indicates
the direction in the parameter space in which the learned GMM
has to be modified to accommodate the observed data (Jégou
et al., 2012). For a full FV that accounts for differences both in
mean and variance between the model and observed data, the re-
sulting representation vector has 2Kd elements (d being the size
of the local descriptor vector).

®* VLAD can be seen as a non-probabilistic version of FV (Jégou
et al., 2012) and was designed to provide a low dimensional repre-
sentation of the image (Jégou et al., 2010) that would allow the
indexing of very large image databases in memory. It tries to com-
bine the simplicity of BoOVW with some ideas of FV: the codebook
is learned via k-means clustering and each patch is assigned the
closest codeword as in BoVW, but the feature vector accumulates
the differences between each patch and its corresponding code-
word, similar to FV. See Arandjelovic and Zisserman (2013) for a
detailed discussion and further extensions.

In the present work, we decided to use a common method for
constructing the visual codebook, namely the GMMs. This allowed

us to test a soft-coding scheme as well, in which codes were based
on the posterior probabilities of being generated by a particular
component of the GMM.

1.5 Classifier training and performance estimation
Training the system could be summarized by the following steps:

1. for each image, extract the local descriptors (based on ImageNet)
for all non-overlapping regions corresponding to tumoral
component(s);

2. construct a visual codebook by:

a. performing PCA and retain the first 128 components (the
PCA model is saved for later application on validation set)

b. fitting a K = 128-component GMM on PCA-transformed
local descriptors (the visual codebook is saved for later usage
on validation set)

3. train the binary classifiers (save the models for validation). Each
such binary classifier was a support vector machine with a radial
basis function kernel. Two parameters were tuned in an inner
cross-validation loop: the y parameter of the kernel and the C
parameter for the misclassification penalty. The final prediction
of the subtype label is made according to the decision tree in
Figure 2. This particular decomposition of the multi-class prob-
lem was the result of the analysis of misclassified samples in the
development set which suggested that first Subtypes A and B
should be separated from the rest (see Section 2.1).

Since the ImageNet is an external model independent of the data
analyzed, it does not need to be included in the cross-validation
loop, this being an additional reason for preferring a pre-built CNN
model. The other steps, however, were repeated at each cross-
validation iteration on the corresponding training data.

1.6 Statistical analyses

For the identification of image features enriched/depleted in a sub-
type with respect to the other subtypes, we used Wilcoxon rank-sum
tests since the measurements were not normally distributed. For
hierarchical clustering we used the Ward method with an Euclidean
distance between feature vectors. Survival analysis was performed
using survival package (version 2.39-4) from R statistical computing
environment (version 3.3.1, www.r-project.org). The estimation of
hazard ratios was obtained from Cox proportional hazards regres-
sion in the absence of any other covariates, while the comparison of
survival experience of different subgroups was assessed by log-rank
test (Mantel-Haenszel test). Statistical significance level was chosen
to be P=0.01 and all tests yielding a P value 0.01 < P < 0.05
were considered marginally significant. Finally, the 95% confidence

A B C D E

Fig. 2. Decomposition of the multi-class classification problem. For each non-
terminal node a binary classifier was trained to split the respective groupings
of molecular subtypes
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intervals (95%CI) for binomial random variables (such as accuracy)
were estimated using the (Agresti and Coull, 1998) method.

2 Results and discussion

The results discussed here are complemented by larger images on the
project’s website: http://bias.cerit-sc.cz/somopro-subtypes.html.

2.1 Initial experiments

As mentioned, in an attempt to avoid overfitting the available data,
a development set has been used to guide the design decisions and
to set a number of meta-parameters. We tested dictionaries with
Ky = 64 and K; = 128 codewords and compared the performance
of BoVW, FV and VLAD representations when predicting the five
molecular subtypes. We performed this comparison under two
standard decompositions of the multi-class classification problem,
namely 1-vs-all and 1-vs-1.

These tests showed that BoVW with GMM-based quantization
performed as good as the more involved representation by FV and
VLAD see Supplementary Materials—Section S1. The small sample
size definitely influences this observation, since both FV and VLAD
have much higher dimensionality and would require more data for a
better training. Table 1 shows the results for BOVW method with
1-vs-all decomposition of the multi-class problem, on the develop-
ment set (obtained by stratified 4-fold cross-validation)—for the
other approaches the results were similar, so they are not detailed
here.

Another important observation was that the 1-vs-1 and 1-vs-all
decompositions of the multi-class classification problem might not
be the best suited for the present case. By analyzing the confusion
matrix and taking into account the performance indexes (precision
and recall), it appeared that a first split would have been more ad-
vantageous between Classes A and B on one side and C, D and E, on
the other side. This observation is also supported by the results in
Budinskd ef al. (2013) where it is noted that Subtypes A and B, on
one hand, and C, D and E, on the other hand, share dominant and
secondary dominant morphological features as well as similar sur-
vival expectancy. So, the final design for the multi-class classifier
was chosen to be as depicted in Figure 2.

2.2 Prediction of molecular subtypes
Once the final decisions for the classification system were taken
based on the initial experiments described above, the performance
of the system was assessed using 10-fold cross validation, on the
whole set of 300 samples.

The estimated overall accuracy of the multi-class classifier was
Acc = 0.84, 95%CI = (0.79 — 0.88) for a weighted average recall and
precision of R =0.85, 95%CI=(0.80—-0.89) and P =0.84,

Table 1. Confusion matrix for BoVW

95%CI = (0.80 — 0.88), respectively. Table 2 details the performance
metrics of the classifier. We note the good performance of the first
decision level ({A, B} versus {C, D, E}) (Acc =0.89, 95%CI =
(0.85 — 0.92)) but also the poor recognition of the Subtype E.

We repeated the same experiments on the 200 samples not used in
the development set and the results were in line with those above
(thus not repeated here), only with Subtype A being slightly worse
separated from Subtype B (see Supplementary Materials—Section S2).
This indicates that the current sample size may still be too small for
some cases and some improvements may be expected by enlarging the
training set.

2.3 Associations between predictions and clinical data
The study (Budinskd et al., 2013) indicated that some associations
could be found between molecular subtypes and clinical variables
and molecular markers. Hence, we were interested in testing
whether such associations are transferrable to the predictions made
by the image-based classifier. To avoid overly-optimistic discoveries,
we use the predictions (A-E labels) produced during the cross-
validation estimation of the system. There is also one caveat: as ex-
plained the selection of the cases was governed by technical con-
straints and thus it does not represent the true population-based
statistics for various clinical variables and the results reported here
should not be compared directly with those in Budinskd ez al.
(2013). Nevertheless, we investigate these associations and compare
them with those found between gene expression-based subtypes and
the clinical variables, on the same set of cases.

We first tested whether the predicted subtypes were associated
with relapse free survival (RFS). In Budinska et al. (2013), Subtypes
A and B have a lower risk of relapse than Subtypes C, D and E. The
same can be observed in the set of 300 samples used here
(P=0.0014, HR = 1.75,95%CI = (1.24 — 2.49), Figure 3(a)). The
image-based subtype predictions also produce a statistically signifi-
cant stratification of the population (P=0.012, HR = 1.56,95%CI
= (1.10 — 2.21), Figure 3(b)).

We also found associations between microsatellite stability,
BRAF and KRAS mutations, and mucinous histology and various
subtypes—both image-based and gene expression-based. In the case
of image-based predictions, Subtypes A and C were enriched in mu-
cinous histology compared with the sample average, while Subtype
E was almost depleted of it. BRAF-mutated cases (5.8% of all cases)
were mostly found in Subtype C (20% of cases predicted), and rarely
in Subtype B (2.4%), while KRAS mutation (38.4% of all cases) rep-
resented 77% of cases predicted as Subtype A and only 29% and
22% of cases predicted as Subtypes B and E, respectively. Finally,
high microsatellite instability (MSI) was almost exclusively found
in Subtype C (10 out of 13 cases). The same trends were found
in gene-expression subtypes, with some variations below statistical
significance.

Table 2. Ten-fold cross-validation confusion matrix for the multi-
class classifier and corresponding per-class performance metrics

Predicted Predicted

A B C D E Precision Recall A B C D E Precision Recall
A 3 4 0.75 0.43 A 21 0.95 1.00
B 1 41 5 0.76 0.87 B 1 119 13 7 0.91 0.85
C 3 2 0.44 0.58 C 2 29 6 0.91 0.78
D 4 8 13 0.59 0.48 D 8 1 71 1 0.75 0.88
E 1 2 1 2 1 0.33 0.14 E 2 5 12 0.60 0.57

Empty cells correspond to null values.

Empty cells correspond to null values.
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Fig. 3. Survival analysis: risk of relapse stratified by (a) molecular subtypes and (b) image-based classifier. Subtypes A and B represent a lower risk group, while

subtypes C, D and E a higher risk

Fig. 4. Visual dictionary for colorectal cancer. While most of the selected vis-
ual words correspond to various tissue architectures, some are clearly linked
to artifacts still present in the images, or regions partially covered by the an-
notations. The ordering of the image patches is given by the index in the
GMM, with indexes from 0 to 127 (by rows) (see Supplementary Materials -
Section S4 for the color version)

A related question was whether the misclassified samples were en-
riched in any particular type of tumors. The only significant associ-
ation was between the misclassified Subtype B samples, which were
enriched in higher T-stage and N-stage tumors. This observation may
provide hints about further refinement of the classifier for Subtype B.
Detailed results are given in Supplementary Materials—Section S3.

2.4 Visual codebook

We explored the structure of the visual codebook as obtained by
training the model on the full data set. A visual depiction of the ex-
tracted codewords (centers of the Gaussian components) is shown in
Figure 4 and a higher resolution image is given in Supplementary
Materials—Section $4. Note that the visual codewords are the cen-
ters of the Gaussians in the GMM, hence the means of feature vec-
tors obtained by projecting the ImageNet features in the PCA space.
The patches shown are just the closest image neighborhoods to these
centers, thus they are an approximation of the true centers (whose
visual appearance would require inverting the CNN function). We
use this simplification only for visualization purposes and to get a
qualitative assessment of the results.

As one can see most of the codewords could be associated with
distinct tissue architectures (from various parts of the glands, papil-
lary or tubular structures, to necrotic and fat regions). On the other
hand, it is apparent that some of the codewords were affected—to
different degrees—by the markings on the slides. Finally, a few code-
words clearly corresponded to artifacts (either due to out-of-focus

regions or markings). However, none of these artifact-related code-
words were found to be associated with the subtypes, indicating that
the approached use can cope, to some extent, with the noise inherent
in such images.

Some of the codebooks had a much higher incidence in a particu-
lar subtype than in all the others (Wilcoxon rank-sum test). In
Figure 3, the top four visual codewords resulted from this analysis
are shown along with the corresponding P values (no adjustment for
multiple testing was performed, since this is purely exploratory). For
all the Subtypes but E, the associations were statistically significant
(P < 0.01). The Subtype E seemed to not have a strong preference
for any of the codewords, the few found associations being weakly
statistically significant (0.01 < P < 0.05). It appears that Subtype
A is associated with well differentiated morphology (Fig. 5(a—d)),
with Subtype B being less well differentiated (Fig. 5(e-h)). For
Subtypes C, D and E, the top codewords could be associated with ei-
ther necrotic tissue (Fig. 5 (j and 1)), stromal reaction (Fig. 5(m-p))
or poorly differentiated morphology (Fig. 5(q)). It is important to
stress that the classifiers were built based on non-linear support vec-
tor machines, so the results from this analysis cannot be directly
extrapolated to understanding the classification models.

We performed a hierarchical clustering (Ward method) of all the
codewords using Euclidean distance and the result showed a rather
structured codebook (see Supplementary Materials—Section S5). By
corroborating the clustering results with those above, one can see
that there are two major clusters—one corresponding mostly to fea-
tures that are enriched in Subtypes A and B (and depleted in C, D
and E) and one corresponding to features enriched in Subtypes C, D
and E. This post-hoc analysis supports our decision of having a first
decision level separating Subtypes A and B from Subtypes C, D
and E.

3 Conclusion

We presented an approach at recognizing the CRC molecular sub-
types from the routine histology images. The results indicate that an
automated system could be built to identify with high confidence at
least four of the five subtypes—Subtype E apparently being much
more challenging to recognize. The predictions made by the classi-
fier were found to be also prognostic for relapse-free survival and
associated with other clinical parameters, as their molecular
counterparts.
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p = 0.01093 p=10.01158

p = 0.00601 p = 0.02399

Fig. 5. Top four prototypes associated with each subtype: (a-d) Subtype A, (e-h) Subtype B, (i-I) Subtype C, (m-p) Subtype D and (g-t) Subtype E. Under each

image the corresponding P value from Wilcoxon rank-sum test is shown

The models used for predicting the subtypes are based on sup-
port vector machine classifiers with radial basis functions kernels,
making the direct interpretation of the models rather intricate.
Nevertheless, we qualitatively evaluated the image features by test-
ing their associations with various subtypes and inspecting their dis-
tribution in the whole image. To obtain better insights, we plan to
also build simplified models—even at the expense on degraded per-
formance—that would better lend themselves to a biological inter-
pretation, a mandatory condition for the acceptance of the system.

In the current work, we concentrated on recognizing the five mo-
lecular subtypes from pre-segmented tumoral regions. This simplifi-
cation will be addressed in future work where we plan to use an
automatic segmentation of the tumor region as a preprocessing step
for the subtype recognition. Another question we will address in the
future pertains the classification of the so-called ‘outliers™ tumors
for which no molecular subtype was assigned. It would be interest-
ing to see how the subtypes predicted by the current image-based
classifier correlate with the similarity between their expression pro-
files and those of well-assigned tumors.

One has to bear in mind that despite recent efforts to consolidate
the molecular taxonomy of CRC, the sub-categorization of CRC is
still not definitive. Indeed, depending on the size of the cohort and
parameters chosen for cut-offs, more or less molecular subtypes can
be observed, thus this categorization is still fluid. Nevertheless, in
the present work, it has been considered the golden standard to
which the image-based models were compared against. We believe
that actually combining the observations from the two modalities
may lead to an even more refined subtyping of the CRC. However,
this would probably involve a more supervised (by expert patholo-
gists) construction of the image-based models.

As they stand now, our results are clearly supporting the possi-
bility of translating some molecular observations into image-based
models, as it is the case of molecular subtypes. These results are rein-
forced by similar observations made by an expert pathologist
(Budinskd et al., 2013), where several tissue architectural patterns
could be linked, in a supervised analysis, to the molecular subtypes.
It is interesting to note that some of the regions/patterns found rep-
resentative in our data-driven analysis are also visually similar to
those hand-picked by an expert (see example images in Budinskd
et al., 2013). On the other hand, the intra-tumoral heterogeneity

and pathology sampling region clearly influence sample’s assign-
ment to a molecular subtype (Dunne ez al., 2016). In the light of the
results presented here, it can be imagined an image-analysis ap-
proach to the delineation of the tissue sampling regions to improve
the stability of the subtype assignment.

While it is too early for considering any clinical application of
the models described here, they could, however, be used for index-
ing/annotating or for retrieval of samples of interest from archives.
Consider the situation in which one would like to test for some bio-
marker which is hypothesized to work in one or several subtypes on
a retrospective collection of samples. Since determining the molecu-
lar subtypes relies on profiling hundreds of genes, it makes more
sense to use a classifier such the one proposed here, to select the
most promising samples. And this can be implemented without sig-
nificant effort since more and more of the pathology departments
are adopting the digital pathology workflows, thus the images being
readily available.
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Abstract Heterogeneity of colorectal carcinoma (CRC) represents a major hurdle towards
personalized medicine. Efforts based on whole tumor profiling demonstrated that the CRC molec-
ular subtypes were associated with specific tumor morphological patterns representing tumor
subregions. We hypothesize that whole-tumor molecular descriptors depend on the morpho-
logical heterogeneity with significant impact on current molecular predictors. We investigated
intra-tumor heterogeneity by morphology-guided transcriptomics to better understand the links
between gene expression and tumor morphology represented by six morphological patterns
(morphotypes): complex tubular, desmoplastic, mucinous, papillary, serrated, and solid/trabecular.
Whole-transcriptome profiling by microarrays of 202 tumor regions (morphotypes, tumor-adjacent
normal tissue, supportive stroma, and matched whole tumors) from 111 stage II-IV CRCs identified
morphotype-specific gene expression profiles and molecular programs and differences in their
cellular buildup. The proportion of cell types (fibroblasts, epithelial and immune cells) and differenti-
ation of epithelial cells were the main drivers of the observed disparities with activation of EMT and
TNF-a signaling in contrast to MYC and E2F targets signaling, defining major gradients of changes
at molecular level. Several gene expression-based (including single-cell) classifiers, prognostic and
predictive signatures were examined to study their behavior across morphotypes. Most exhibited
important morphotype-dependent variability within same tumor sections, with regional predictions
often contradicting the whole-tumor classification. The results show that morphotype-based tumor
sampling allows the detection of molecular features that would otherwise be distilled in whole tumor
profile, while maintaining histopathology context for their interpretation. This represents a practical
approach at improving the reproducibility of expression profiling and, by consequence, of gene-
based classifiers.
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This study presents a valuable finding on the putative molecular patterns underlying characteristic
morphological regions observed in colorectal cancer (CRC). The authors provide a morphological
framework through which clinicians might improve the performance of molecular signatures and
consequently predict the clinical response of patients with better accuracy. The evidence supporting
the claims of the authors is solid. The work will be of interest to clinicians and cancer biologists
working in the field of CRC.

Introduction

Colorectal cancer (CRC), the third cause of death among cancer patients, is a highly heterogeneous
disease, with a slow initial progression that favors the accumulation of mutations leading to a complex
phenotype. Differences that exist both between and within tumors of the same cancer type are a major
hurdle towards proper treatment selection and for developing more targeted therapies. Depending
on the perspective under which these differences are investigated, various categorization paradigms
have emerged. The systematization of clinical and histopathological parameters led to the definition
of current TNM staging system (Amin, 2017), which presently constitutes the gold standard for diag-
nosis and prognosis. The development of high throughput molecular technologies brought a novel
perspective and set the stage for the appearance of molecular taxonomies categorizing the tumors
into subgroups sharing common molecular traits (Perez-Villamil et al., 2012, Budinska et al., 2013;
Marisa et al., 2013; De Sousa E Melo et al., 2013; Sadanandam et al., 2013, Roepman et al., 2014)
with consensus molecular subtypes (CMS)(Guinney et al., 2015) representing their common denomi-
nator. While these studies were based on whole-tumor (bulk) gene expression data, the developments
in single-cell sequencing further refined the CMS classes adding two intrinsic epithelial subtypes
(ICMS2/3) to the picture (Joanito et al., 2022). Other studies combined genomics and transcriptomics
data and an alternative classification emerged (Muzny et al., 2012).

Whole transcriptome expression profiling of tissue sections is generally performed on RNA
extracted from regions of interest covering diverse cell collections. By consequence, the expression
levels associated with various transcripts represent, in the end, a weighted mean of contributions of
each cell type, being driven by the most abundant ones. The signals from less abundant cell types are
reduced or even silenced and are, therefore, overlooked. In the case of solid tumors, this approach
requires a representative region, enriched in tumoral cells, to be selected in the tissue section(s) and
used for RNA extraction. This is the predominant approach to tissue expression profiling that fueled
the myriad of studies over the last two decades and led to significant progress in understanding the
various cancers. Newer technologies such as single cell sequencing and spatial transcriptomics allow
for a much finer selection of cells to be interrogated (Tang et al., 2019; Rao et al., 2021). However,
while powerful, these techniques rely on fresh tissue and have still to find their place in routine clinical
practice.

The importance of a morphological perspective on the molecular classification has been acknowl-
edged from the beginning, Jass, 2007 already identifying several morphological features associated
with the five groups proposed (e.g. serration, mucinous and poor differentiation were highly present
in two of the five groups), but also noted that these features were not sufficient for predicting the
groups. Later, Budinska et al., 2013 proposed six morphological patterns (morphotypes) as major
histological descriptors and showed that a two-tier histological score is strongly associated with the
five molecular subtypes identified. Interestingly, a pure data-driven image-based classifier for the
same molecular subtypes resulted in selecting remarkably similar morphological motifs (Budinska
et al., 2016, Popovici et al., 2017). Miiller et al., 2016 reviewed the TCGA and CMS subtypes
and their links with some morphological aspects, most notably the serrated phenotype. It is worth
mentioning that in all these cases the evaluation of the morphological features referred to the whole
tumor section; for example, a tumor was considered of mucinous morphology if the mucinous pattern
was present in more the 50% of the tumor region, in accordance with standard definitions endorsed by
the World Health Organization (Bosman, 2010). These links between tumor morphology and molec-
ular features also imply that the gene expression profile may depend on the tumor region sampled for
RNA extraction. The sensitivity of gene-based classifiers to tumor sampling raised concerns regarding
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the stability of consensus molecular subtypes (Dunne et al., 2016) and may partially explain the low
proportion of biomarkers that reach clinical relevance (Stewart et al., 2017).

It is evident that, while intra-tumoral heterogeneity is recognized as a major challenge, we still lack
the practical tools for its characterization that would easily translate into a diagnostic and predictive
model. In contrast with previous results, in our study we explored region- (morphotype-) based tran-
scriptomics approach as a possible solution to this problem. This method offers a trade-off between
whole-tumor profiling and spatial transcriptomics. It has a better signal resolution than whole-tumor
profiling, since it selects tumor regions with more similar cellular buildup, and covers the whole tran-
scriptome, but clearly has a much lower spatial resolution than true spatial transcriptomics. However,
it represents a practical approach where several regions of interest can be stably identified, and their
profiling could be easily integrated in the current molecular pathology diagnostic practice.

Building on our previous results (Budinska et al., 2013), we based our study on a detailed explo-
ration of the transcriptome of the six morphotypes identified earlier as associated to the molecular
subtypes of CRC: complex tubular (CT), desmoplastic (DE), mucinous (MU), papillary (PP), serrated
(SE) and solid/trabecular (TB), respectively. As reference, we also profiled several tumor-adjacent
normal (NR) and supportive stroma (ST) regions. The present study was based on a single center
cohort and was designed to achieve several goals: (i) identifying representative samples for each of
the morphotypes, (i) providing a comprehensive characterization of their transcriptomics landscape,
and (iii) studying the intra-tumoral heterogeneity from the perspective of morphotype-resolved tran-
scriptomics. We characterized the morphotypes from several transcriptional angles: basic molecular
programs as captured by differential expression and pathway analyses, molecular tumor classifiers and
prognostic gene signatures. At the same time, we looked for variations both across all tumors and
across matched samples (within tumors). The emerging picture is of an unexpectedly high heteroge-
neity, with clear implications both from fundamental biological and practical perspectives, opening
new avenues for biomarker design.

Results

Data
From n=111 unique cases of primary CRC tumors (stages: Il: 59, 1l1:32, IV:20), n=202 regions were
macrodissected representing either tumor morphological regions (n=149), tumor-adjacent normal
tissue (NR, n=17), supportive stroma (ST, n=8), or whole tumor (n=28), respectively. Among the tumor
morphological regions, n=126 ‘core samples’ were identified based on ‘morphological purity’, indi-
cating regions containing at least 80% of a unique morphological pattern. The six morphotypes of
interest (Figure 1) consisted of (in brackets the additional non-core samples) 41 (+11) CT, 13 (+2)
DE, 18 (+3) MU, 10 (+2) PP, 33 (+7) SE, and 9 TB samples, respectively. The distribution of associated
main clinical parameters is given in Supplementary file 1. The only statistically significant associa-
tions found were between MU or TB and grade 3 tumors, and SE and lower grade tumors (p=0.019,
Supplementary file 2), respectively.

To complement the results presented here, we created a web application https://morphogene.
recetox.cz allowing the interrogation of gene expression in various morphological regions.

Morphotype cellular admixtures

The transcriptomic profile of solid tumor sample is a mixture of gene expression profiles of indi-
vidual cell types and their specific programs, including cancer cells at different levels of differentiation,
specific immune cells, or supportive fibroblasts. As a first step, we performed in-silico deconvolution
of the expression profiles to identify the most prevalent cell types in each of the morphotypes and
GSEA to score cell-type-specific gene sets (see Materials and methods) in each morphotype, and NR
and ST regions (used as controls, Figure 2, Supplementary files 3-4).

The results from ESTIMATE indicated, as expected, a high stromal content for ST, DE, and MU
and a high epithelial tumor cell content for normal region and TB and SE morphotypes, respectively
(Figure 2A). A more balanced situation was observed for CT and PP morphotypes (similar to NR). This
agreed with the (stroma-related) ‘Isella signatures’ (Isella et al., 2015) where ST, DE, and MU were
enriched in endothelial cells, CAFs and immune cells (Figure 2B). When investigating the categories
of epithelial cells, the signatures of top of the normal colon crypt cells (Kosinski et al., 2007) and
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Figure 1. Morphological patterns and their distribution in the dataset. (A) The six CRC morphological patterns of interest (morphotypes). Left: example
of an original annotation used for macrodissection and RNA extraction. Note that the original annotations in the image are not identical to the ones
used in the main text. Here, A-SE stands for serrated (SE) in the text, B-DE for desmoplastic (DE) in the text, C-MUC for mucinous (MU) in the text, and
D-ST for solid/trabecular (TB) in the text, respectively. Also, N indicates a tumor-adjacent normal epithelial region and S a supportive stroma region,
respectively. Right: examples of morphotypes — complex tubular (CT), desmoplastic (DE), mucinous (MU), papillary (PP), serrated (SE), and solid/
trabecular (TB). (B) Morphotype distribution per case (unique tumor) and intersections thereof: some cases had several morphotypes profiled.

colon differentiated epithelial cells (Merlos-Suarez et al., 2011) were enriched solely in NR regions,
while DE, MU, CT, SE, and TB were depleted in these cell types (Figure 2B). On the other hand,
MU, CT, PP, and TB regions expressed genes specific for the basal crypt cells (Kosinski et al., 2007)
and ST, DE, and MU were enriched in signatures of intestinal stem cells. These observations are in
perfect agreement with the definition of the morphotypes and confirm the proper selection of the
samples. quanTlseq revealed that all tumor morphotypes were enriched in M1 macrophages (with
maximal presence in MU and DE), while M2 macrophages, NK cells and myeloid dendritic cells where
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Figure 2. CRC morphotypes: in silico decomposition of the cellular admixture. (A) Boxplots of the tumor purity (epithelial content — ESTIMATE method)
in each tumor morphotype and the two non-tumor regions, ordered by increasing median values. (B) Signatures specific to colon crypt compartments
and major cell types estimated from gene expression data in terms of normalized enrichment scores (NES): only statistically significant scores are shown.
(C) Immune cell fractions (and unassigned fractions) inferred from gene expression data using quanTlseq method. (D) Types of cancer-associated
fibroblasts (CAFs) as estimated from gene expression using the signatures from Khaliq et al., 2022; Kieffer et al., 2020.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Epithelial signatures from Pelka et al., 2021.

Figure supplement 2. Immune signatures from Pelka et al., 2021.

Figure supplement 3. Stromal signatures from Pelka et al., 2021.

highly present in supporting stroma and tumor-adjacent normal regions (Figure 2C). Additionally, TB
morphotype had the lowest scores for regulatory T cells (TREGs) and B cells.

Further we refined the morphotype cell admixtures by testing signatures of different cell types
and their active programs as derived from single-cell sequencing studies. We evaluated more than
150 signatures of stromal, epithelial, and immune cell population (supplemental tables of Pelka
et al., 2021) and cancer associated fibroblasts (CAFs) (Khaliq et al., 2022; Kieffer et al., 2020) (see
Supplementary files 3-4 for full signatures). Interestingly, the morphotypes differed in the signatures
of CAFs subpopulations (Figure 2D). ST, MU, and DE had high GSEA scores of most of the CAFs
subpopulations, while the rest (CT, PP, SE, and TB) had mostly negative scores, indicative of depletion
of corresponding cell types. DE and MU were most strongly enriched in signatures of ECM-myCAF
S1 - associated with immunosuppressive microenvironment and pro-metastatic functions (Kieffer
et al., 2020) — and wound-healing myCAF S1 populations, while the adjacent stroma mainly showed
signatures of normal fibroblasts, detox-iCAF S1 and IL-iCAF S1 populations, both characterized by
detoxification and inflammatory signaling. NR regions were enriched only in normal fibroblasts and
detox-iCAF S1. By exploring the signatures from Pelka et al., 2021, we observed even finer differ-
ences between morphotypes within all three cell type populations and their programs (Figure 2—
figure supplements 1-3). For instance, CT, TB, and SE had enriched pS04 (ribosomal) and pS12
(proliferation) stromal cell signatures, in addition, CT and TB expressed pS05 (interferon-stimulated
genes, ISGs) and pS21 (FOS, JUN) signatures. Also, NR had a specific enrichment in mitochondrial
(pS09), metallothionein (pS16) and BMP-producing (pS17) fibroblasts. CT and TB resembled MU in
expressing pS20 signature and, additionally, TB showed similar levels of pS13 (inflammatory) signa-
ture as MU and DE. ST regions and DE and MU morphotypes had significantly increased pS02 (Fibro.
matrix/stem cell niche) signature. Full results for other cell types and programs are provided in the
Supplementary file 4.
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Table 1. Results of comparison of each morphotype (and the two non-tumoral regions) with the average profile.
The table shows the top 20 up- and down- regulated genes and significantly activated hallmark pathways and processes (as result of
GSEA). The genes not significant after p-value adjustment (at FDR = 0.15) have their symbols greyed. See also Supplementary files

5-6.
Top 20 up-regulated genes Top 20 down-regulated genes Active processes (based on the
Morph (compared to mean) (compared to mean) Hallmark pathways with high score active hallmark pathways)
EMT, TNF a signaling via NFKB,
Complement, IL2 STATS5 signaling,
hypoxia, inflammatory response, KRAS
signaling, UV response, myogenesis,
coagulation, apical junction, allograft
rejection, IL6 JAK STAT3 signaling,
ARF4, MUC2, SULF1, FNDC1, LOXL1, TIMD4, PRELID3BP3, EREG, KDM4A, interferon gamma response, apoptosis,
LGALS1, ANTXR1, BGN, COL12AT1, CCDC175, TDP2, CHMP1B2P, ACE2, TGF-beta signaling, angiogenesis,
PALLD, MEGS8, DKK3, ACVR1, GPX8, NLRP7, UGT2A3, SLC26A3, A1CF, hedgehog signaling, estrogen response  Inflammation, neoangiogenesis,
CALD1, FBN1, MLLT11, CSRP2, TSPAN6, CLDN10, TMIGD1, BMP5,  early, NOTCH signaling, WNT beta increased metastatic potential,
MU TUSC3, GREM1 MS4A12, FAM3B, CLCA4, MEP1A catenin signaling, cholesterol homeostasis apoptosis, development
EMT, TNF a signaling via NFKB,
Complement, IL2 STAT5 signaling,
hypoxia, inflammatory response, KRAS
OLFML2B, INHBA, LUM, SULFT1, SLC17A4, ANPEF, DEFA5, RAP1GAF,  signaling, UV response, myogenesis,
PTPN14, PRDM6, SPOCK1, RDX, MRAP2, ADH1C, TRIQK, REG1A, coagulation, apical junction, apoptosis,
EDNRA, COL12A1, CTHRCT, PRRX1, SLC4A4, UGT2B15, REG4, SEMASA, TGF-beta signaling, angiogenesis, Inflammation, neoangiogenesis,
LGALS1, COPZ2, COLT0A1, TNFAIP6, L1TD1, MS4A12, S, SPINK4, CLCA4, hedgehog signaling, estrogen response  increased metastatic potential,
DE IGFL1P1, ST6GAL2, FAF, BGN MUC2, CLCA1, CA1 early apoptosis
PTPRD, KNDC1, MIMT1, UPK3B,
MPZ, MMP15, CYP4F12, SNORD4A, IGKV3-11, IGHV4-39, ANPEP, OR4F8P,
SNAR-C3, TMTC4, LRCOLI1, HEPACAM2, ADAMZ28, CPS1,
GATAS5, SNAR-E, EPHA7, IPO4, TMIGD1, NPYéR, ITLN1, SI, ADH1C, MYC targets V1, MYC targets V2, E2F
SNAR-I, CASC21, NUTF2, SNAR-B2, CAV1, MMP2, FDCSF, CLU, REG1A,  targets, KRAS signaling DOWN, WNT
PP RPL31P50 RSPO3, PAX8-AS1, PALMD beta catenin signaling,
PPAN-P2RY11, TUBB4BP7, JADES,
PFDNé, CLDN2, YAF2, BOLL, IGKV2D-29, MYLK, TAGLN,
SLAMF9, SLC12A2, CCDC175, CNTNAP3P2, GLI3, CPXM2, NR3CT1,
GRINZ2B, TUBB3P2, GAPDHP71, CNN1, PECAM1, COLEC12, IGKV4-1,
RPS2P25, MAT1A, NOX1, IGKV2D-30, DPYD, CLU, TSHZ2,
SNORD12C, SMADé, MECOM, ADH1B, IL10RA, PDE7B, ABCAS, MYC targets V1, MYC targets V2, E2F
SE EXTL2 CDC42SE2 targets, G2M checkpoint,
TMEM®97, RPL13, CLDN1, TFDP1, CR2, OGN, SNORD114-21,
CKS2, CDCA7, TPX2, ANLN, SLC30A10, CLCA4, SNORD114-12, MYC targets V1, MYC targets V2, E2F
RAD54B, KRT18, HSPH1, CCT6A, DCLK1, FAT4, CPA3, ADH1B, targets, G2M checkpoint, MTORC1
PLK1, TMEM97P2, CSETL, MIPEP, SLC26A2, SNORD114-20, SFRP1, signaling, unfolded protein response,
SNORA71D, SNORA71C, PTTGT, ZG16, FGF7, SNORD113-1, ABCA8,  Glycolysis, oxidative phosphorylation, fatty Proliferation, Catabolism, oxidative
CcT PLBD1 B4GALNT2, MS4A12, CA1 acid metabolism, protein secretion stress, cell cycle disruption
FLJ22763, TMEMZ236, NPY6R, MYC targets V1, MYC targets V2, E2F
CKAP2, HSP90AA1, PPP3CA, REEP4, IGKV3D-20, IGKV2D-30, OLFM4, targets, G2M checkpoint, MTORC1
MSHé6, TOP2A, HSPE1, PPP2R5C, SELENBP1, LRRC19, CDHR1, IGHA1, signaling, unfolded protein response,
TBCA, VRK2, NIFK, TXNL4A, MNAT1, SNORD123, SLC26A3, CXCL14, Glycolysis, oxidative phosphorylation, Inflammation, catabolism, apoptosis,
ERI1, XPO1, VTRNAT-2, ANP32A, SLC3A1, SEMASA, MS4A12, IGHA2,  fatty acid metabolism, protein secretion,  oxidative stress, proliferation, cell
TB ARF6, RNF2, EIF4AT1P7 CLCA4, NXPE4, NXPE1 cholesterol homeostasis, cycle disruption
PIGR, SLC26A3, ADH1B, NXPET, TACSTD2, FAM83D, ASPN, CXCL11,
IGHA2, CLCA1, JCHAIN, IGHAT, CTHRC1, SLC39Aé, IFNE, SULFT1,
FCGBP, IGK, NXPE4, SLC9A2, MUC2, HSPH1, ELFN1-AS1, THBS2, CLDN1, Heme metabolism, bile acid metabolism,
NR3C2, TMEMZ236, MS4A12, FABP1,  SIM2, SLC22A3, SPARC, FN1, xenobiotic metabolism, fatty acid
NR IGLC3, IGKV1D-39, LRRC19 AHNAK2, COL11A1, SPP1, INHBA metabolism
EMT, TNF a signaling via NFKB,
Complement, IL2 STATS5 signaling,
SFRP2, ADH1B, EMCN, STEAP4, FRK, AADACP1, CKS2, HOOK1, hypoxia, inflammatory response, KRAS
ADAMTS1, ABI3BP, SPARCL1T, DCN, CLDNT1, ANLN, ST00P, UGTS, signaling, UV response, myogenesis,
PTGDS, PALMD, NOVA1, SLIT3, MACCT, EXPH5, CYP3A5, OCIAD2,  coagulation, apical junction, allograft
OGN, SERPINF1, RSPO3, CPA3, SLC12A2, GK, EVADR, TMC5, REG4,  rejection, IL6 JAK STAT3 signaling, Inflammation, neoangiogenesis,
ST FBLNS5, C3, EFEMP1, PBX3 TFF1, TCN1, CXCL8 interferon gamma response increased metastatic potential
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CRC morphotypes and molecular programs
The molecular programs and pathways represented in MSigDB were scored by performing GSEA on
differentially expressed genes (DEGs) in all morphotypes (and NR and ST).

For the first analysis, the ordered lists of DEGs per morphotype were obtained by contrasting
the individual expression profiles to the average profile of pooled samples (Supplementary file 5
contains all DEGs). This allowed the identification of all molecular programs significantly de-/activated
in each morphotype (Table 1, Figure 3; Supplementary file 6). When considering only the hallmark
signatures (H collection), the discriminative gradients between the morphotypes (and NR and ST)
were along the EMT and TNF-a signaling axes at one end, and the MYC and E2F targets at the other
end (Table 1, Figure 3A). Desmoplastic and mucinous shared active pathways involved in immune
system response (TNF-a signaling via NF-kB, interferon gamma response, complement, IL2-STAT5
signaling), neoangiogenesis, and increased metastatic potential (EMT, coagulation, TGF-, NF-kB,
NOTCH, Apical junction). At the other end of the spectrum, CT and TB morphotypes had activated
major pathways involved in proliferation processes (P53, MTORC 1, Myc targets, G2M checkpoint,
Mitotic spindle, NOTCH signaling, Protein secretion). In contrast with CT, TB morphotype shared
with MU and DE active TGF-p signaling, apoptosis, and most pathways involved in immune system
response. PP and SE morphotypes had activated MYC and E2F targets, with PP morphotype exhib-
iting downregulation of the KRAS signaling and upregulation of the WNT-f catenin signaling.

We performed principal component analysis (PCA) of the GSEA scores of hallmark pathways. Their
projection onto the first two principal components revealed a specific bi-dimensional clustering of the
morphotypes and illustrated the gradient of changes between morphotypes (Figure 3B, Figure 3—
figure supplement 1). At one end, MU and DE shared the same region in PCA space with positive
coordinates on the axis defined, among others, by EMT, inflammatory response, and UV response.
At the same time, they had opposite projections on the second axis of variation, defined by p53,
unfolded protein response and cholesterol homeostasis. In contrast, SE and PP shared the same quad-
rant with negative coordinates on the first axis, but positive on the second axis. The CT and TB fell
between the two previous groups with respect to the first axis of variation, while having similar acti-
vations of pathways defining the principal components. Overlaid on top of the transcriptomics layer,
an additional gradient could be observed: epithelial cell differentiation. Indeed, while SE, PP, and CT
were well or moderately differentiated, TB, DE and MU had low or undifferentiated morphology.

Figure 3C shows heatmap of median expressions of all top 5 up- and down-regulated genes of
each morphotype with respect to the average profile (full lists in Supplementary files 5-6). A second
analysis identified morphotype-specific processes and pathways by GSEA of differentially expressed
genes between each morphotype and all other five (excluding ST and NR) (Supplementary files 7-8).

Several macrodissected regions originated from the same section allowing for paired comparison
of morphotypes. While the reduced number of such pairs (MU vs SE: 8 pairs, DE vs SE: 7, CT vs DE: 5,
and CT vs MU: 5, respectively) impacted the statistical power, we were able to identify genes differ-
entially expressed (after p-value adjustment) in all but MU vs SE, indicative of regional differences
(Supplementary files 9-10). The differences between gene expression signatures from the matched
paired comparisons were in line with those from comparisons not accounting for sample pairing,
indicating that the morphotype specific effect was dominating the contrasts (see Figure 3—figure
supplement 2).

We also performed comparison between all pairs of morphotypes (Supplementary files 11-12).
This comparison shows that, despite similar content in terms of fibroblasts or epithelial cells (discussed
above), there are still differences both in terms of differentially expressed genes (Supplementary file
11) and activated molecular programs (Supplementary file 12) between DE and MU, on one side,
and CT, PP, SE, and TB. These results refine those presented above and allow an ordering of morpho-
types in terms of relative activation of pathways. For example, KRAS signaling appears to be highest
in PP, followed by CT.

Morphotypes and molecular subtypes

The molecular subtyping taxonomies of CRC were derived from datasets representing profiles of
whole tumor sections, therefore aggregating the expression of many cell types. In our previous
work (Budinska et al., 2013), we associated molecular subtypes with morphotypes assessed on the
whole tumor and hence we were interested to see how this observation translated to the case of
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Figure 3. Top differentially expressed genes and hallmark pathways. (A) GSEA scores for hallmark pathways in the six morphotypes and two non-
tumoral regions. Only pathways with statistically significant scores are shown. (B) Principal component analysis of hallmark pathways: the median profiles
of the six morphotypes (CT: complex tubular, DE: desmoplastic, MU: mucinous, PP: papillary, SE: serrated, and TB: solid/trabecular) and the two non-
tumoral regions (NR: tumor-adjacent normal and ST: supportive stroma) are projected onto the space defined by first two principal components (74% of
the total variance). The top pathways contributing to the principal axes are shown as well. See also Figure 3—figure supplement 1. (C) Heatmap of top
5 up- and down-regulated genes for each of the six morphotypes.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Principal component analysis of hallmark pathways GSEA scores: loadings for the first two principal components, i.e.,
contribution of pathways to the first two axes.

Figure supplement 2. Hallmark pathways differential activation between pairs of morphotypes.
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Figure 4. Intra-tumoral heterogeneity and the morphotypes (for all core samples, including those unassigned by the classifiers). Only cases with at
least two distinct morphotypes present are shown. (A) Left: CMS assignment for tumors represented by multiple regions. Right: CMS assignment
per morphotype (and two non-tumoral patterns). (B) Left: iCMS assignment for tumors represented by multiple regions. Right: iCMS assignment per

morphotype (and two non-tumoral patterns). (C) Differences between paired signatures: morphotypes vs whole tumor (each signature was normalized
to [0,1] prior to computing the differences). Only four (morphotype, whole tumor) pairs were represented enough in the data. (D) Boxplots for the ten

(normalized) signatures across morphotypes. The ‘Eschrich’ and 'Jorissen’ signatures vary significantly (Kruskal-Wallis's test) across morphotypes. For
equivalent plots for all samples, including non-core, see Figure 4—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Molecular subtypes and morphotypes in all samples, including non-core samples.

macrodissected morphological regions. We predicted both the consensus (CMS) (Guinney et al.,
2015) and intrinsic (iCMS) (Joanito et al., 2022) molecular subtypes.

All ST regions were predicted as CMS4, and 82.4% of NR regions as CMS3. For the morphotypes,
the predictions were more distributed across subtypes: DE and MU were most often assigned to
CMS4 (63.6% and 58.8%), PP, SE, and CT to CMS2 (62.5%, 41.7% and 41.9%) and TB to CMS1 (80%;
Figure 4A, Figure 4—figure supplement 1). More importantly, this heterogeneity was also observed
intra-tumoral, with regions within the same tumor section being assigned to different subtypes
(Figures 4A and 5, Figure 5—figure supplements 1 and 2).

In contrast, intrinsic molecular subtypes (iCMS2/3) were much more stable, most of the time all the
morphotypes within a tumor sharing the same iCMS label (Figure 4B, Figure 4—figure supplement
1) and agreeing with the whole-tumor assignment. NR, MU, TB, and ST regions were classified most
of the time as ICMS3 (100%, 94,4%, 71.4%, 66.7%), while PP, CT and DE were predominantly classified
as iCMS2 (77.8%, 70.3%, 66.7%). The serrated morphotype was almost equally assigned to each of
the iCMSs (iCMS2: 58%, iCMS3:42%).
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Figure 5. Intra-tumoral heterogeneity case study. For the same case, different CMS labels are assigned to regions and whole tumor profile. The hallmark
pathways show various levels of activation (as computed by GSVA) within same section. The relative change in prognostic scores indicate potential
underestimation of risk for some signatures, while others appear to be stable across tumor. See also Figure 5—figure supplements 1 and 2. Note that
in the pathology section image, the original annotations were preserved, and they are not identical to the ones used in the main text. Here, MUC stands
for mucinous (MU) in the text. Also, N indicates a tumor-adjacent normal epithelial region and S a supportive stroma region, respectively.

The online version of this article includes the following figure supplement(s) for figure 5:
Figure supplement 1. Intra-tumoral heterogeneity additional case study.

Figure supplement 2. Intra-tumoral heterogeneity additional case study.

Prognostic and predictive gene-based signatures

The morphotypes generally differed in terms of score distributions, with two signatures reaching
statistical significance (Kruskal-Wallis’s test: Eschrich p=0.0228, Jorissen p=0.00085, Figure 4C-D). A
more pronounced variability was observed when comparing tumor regions to matched whole tumor,
with amplitude of the differences (region vs whole tumor) larger than 50% of the whole tumor score in
some cases (Figure 4C). Figure 5 shows a case study with three different morphological regions (CT,
MU, SE) which manifest rather large deviations from the whole tumor-based risk scores for most of the

prognostic signatures (see also Figure 5—figure supplements 1 and 2).
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Figure 6. Normalized enrichment scores from GSEA for selected resistance signatures (from C2 section of MSigDB). Only significant scores are shown.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Resistance scores (GSVA) per patient and morphotype for cases where the whole—tumor prediction is contradicted by some

regional score.

The predicted resistance/sensitivity to different therapeutics varied across morphotypes: MU resis-
tance to gefitinib; DE sensitivity to azaticidine, dasatinib, and aplidin, and resistance to tamoxifen
and gefitinib; PP resistance to cantharidin, SE resistance to aplidin, CT sensitivity to alkylating agents
(Figure 6). The differences were observed even within tumor (Figure 5), with some of the suppos-
edly sensitive tumors (whole tumor scoring) having regions of predicted resistance (Figure 6—figure
supplement 1).

Discussion
The analysis of the morphotypes from transcriptomics perspective is meant to bridge the histopa-
thology and gene expression. The present exploratory study was motivated by our earlier observa-
tions linking the morphological aspects of CRC to the molecular subtypes (Budinska et al., 2013). The
original observations semi-quantitatively scored the morphotypes as primary or secondary dominant
in the whole tumor section and showed that subtype A (corresponding to CMS3) was enriched in
PP and SE morphologies, subtype B (corresponding to CMS2) in CT morphology, subtype C (corre-
sponding to CMS1) in MU and TB morphologies, and, finally, subtype D (CMS4) in DE/stromal reaction
(Budinska et al., 2013). In contrast, here we focused on tumor regions rather than whole tumor, which
also allowed the characterization of the intra-tumor heterogeneity.

The results show a whole landscape of changes at gene and pathway levels, with morphotypes
residing on a continuum space of molecular descriptors. The analysis of hallmark pathways and
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selected signatures combined with in silico deconvolution of cellular admixtures served two purposes.
First, to confirm that the samples exhibit known properties (e.g. TB, SE, and PP have high tumor
epithelial cell content, and DE and MU are enriched in fibroblasts; molecular EMT signature is high in
MU and DE, but low in CT and SE, etc.), thus ensuring proper quality of the data. Second, it served to
refine the characterization of the morphotypes and sketching their ‘molecular portraits’. The morpho-
types investigated had a fluid characterization from a transcriptomics perspective, with many pairwise
similarities and some striking differences. Even from a strict histopathology perspective, it was diffi-
cult, if not impossible, to clearly distinguish the separation between adjacent morphological regions
therefore a certain degree of contamination between morphotypes was to be expected. Neverthe-
less, the enrichment in specific cell types and states allowed the identification of characteristic molec-
ular features.

MU and DE morphotypes (previously associated with CMS1 and CMS4, Budinska et al., 2013), as
expected, exhibited high score of genes up-regulated in colon fibroblast TGF- signaling pathway,
genes associated with high tumor stromal content, CAFs and endothelial cells as well as pathways
involved in immune system response. The detailed analysis of CAFs in fibroblast-rich regions (DE, MU,
and ST) based on signatures derived from single cell sequencing studies (Pelka et al., 2021; Kieffer
et al., 2020) revealed some finer differences: the supportive stroma (ST) region had the complete
panel of fibroblast tested, while DE and MU most notably missed the ‘'normal CAFs’. The main differ-
ence between DE and MU appeared to be that former was enriched in CAFs associated with inflam-
matory response (IL-iCAF), all the other CAFs being present at similar levels. The other morphotypes
were either significantly depleted in fibroblast signatures or their GSEA scores were not statistically
significant. Deconvolution of immune cell fractions by quantiSeq showed enrichment of DE and MU in
M1 macrophages. Given the involvement of CAFs in modeling the tumor microenvironment through
ECM remodeling, angiogenesis promotion and immune system regulation (Desbois and Wang,
2021), our results support the idea of scoring separately the stromal component by either molecular
or histopathology descriptors, in addition to tumor regions themselves. Even though DE and MU (and
ST) also had the highest scores for the molecular EMT signature, our observations rather support the
description of CMS4 as stromal/desmoplastic subtype than ‘true’ mesenchymal, in agreement with
(Loughrey et al., 2021). Further, the poor prognostic associated with CMS4 could be explained by
the stromal component: both (Roseweir et al., 2020) and (Ten Hoorn et al., 2022) agree that a high
stromal invasion/desmoplastic reaction is prognostic of shorter time to relapse.

CT morphotype represents a classic adenocarcinoma and is one of the most common morphologies.
In our previous study (Budinska et al., 2013), this morphotype was associated mainly with subtype B
(vastly overlapping with CMS2). TB morphotype seems to be mostly representative of higher-grade
tumors and was associated with CMS1. In contrast to NR, CT and TB showed significant enrichment of
signatures of normal colon basal cells. From the molecular perspective, CT together with TB had both
activated major pathways involved in proliferation processes. TB, in addition, resembled MU and DE
morphotypes by sharing active TGF-f signaling, apoptosis, and active immune system response. SE
and PP morphologies may be indicative of a different oncologic pathway — the ‘serrated pathway’ (De
Palma et al., 2019). The two morphologies share common features like well to moderately differen-
tiated, with low stromal content and crypt structure still preserved. From a molecular perspective, we
found that both SE and PP were both distributed similarly across molecular subtypes (both CMS and
iCMS) and had similar activation of hallmark pathways: EMT, IL2/STAT5, IL6/STAT3, KRAS signaling
all being down-regulated, while MYC targets being up-regulated. Among the hallmark pathways,
androgen response, heme metabolisms and IL6/STAT3 (all silenced), appeared to be specific (and
statistically significant) to SE and PP.

Given the relatively small sample size and similarities already observed between the morphotypes,
it came as no surprise that the lists of differentially expressed genes, morphotype-specific, were gener-
ally short (for FDR <0.15). Nevertheless, literature search of the genes on top of these lists showed
importance of these genes in CRC development, progression, EMT transition or response to therapy.
For CT, the top gene was PIP5K1B which was related to PI3K/AKT signaling and seems to be involved
in colorectal cancer development (Zhang et al., 2019). TB had the most differentially expressed genes
(n=662) in comparison with all other morphotypes, with top genes including FBXO5 - prognostic of
shorter time-to-relapse in various cancers (Liu et al., 2022), FLRT3 - a proapoptotic gene which,
when overexpressed, inhibits EMT (Yang et al., 2022), SETSIP — gene coding chromatin-binding
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protein capable of participating in fibroblast reprogramming and differentiation into epithelial cells
(Margariti et al., 2012), E2F7 - up-regulated by p53 in response to DNA damage (Carvajal et al.,
2012), CXCL14 (downregulated) - depending on the cell of origin can have both tumor suppressive
or supporting role (Westrich et al., 2020), SEMA5A (downregulated) gene — proposed as prognostic
marker in CRC (Demirkol et al., 2017). Among top overexpressed genes specific to MU morphotype
we found FGF7 (fibroblast growth factor 7) whose disrupted signaling was associated with deregula-
tion of cell differentiation (Patel et al., 2019), and MUC2 (intestinal mucin) whose downregulation has
been suggested a marker of adverse outcome (Betge et al., 2016). At the same time, MUC2 was also
among the DE-specific genes, but downregulated, consistent with the observation that desmoplastic
reaction is a marker of shorter relapse-free survival (Ueno et al., 2021). Still in DE, we found as top
overexpressed genes PIEZO2 - a paralog of PIEZO1 which is involved in colorectal cancer metastases
(Sun et al., 2020), SLIT3 — a member of the Slit/Robo pathway, a major regulator of several oncogenic
pathways and potential therapeutic target (Gara et al., 2015), and OLFML2B - a potential biomarker
for resistance to MEK inhibitors (Hu et al., 2022). SE morphotype had only one specific gene overex-
pressed at FDR <0.15, CCDC175. At the other end of the list, very interestingly, we found significantly
downregulated gene for dihydropyrimidine dehydrogenase (DPYD) gene — the variants of which are
predictive of 5-fluoruracil toxicity in adjuvant colon cancer treatment (Lee et al., 2014), GLIPR2 which
participates in positive regulation of ERK1/2 cascade and EMT transition (Kang et al., 2012b), or the
HOXAG9A gene, the overexpression of which was suggested to contribute to stem cell overpopulation
responsible for development of CRC (Osmond et al., 2022) or the GLI3 gene - that participates in
sonic hedgehog (Shh)-Gli-mediated tumorigenesis and the loss of Gli3 signaling was shown to initiate
cell growth inhibition in colon cancer cells, while sensitizing colon cancer cells to treatment with anti-
cancer agents (5-FU and bevacizumab) (Kang et al., 2012a). The only specific gene marker of the PP
morphotype was the downregulation of MZP — myelin protein zero.

We also found significant differences between pairs of morphotypes, especially in terms of molec-
ular signatures/programs. These results reinforce the observations above and show that they are
robust to the proportion of fibroblasts and/or epithelial cells present in the compared morphotypes.

In our collection, several cases were represented by several regions and an additional whole-tumor
profile. Taking advantage of these matched samples, we investigated several molecular classifiers from
an intra-tumor variability perspective as well. The CMS classification was less stable than iCMS, with
whole tumor CMS class differing from at least one of the constituent morphological regions in about
60% of cases (11 out of 18, excluding cases in which CMS class was not predicted; see Figure 5).
Additionally, we tested several prognostic and predictive expression-based classifiers/signatures. The
goal was not to compare them in terms of their predictive capabilities (the experimental design did
not allow for such an exercise), but rather to have a clear picture of the extent to which the various
morphotypes ‘distract’ these predictors. We found that all the prognostic signatures varied with the
morphological regions with some striking cases in which the morphotype scores exceeded the corre-
sponding whole tumor scores by more than 50%. This observation suggests that, in some cases, the
whole tumor-based predictions were too optimistic, the models failing to recognize higher risk cases.
While these signatures were derived from whole-tumor expression profiles, their variability across
tumor indicates the need for precise tumor sampling strategies.

Our exploratory study has, inherently, several limitations. The selection of cases may not represent
the proportions of various morphotypes found in general population of CRC patients. Our selection
tried to cover as many scenarios as feasible with a limited number of samples. Also, the tumor hetero-
geneity in terms of morphotypes cannot be estimated from these data since a single tissue block per
tumor was considered. The reduced sample size in some of the paired comparisons within same tumor
calls for further external validation. However, our results pave the way to future studies addressing
these questions and others related to optimizing the tumor sampling strategy, for example.

We have analyzed the gene expression profiles of six morphotypes (and two peritumoral regions),
building a comprehensive molecular picture of their salient features. The observed heterogeneity,
especially intra-tumoral (Figure 5), calls for a finer resolution of the tumor sampling in profiling studies.
Until spatial transcriptomics becomes integrated in routine clinical practice, using the morphotypes
for anchoring the expression profiles is a feasible approach. Our study already provides indications
of the molecular programs one would expect to find de-/activated in these regions, thus helping in
designing future experiments. The implications for molecular classifiers are clear: it is necessary to

Budinska et al. eLife 2023;12:RP86655. DOI: https://doi.org/10.7554/eLife.86655 13 of 20


https://doi.org/10.7554/eLife.86655

e Llfe Research article

Cancer Biology

account for tumor morphology when designing new biomarkers. Given the sensitivity of many gene-
based classifiers to the tumor and stroma proportions in the samples, there is a need to adjust these
classifiers to control for their relative proportions. This can be achieved by different means, and we
presented an approach based on morphotypes.

From a molecular pathology practice perspective, the molecular descriptors found to vary across
morphotypes may help in patient stratification and provide hints for further, more targeted investiga-
tions. Several questions call for further investigation: (i) how much of a tumor needs to be embedded
to achieve a precise molecular diagnostic? and (ii) what precise tumor region(s) are needed for a
molecular diagnostic? The morphotypes selected here may need further refinement and achieving
consensus among pathologists regarding their exact definition, a point that could potentially be
addressed by automatic image analysis approaches.

Ideas and speculation

Our analyses indicate that both prognostic and response to therapy signatures may predict more
severe cases (shorter relapse free survival or resistance to therapy) when applied to subregions than
to the whole tumor. This might be one of the reasons the said signatures may fail their real-world vali-
dation. Therefore, morphologically heterogeneous tumors need several sampling locations to provide
a more sensible result. Sensitivity and cost analyses need to be performed to estimate the benefits of
multi-regional sampling.

Further, the fact that we were able to identify specific molecular programs associated with the
morphotypes calls for investigating the inverse problem as well, that is whether sufficiently discrim-
inatory features could be extracted for estimating the proportions of the morphotypes from whole
tumor profiles.

Materials and methods

Samples

This retrospective cross-sectional study used tumor samples from patients with CRC who were exam-
ined at Masaryk Memorial Cancer Institute, Brno, Czech Republic in years 2002-2015. The study was
reviewed and approved by the Committee for Ethics of Masaryk Memorial Cancer Institute, Brno,
Czech Republic (number 2018/861/MOU). All patients gave written informed consent for the use of
their biological samples for research purposes. Fundamental ethical principles and rights promoted by
the European Union EU (2000/C364/01) were followed. All patients’ data were processed according
to the Declaration of Helsinki (last revision 2013). Inclusion criteria for this study were: age >18 years,
clinical and histopathologically confirmed diagnosis of primary CRC. Standard clinical and histopatho-
logical variables (TNM, grade etc.) were retrieved for all patients. Failure of laboratory analyses (prob-
lematic sample preparation, low quality and/or quantity of isolated RNA, low quality of expression
data) was a reason for excluding these samples from the study.

Sample preparation

A total of 111 colon cancers (unique patients) were identified in the tumor archive of the Masaryk
Memorial Cancer Institute and were assessed by two expert pathologists. Morphological regions of
interest, representing complex tubular (CT), desmoplastic (DE), mucinous (MU), papillary (PP), serrated
(SE) and solid/trabecular (TB) morphologies, respectively (see Figure 1), were digitally marked in
scanned whole slide images (at 20 x magpnification) and macrodissected for RNA extraction. Addi-
tionally, from several slides, tumor-adjacent normal (NR) and tumor-associated stroma (ST). Tumor
samples with limited contamination of additional morphologies (<20%) were called ‘core samples’ and
used morphotype molecular characterization. The labelling of the regions was repeated after 1 year
to ensure a stable assignment. For n=28 cases, whole-tumor regions were macrodissected from the
histology section immediately adjacent to the section used for morphological regions. Standard clin-
ical and histopathological variables were retrieved for most of the patients.

Gene expression profiling
The RNA extraction was performed from formalin-fixed paraffin-embedded histopathological slides
using AllPrep DNA/RNA Kits (Qiagen, Hilden, Germany) according to their specific manufacturer’s
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instructions. A few modifications were made to the protocol: FFPE slides (2x3 pm) were bathed in
a solution to remove paraffin (3 x in xylene for 5 min and 3 x in ethanol for 5 min). Tumor tissue was
spotted with 8 ul PKD puffer and collected from slides using a scalpel. Purification was done for total
RNA, including small RNAs. For elution, 20 ul RNA free water (1 min. incubation) was used and then
repeated with eluate. The extracted RNA served as input for a GeneChip WT Pico Reagent Kit (Thermo
Fisher Scientific, Waltham, MA, USA) for analysis of the transcriptome on whole-transcriptome arrays.
We selected the input amount from the recommended range according to the manufacturer’s instruc-
tions. Total RNA from Hela cells provided in the kit was used as a positive control together with a
high-quality low-concentration RNA isolated from a serum as a low input control. Clariom D Array for
human samples (Thermo Fisher Scientific, Waltham, MA, USA) was used for target hybridization to
capture both coding and multiple forms of non-coding RNA. Finally, the arrays were scanned using
Affymetrix GeneChip Scanner 3000 7 G (Thermo Fisher Scientific, Waltham, MA, USA). The sample
preparation and analysis were performed according to the manufacturer’s instructions. The protocol
included several control points in which the workflow was monitored. All the samples complied with
the quality control requirements and none of the samples were excluded from the analysis.

The data generated in this study are publicly available in ArrayExpress under accession number
E-MTAB-12599 (https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-12599).

Bioinformatics analyses

All resulting CEL files were processed using Bioconductor (RRID:SCR_006442) (Huber et al., 2015)
(v.3.15) packages oligo (Carvalho and Irizarry, 2010) (v.1.60), affycoretools (v1.68) and, for Clariom
D chip annotation, pd.clariom.d.human (v.3.14). For the quality control we used AffyPLM (v.147) and
imposed a maximal median Normalized Unscaled Standard Errors (NUSE) of 1.12. In all, n=202 passed
all the quality control steps and were normalized together using RMA (oligo) with core-probeset
summarization. Further, the array data was summarized at gene level by selecting the most variable
probeset per unique EntrezID and entries corresponding to missing HUGO symbols, speculative tran-
scripts, and short non-coding RNA were discarded resulting in a reduced list of 27,302 unique genes.
Batch effects were removed using ComBat (Johnson et al., 2007) from package sva (v.3.44.0).

For the identification of differentially expressed genes we used linear models (limma package
v.3.52.2) with a cut-off for false discovery rate FDR = 0.15. The pathways were scored in terms of
enrichment in specific signatures using gene set enrichment analysis (GSEA) (Subramanian et al.,
2005) as implemented in fgsea package (v.1.22.0). For scoring the signatures in individual samples, we
used gene score variation analysis (GSVA) (Hanzelmann et al., 2013) implemented in GSVA package
(v.1.44.1). MSigDB (RRID:SCR_016863) (all collections: H, C1-8; v.7.4.1) (Liberzon et al., 2015) was
used as the main source for gene sets and pathways. Additional cell type-specific gene sets, some
derived from whole tumor others from single-cell sequencing studies, representing (i) cancer asso-
ciated fibroblasts (CAFs) (Isella et al., 2015; Pelka et al., 2021; Khaliq et al., 2022, Kieffer et al.,
2020) (ii) epithelial cells (Kosinski et al., 2007, Merlos-Suarez et al., 2011, Pelka et al., 2021), and
(iii) immune cells (Isella et al., 2015; Pelka et al., 2021) were used (see Supplementary file 3 for full
list). The consensus molecular subtypes were predicted using CMSCaller (Eide et al., 2017) (v.2.0.1)
and the intrinsic epithelial subtypes (Joanito et al., 2022) using the signatures therein (P. Tsantoulis,
personal communication, July 2022). The cellular mixture of various tumoral regions was explored
computationally using quanTlseq (Finotello et al., 2019) (for immune cells) and ESTIMATE (Yoshihara
et al., 2013) (for tumor purity/epithelial cells). The core samples were used for deriving the lists of
differentially expressed genes, for gene set enrichment analyses and for in silico deconvolutions of cell
populations. The analyses treating the samples independently were applied to all samples, including
non-core.

Ten different survival/prognostic genomic signatures (full list in Supplementary file 13) were
computed per-sample as (weighted, when weights were provided) means of signature genes, and 29
sensitivity/resistance signatures selected from MSigDB/C2 were scored by GSVA.

All data analyses were performed in R 4.2 (R Development Core Team, 2022).
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PREHLED

Vliv mikrobiomu na vznik a vyvoj

kolorektalniho karcinomu

Role of the Microbiome in the Formation and Development

of Colorectal Cancer
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Videriska P, Budinska E.
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Souhrn

Vychodiska: Kolorektalni karcinom je velice heterogenni onemocnéni z klinického, histopatolo-
gického i molekularniho hlediska. Detailni charakterizace této heteragenity a jeji viiv na patologii
tohoto onemocnéni je nezbytnym krokem k lepsi stratifikaci pacientd a vyvoji novych lécebnych
postupt. V poslednich dvou desetiletich se pozornost védcli zaméfovala na studium molekular-
nich nadeorovych procest pro prediktivni, diagnostické a prognostické Gcely. Aviak i pes veSkeré
usili jsou existujici molekuldrni prediktivni a prognostické testy aplikovatelné pouze pro mensi
specifické skupiny pacient( a spiSe poméhaji pfi rozhodovéani o nasazeni specializované cilené
biologické lécby, nez by predpovidaly jeji Gspésnost. Samotné molekuldrni profilovani neni
schopné zachytit fadu dalsich faktor(i vyznamné ovliviiujicich rist a agresivitu nddoru. Mezi tyto
aspekty patif i mikroprostredi nadoruy, jeho? nejméné prostudovanou ¢ésti je stfevni mikrobiom
~ specifické spolecenstvi viech komenzélnich, symbiotickych a patogennich mikroorganizmd.
Strevni mikrobiom hraje klicovou roli u fady onemocnéni, jako je napt. Crohnova choroba, dia-
betes Il typu a obezita a podle nejnovéjsich studii mize dlouhodoba dysbidza stfevni mikrofléry
ovliviiovat i vznik a dal$i vyvoj kolorektéiniho karcinomu, jeho agresivitu nebo Uspésnost lécby.
Zdvér: Tato prehledova studie sumarizuje dosavadni poznatky studia stfevniho mikrobiomu u ko-
lorektalniho karcinomu, vé. riznych mechanizmd, jakymi strevni mikrobiom ovliviiuje poskozeni
stény stfeva a tim se miize podilet na vzniku a progresi kolorektéiniho karcinomu.

Klicova slova
kolorektéini karcinom - heterogenita - stfevni mikrobiom ~ dysbiéza

Summary

Background: The clinical, histopathological, and molecular characteristics of colorectal cancer
vary considerably. Factors associated with the heterogeneity of this disease and with understan-
ding the effects of heterogeneity on disease progression and response to therapy are critical for
the better stratification of patients and the development of new therapeutic methods. Although
studies have focused mainly on tumor molecular profiling, current molecular predictive and pro-
gnostic factors are relevant to specific groups of colorectal cancer patients and are mostly used
to predict the applicability of targeted biolagical agents rather than to predict their benefits. Mo-
lecular profiling fails to capture aspects important for tumor growth and aggressiveness, inclu-
ding the tumaor microenvironment. The gut microbiome, consisting of specific communities of all
commensal, symbiotic, and pathogenic microorganisms, has been shown to have a significant
impact on the development of many diseases, including Crohn's disease, type il diabetes, and
obesity. Recent studies have indicated that long-term dysbiosis of the intestinal microflora can
influence the development and progression of colorectal cancer, as well as tumar aggressiveness
and response to treatment. Conclusion: This review article summarizes current knowledge of
the gut microbiome in colorectal cancer, including the various mechanisms by which the gut
microbiome affects the intestinal wall, thereby contributing to the development and progression
of colorectal cancer.

Key words
colorectal cancer - heterogeneity ~ gut microbiome - dysbiosis
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VLIV MIKROBIOMU NA VZNIK A VYVOJ KOLOREKTALNIHO KARCINOMU

Uvod

Zhoubny novotvar tlustého stfeva a ko-
necniku (colorectal cancer ~ CRC) je vy-
soce heterogenni onemocnéni, kterému
v celosvétovém méfitku patfi druhd
(zeny) a tieti (muzi) pficka v incidenci na-
dorovych onemacnéni [1]. V CR se jedna
o jednu z nejcastéjsich onkologickych
diagnéz a celosvétové ma CR sestou nej-
vy3s{ incidenci CRC [2]. V etiologii to-
hoto onemocnéni hraji vyznamnou roli
environmentélni vlivy, jako jsou stravo-
vaci navyky, konzumace alkoholu a kou-
feni a také rizikové faktory, jako je vék,
rodinna anamnéza, chronickd zanétliva
onemocnéni traviciho traktu a pfitom-
nost polypt tlustého stfeva. Pfestoie
incidence CRC aktudlné zaznamenava
ve vyspélych zemich mirny pokles pie-
deviim diky zavedeni preventivnich
a screeningovych programt [3], jednd
se stdle o onemocnéni s komplikovanou
lé¢bou a vysokou tmrtnosti. Divodem
je vysoka heterogenita tohoto onemoc-
néni, a to jak interindividualini, tak hete-
rogenita samotného nadoru jediného
pacienta. Nadorova heterogenita CRC
zahrnuje rozdily na Urovni fenotypu na-
dorovych bunék (jak morfologické, tak
molekuldrni} a jejich interakci s nddoro-
vym mikroprostfedim projevujici se pH-
tomnosti bunék nenadorové tkané (tzv.
stromalni reakce), variabilni infiltraci
bunkami imunitniho systému a ~ jak na-
znacuji nejnovéjsi vyzkumy - také pfi-
tomnosti bakterii v samotném nadoru
nebo na jeho povrchu z luminélni strany
tlustého stfeva. Poslednich 15 let se vé-
decky vyzkum prognostickych a predik-
tivnich markertt CRC (a nadorového one-
mocnéni obecné) zaméfoval zejména
na molekuldrni profilovani nddorovych
bunék a hodnoceni faktorl néddoro-
vého mikroprostiedi. Vysledky tohoto
asili vedly k zavedeni nékolika moleku-
larnich biomarkert, které v kombinaci se
standardné pouzivanymi klinickymi pro-
ménnymi slouzi k individualizaci lécby.
Jako piiklad miZeme uvést stanoveni
mikrosatelitové nestability jako pozitiv-
niho prognostického markeru pfi indi-
kaci adjuvantni chemoterapie na bazi
5-fluoruracilu u Il klinického stadia CRC
nebo testovani mutaci genti KRAS, NRAS
a BRAF pii indikaci léZby metastatického
CRC terapeutickymi monoklonainimi

protilatkami cilenymi proti receptoru
pro epidermdini ristovy faktor [4]. Dale
existuje nékolik vicegenovych prognos-
tickych panelt urcenych pro predikci re-
lapsu u tasnych stadii CRC jako Onco-
type DX Colon Recurrence Score Test [5]
a ColoPrint [6], které byly validovény re-
trospektivné v ramci fady klinickych stu-
dii [7]. Jejich vyuziti v klinické praxi viak
neni rutinni, protoZe tyto testy nepre-
dikuji benefit adjuvantni chemotera-
pie. Podobné je na tom prognosticky
nastroj Immunoscore® [8] zaloZeny na
kvantifikaci tumor-infiltrujicich T bunék
v parafinovych fezech, ktery demon-
struje vyznam sloZeni nadorového mik-
roprostiedi pro agresivitu CRC. Ve snaze
blize charakterizovat molekularni pro-
cesy CRC se pozornost zaméfila na de-
finici molekularnich podtypt a v roce
2013 bylo publikovano nékolik klasifi-
kacnich systémtl vychézejicich z tran-
skriptomickych profild CRC [9-12], které
byly nésledné sjednoceny v koordino-
vaném usili za definice konsenzualnich
molekularnich podtypd (consensual
molecular subtypes - CMS) CRC s rozdil-
nou genovou expresi a silnou prognos-
tickou hodnotou [13]. V roce 2017 pak
byl navrzen alternativni systém klasifi-
kace CRC, Current Research Information
System [14], zaloZeny na transkripénich
profilech ¢isté populace nadorovych
bunék (bez nadorového stromatu). Oba
systémy se vzajemné dopliuji, ale nepo-
skytuji dostatecna kritéria, kterd by po-
mohla s nastavenim specifické |é¢by na
miru pacienta. Po 15 letech molekular-
nich vyzkum v oblasti CRC jsme tedy
jesté stale vzdaleni svatému grélu per-
sonalizované mediciny. Jednim z pomy-
sinych chybéjicich stiipkd mozaiky he-
terogenity CRC mlzZe byt pravé stievni
mikrobiom, ktery, jak se ukazuje, ma vy-
znamny vliv na vznik a vyvoj CRC,

Stfevni mikrobiom

Lidské télo je osidleno fadové triliony
symbiotickych mikroorganizmi vyskytu-
jicich se napf. v travicim traktu, na kazi,
sliznici dutiny Ustni a slinéch, spojivce, dy-
chacich cestach, urogenitalnim systému
a dalsich [15]. Pojem mikrobiom oznaduje
specifické spolecenstvi viech komenzal-
nich, symbiotickych i patogennich mi-
kroorganizm( v hostitelském organi-

zmu a jejich genom. Pati{ sem bakterie,
viry, archea a nékteré eukaryotni orga-
nizmy (prvoci, plisné a kvasinky). Kazdy
clovék hosti vice mikroorganizm(, nez
je pocet jeho vlastnich bunék, a také ge-
netickd informace lidského mikrobiomu
je nékolikanasobné vétsi nez geneticka
informace samotného ¢lovéka [16-18].
Z hlediska zdravi je nejvyznamnéjsi mi-
krobiom tlustého streva, zejména bak-
terie, které se podileji na metabolizmu
komplexnich slozek potravy, které by
jinak nebylo moZné vyuzit v pfeméné na
energii, dale na syntéze esencialnich i ne-
esencidlnich aminokyselin, enzymu a vi-
tamint (vitamin K, B12, kyselina listova),
muzZou neutralizovat potencidlné karci-
nogenni slouceniny [19], anebo naopak
skedlivé slouéeniny produkovat [20]. V-
znamnymi metabolity jsou napf. mastné
kyseliny s kratkym Fetézcem (short chain
fatty acids - SCFA), které slouzi jako zdroj
energie nejen pro kolonocyty, ale i pro
ostatni buriky a orgény [21]. Strevni mi-
krobiom tak ovliviiuje i morfologii stfeva
- architekturu sliznice, mnozstvi a slo-
zeni hlenu, prokrvenost a proliferaci epi-
telialnich bunék [22]. V poslednich le-
tech se studium stfevniho mikrobiomu
orientuje zejména na jeho interakci
s imunitnim systémem, ktera je dule-
Zitd obzviasté v obdobi po narozeni, kdy
se vyznamné podili na vyvoji imunity.
Pokud nedojde ke spravnému vyvoji
imunitni reakce, dochazi k vyvoji alergii
¢i autoimunitnich chorob. Interakce mezi
mikrobiomem a imunitnim systémem
pozdéji napoméhd k rovnovaze mezi eli-
minaci patogen( napadajicich travici
trakt a udrZenim tolerance ke zdravé
tkani streva [23,24]. SloZeni stfevniho mi-
krobiomu se nejvice méni od narozeni
pfiblizné do 3 let véku [25]. V pozdéj-
3im véku je sloZeni mikrobiomu stabilni,
pokud neni narusena jeho rovnovaha
a nedojde k prudkému snizeni diver-
zity mikrobiomu nebo dominanci bakte-
rif, které nepatii mezi pfinosné komen-
zalni zastupce. Tento nerovnovazny stav
mikrobiomu nazyvame dysbiéza a mize
byt vyvolan napt. [é¢bou antibiotiky, ne-
vhodnou stravou nebo onemocnénim.
Dysbidza je spojovana s vyvojem riznych
chronickych a autoimunitnich chorob,
jako je napf. Crohnova choroba, diabetes
Il typu, cbezita apod. [26].
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Stfevni mikrobiom je tvofen zejména
striktné anaerobnimi kmeny bakterii,
které ptevazuji nad bakteriemi fakulta-
tivné anaerobnimi a aerobnimi. Protoze
je velice obtizné tyto bakterie charakteri-
zovat klasickymi kultiva¢nimi metodami,
Jejich podrobnégjsi studium umoznil az
vyvoj molekuldrnich metod. Vzhledem
k velkému mnozstvi genetickych infor-
mac{ se ve studiu mikrobiomu nejvice
uplatiiuji sekvenacni techniky nové ge-
nerace, které umoznuji ¢ist velké mnoz-
stvi genetickych informaci najednou,
a tak identifikovat slozeni a funkci mik-
robiomu. Nejroziitengjii je stale analyza
bakteridlniho sloZeni pomoci genu ké-
dujiciho 165 ribozomalni ribonukleové
kyseliny (rRNA) se specifickymi oblastmi
pro jednotlivé bakterie a analyza funkce
mikrobiomu pomoci celometagenomo-
vého sekvenovani[27].

Slozeni mikrobiomu a abundance jed-
notlivych bakteridlnich taxon( odrazeji
fyziologické rozdily jednotlivych ¢asti
gastrointestinalniho traktu, a neni tedy
ve stfevnim lumen rovnomérné. Nejvice
bakterii se nachazi v tlustém stievé, kde
dochazi k vyznamnému rozkladu zbytki
traveniny bakteriemi. U zdravého ¢lo-
véka jsou z vice neZ 90 % dominujicimi
bakteridlnimi kmeny gram-pozitivni Fir-
micutes a gram-negativni Bacteroide-
tes [28,29], jejichz pomér se vyznamné
interindividudiné lii [30]. Mezi dal$i vy-
znamné zastoupené kmeny pati Acti-
nobacteria, Verrucomicrobia a Proteo-
bacteria [31,32]. Na urovni fadil jsou
dominujicimi sacharolytické Bacterioda-
les (kmen Bacteroidetes) a Clostridiales
(kmen Firmicutes).

Dopad slozeni stfevniho mikrobiomu
na zdravi &lovéka je studovan zejména
porovnanim slozeni mikrobiomu u ne-
mocnych a zdravych jedincl. Rozséhlé
populacni studie jako US National Insti-
tute of Health Human Microbiome Pro-
ject [18] nebo European Metagenomics
ofthe Human Intestinal Tract project [33]
ukazuji, ze ve sloZeni sttevniho mikro-
biomu existuje velka variabilita jak mezi
etniky, tak i jedinci, a nenf proto jed-
noduché definovat sloZeni ,zdravého”
mikrobiomu. Snaha o stratifikaci mi-
krobiomu vyustila v roce 2011 v defino-
véni tii zékladnich enterotypd lisicich
se dominanci jednoho z bakteridlnich

druhl - Bacteroides, Prevotella a Rumi-
nococcus [34]. Navazujici prace ukazaly,
Ze fazeni jedincli do enterotypu je ve-
lice zavislé na pouzité metodice a neni
dostatecné ostie vymezené. Nicméné
budouci studie zalozené na velkych
datovych souborech s normovanou me-
todikou mohou tuto problematiku po-
sunout k vyuZiti v 1é¢bé a diagnostice
nejenom stfevnich onemocnéni [35].

Mikrobiom

a kolorektalni karcinom

Strevni mikrobiom mize, at uz v podobé
individualnich bakterialnich zastupca,
nebo spoluplsobenim mikrobialni ko-
munity, potencovat nebo zmirfovat ri-
ziko vzniku CRC. Rada publikaci ukazuje,
Ze dysbidza stievni mikrofléry anebo
poskozeni stény stieva v disledku inter-
akce mikrobiomu s burikami imunitniho
systému hostitele muzZe ovliviovat roz-
voj zanétlivych a nddorovych onemoc-
néni stieva, progresi nadort [36,37] a je-
jich odpovéd na lé¢bu [38,39]. Bakterie
a jejich produkty se mohou podilet na
vzniku nebo progresi sporadického CRC
fadou rGznych mechanizm, jako je in-
dukce prozénétlivych a prokarcinogen-
nich drah v epitelialnich bunkéch, pro-
dukce genotoxind a reaktivnich forem
kysliku [40,41] nebo metabolické pre-
ména prokarcinogennich vyzivovych
faktor( na karcinogeny [42]. Za vy-
znamny rizikovy faktor vzniku nadoro-
vych onemocnéni stfeva je povazovéna
zanétliva reakce ve stfevnim epitelu,
kterd mlze byt zpsobena dlouhodo-
bou dysbiézou a plsobenim patogen-
nich nebo oportunné (podminéné) pa-
togennich bakterii [43-45].

Zdravy stfevni epitel ma fadu obran-
nych mechanizm( pro boj s mikrobial-
nimi naruditeli. Patfi sem hlenové vrstva
a udrZovani epitelialni integrity zame-
zujici vniku mikroorganizmi, rychld vy-
ména epitelialnich bunék, a tedy odstra-
novéni bunék infikovanych, autofagie
a vrozend imunitni odpovéd. Neméné
ddleZita je také ochranna funkce ko-
menzélnich bakterii, které svoji pFitom-
nosti na sliznici za normalnich okolnosti
zabrafuji praniku patogent nebo je-
jich produktti. Nicméné mnoho bakte-
ridlnich patogent vyvinulo téméf do-
konalé infekéni strategie, kterymi tyto

obranné mechanizmy obchézeji. Béhem
svého pisobeni vylu¢uji rizné toxiny
a efektory, kterymi mohou ovliviio-
vat hostitelské buné¢né funkce a vyuzi-
vat je pro svoje pleziti. Zaroven udrzuji
rovnovahu v naruiené epitelidini ba-
riefe tak, aby ji mohli kolonizovat diou-
hodobé [46]. Vedle patogennich bakte-
rii mohou svymi metabolity ptispivat ke
vzniku CRC také bakterie primarné ne-
patogenni, jejichZ prokarcinogenni po-
tencidl maze byt umocnén poskozenim
stfevni sliznice nasledkem zranéni nebo
infekce [46]. Viechny mechanizmy, kte-
rymi stfevni mikrobiom jako celek pfi-
spiva k udrzeni zdravého prostredi, nebo
naopak rozvoji patologickych stavi
ve. tumorigeneze v mikrobialné boha-
tém a imunologicky komplexnim pro-
stfedi stieva, oviem stdle nejsou zcela
objasnény.

Latky, kterymi bakterie negativné pa-
sobi na buriky epitelu nebo imunitni
buniky hostitele, maji cyklomodula¢ni
(bunéény cyklus ovliviujici) nebo geno-
toxicky Ucinek. V disledku toho mize
u epitelidinich bunék dochazet k pogko-
zeni deoxyribonukleové kyseliny (DNA),
akumulaci mutaci a nekontrolované pro-
liferaci. Produkty bakterii se méZou po-
dilet na zastaveni déleni imunitnich
bunék, ¢imz prakticky umozni sobé i na-
dorovym bunkdm uniknout imunitni
odpovédi. Z tohoto pohledu se jevi pro
vznik CRC jako nejvyznamnéjsi ente-
rotoxické kmeny Escherichia coli, které
produkuji hned ¢tyfi skupiny cyklomo-
dulin - cytotoxicky nekrotizujici faktor
(CNF), faktor inhibujici buné¢ny cyklus
(Cif), cytoletaini distendujici toxin (CDT)
a kolibaktin, ktery ma také genotoxické
U¢inky. CDT a Cif a kolibaktin inhibuji
proliferaci, CNF zase proliferaci spousti,
CDT kromé enteropatogennich kmen(i
E. coli produkuji také Shigella dysenteriae,
Campylobacter spp., Salmonella typhi,
Haemophilus ducreyi nebo Actinoba-
cillus actinomycetemcomitans [47]. Ente-
rotoxické kmeny Bacteroides fragilis pro-
dukuji toxin ze skupiny metaloproteaz,
ktery narusuje spojeni stievnich epite-
lidnich bunék stépenim transmembra-
nového proteinu E-cadherinu [48-50].
Degradace E-cadherinu mé za nasle-
dek aktivaci -kateninové signalni drahy
v buiikdch epitelu, coz zplsobuje jejich
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Stievni epitel

néchylnost k rozvoji kolorektal-
niho karcinomu zpUsobena:

« genetickou predispozici
« poskozenim strevni mukdzy
infekci nebo poranénim

»Driver-passenger”
model

N

LJdrivers” zptsobuji

- perzistentni zanét

- bunéénou proliferaci

- produkei genotoxickych latek

zastupci:

Enterobacteriaceae
enterotoxigenni Bacteroides fragilis
Enterococcus

« $patnym Zivotnim stylem ——» iniciace premalignantnich —» zména permebility strevni —» zména mikroprosttedi
lézi, kumulace mutaci

stény a bunééného
metabolizmu

zastupci:

- Fusobacterium, Strepotococcus
+ Coriobacteriaceae

Jpassengers’ zpusobuji
- pragresi tumorigeneze
+ potlaceni tumorigeneze

Schéma 1. Bakterialni driver-passenger” model.

zvysenou proliferaci. Je zajimavé, Ze en-
teropatogenni kmeny E. coli jsou také
schopny dramaticky snizit expresi kli-
covych DNA mismatch-repair proteint
MSH2 a MLH1 [51], a mohou dokonce
aktivovat senescentni butiky k produkci
rGstovych faktorl, které ovliviiuji nddo-
rovy rast [52]. Ke komenzélnim bakte-
riim s prokarcinogennim Gcinkem patii
napf. Enterococcus faecalis, ktera muze
poskozovat DNA epitelidlnich bunék
svou produkci extraceluldrnich super-
oxidl [53,54]. Sulfidogenni bakterie jako
Fusobacterium, Desulfovibrio a Bilophila
wadsworthia se mohou Ucastnit pro-
cesu nadorového bujeni produkei siro-
vodiku, jenz je znamy svym genotoxic-
kym Gcinkem [55].

Dal$im faktorem, jak se mohou bak-
terie Uspé3néji podilet na progresi pro-
cesu tumorigeneze, je tvorba biofilmu
- homogenniho nebo heterogenniho
spolecenstva mikroorganizm( tvofi-
ciho vyssi strukturu obklopenou extra-
celuldrnimi polymernimi latkami, které
mikroorganizmy v biofilmu vylucuji
achréni je tak pred nepfiznivymi podmin-
kamiaimunitou [56,57]. Bakterie schopné
adherence na rizné povrchy jsou tzv. pri-

marni kolonizétofi, ke kterym se pozdéji
mohou pfipojit bakterie, které by jinak
nebyly samotné adherence schopné -
sekunddrni kolonizétofi [58,59]. Pfitom-
nost biofilmu pozméfiuje metabolizmus
v nadorové tkani, produkci regulatord
bunécné proliferace a potencialné ovliv-
fuje vyvoj a progresi nadoru [60].

Bakteriglni model  driver-passenger”
Znamy model ,adenom-karcinom” vy-
voje CRC, ktery byl navrzen Fearonem
& Vogelsteinem [61], mé svou paralelu
i v bakteridInim plsobeni na proces tu-
morigeneze. V modelu adenom-karci-
nom je pojem driver-passenger” béiné
pouZivan ve spojeni s genovymi muta-
cemi, pricemz driver” jsou mutace fidici,
tedy zodpovédné za vznik a vyvoj na-
doru, a ,passenger” jsou mutace vzniklé
sekundarné v procesu nadorového vy-
voje [62]. Tjalsma et al pfisli s myslen-
kou aplikace tohoto modelu na bakte-
rie a vznik CRC. Hlavni myslenka tohoto
madelu je takova, Ze vznik a vyvoj CRC je
iniciovéan ,driver” bakteriemi, které svou
aktivitou pfimo nebo nepiimo zpuso-
buji poskozeni DNA a které v dUsledku
mohou pfispivat k hromadéni mutaci

charakteristickych pro adenomy a kar-
cinomy a k procesu tumarigeneze [63].
Proces nadorového bujeni pak méni lo-
kéini mikroprostiedi, zvySuje se propust-
nost stfevni stény a méni se bunéény
metabolizmus, coz umozni uchyceni
a pomnozeni oportunnich ,passen-
ger” bakterii. Zména mikroprostredi
tedy zplsobi, Zze patogenni bakterialni
Jdrivery” mohou byt postupné nahra-
zeny ,passenger” bakteriemi, které bud’
dale podnécuji, nebo naopak pozastavi
proces tumorigeneze [63] (schéma 1).

Za bakteriaini ,drivery” jsou tedy po-
vaZovany stfevni bakterie s prokarcino-
gennimi vlastnostmi. Do této kategorie
patfi vy3e uvedené strevni patogenni
bakterie. Jako bakterialni ,passengers”
jsou definované ty stievni bakterie, které
relativné malo kolenizuji stfevo zdra-
vych lidi, ale dokézou se Uspésné mno-
zit v mikroprostfedi nadoru. Mohou to
byt oportunni patogeny, komenzaly
nebo probiotické bakterie a podle toho
muze dojit bud k progresi, nebo potla-
cenitumorigeneze [63].

Tento model vznikl na zékladé Fady
studii, které porovnavaiji bakteridini slo-
Zeni ze stolice nebo stérd stfevni tkané
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Tab. 1. Aktualni pfehled studii porovnavajicich zmény ve stfevnim mikrobiomu ve vzorcich stolice a stérech nadrové tkané.

* u CRC pacientd
Stolice

 Enterococcus Faecalis

Bacteroides, Prevotefla

Porphyromonas,
Escherichia/Shigella,
Enterococcus, Streptococcus,
Peptostreptococeus,
Bacteroides fragilis
Peptostreptococcus,
Mogibacterium,
Anaerococeus, Stakia,
Paraprevotella,
Anaerotruncus, Colfinsella,
Desuffovibrio,
Eubacterium, Porphyromonas
Atopobium, Porphyromonas,
Fusobacterium

Fusobacterium, Bacteroides

Fusobacterium,
Lachnospiraceae,

. Enterobacteriaceaea,
Porphyromonas
Bacteroides, Fusobacterium,
Alistipes, Escherichia,
Parvimonas, Bifophila
Parvimonas micra,
Solobacterium moorei,
Peptostreptococcus stomatis

Stér z tkané
Coriobacterige, Roseburia,
Fusobacterium,
 Faecalibacterium,
butyrét produkujici bakterie

Bacteroides

Bacteroides, Prevotella,
Streptococcus,
Fusobacterium,

Peptostreptococcus,
Morganella, Porphyromonas

Fusobacterium, Parvimonas,
Gemella, Leptotrichia

Fusobacterium

Proteobacteria, Bacteroidetes

CRC ~ kolaorektalni karcinom

1 uadenomi

Ruminococcaceae,
Clostridium,
Pseudomonas,
Porphyromonas

Escherichia coli,
Pseudomonas

veronii, Lactococcus

* u zdravych kontrol

Faecalibacterium prausnitsii

Bacteroides vufgatus,
Bacteroides uniformis,
Roseburia,
hutyrat produkujici bakterie

Ruminococcus

Faecalibacterium prausnitsii,
Roseburia
Blautia, Ruminococcus,
Lachnospiracege,
Clostridium,
Bacteroides, Clostridiales

Ruminococcus,

Bifidobacterium,
Streptacoccus

Shigella, Citrobacter,
Serratia, Salmonella

Lactobaciflus, Roseburia,
Pseudobutyvibrio

Enterococcus, Baciflus,
Solibacilfus

Typ vzorku

stolice pred
kolonoskopii

stolice pred
operaci

stolice pred
operaci

stolice
1-4 tydny po
kolonoskopii

odbér behem
operace

odbér behem
operace

odbér béhem
kolonoskopie

odbér béhem
operace

odbér béhem
kolonoskopie

Populace

20CRC /
17 kontrol

60 CRC/
119 kontrol

46 CRC/
56 kontrol

21 CRC/
22 kontrol

A7 CRC /
94 kontrol
19CRC/
20 kontrol

30CRC/
30 adenom
/ 30 kontrol

46 CRC /
63 kontrol

137CRC/
187 kontrol

6CRC/
6 kontrol

22CRC/
22 kontrol

2ICRC)
27 stievni
lumen

52CRC/
47 adenom
/61 kontrol

55 CRC/
55 piilehla
zdravé tkan
31 adenom
/ 20 kontrol

Reference

Balamurugan et
al, 2008 [95]
Sabhani et al,
2011 [96]

Wang et al, 2012
[971

Chen et al, 2012
[98]

Ahn etal, 2013
[99]
Wuet al, 2013
{100]

Zackular et al,
2014 [64]

Feng et al, 2015
[101]

Yuetal, 2017
{1021

Marchesi et al,
2011 [103)

Sobhani et al,
2011 [96]

Chenetal, 2012
[98]

Nakatsu et al,
2015{104]

Viljoen et al, 2015
71

Luetal, 2016
{105}
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u pacientl s CRC, adenomem a zdra-
vych kontrol. V tab. 1 je uveden piehled
aktudlnich studii a jejich vysledki po-
rovnavajicich zmény ve stolici a nado-
rové tkani. Omezenim téchto studii je,
Ze neberou v tvahu moznou rozdilnost
v mikrobidlnim slozeni danou podtypy
nadorl.

Studie porovnavajici bakterialni slo-
Zeni stolice u pacientd s CRC, adeno-
mem a zdravymi kontrolami obvykle ci-
lily na vyuziti mikrobiomu stolice jakoZto
piidatného neinvazivniho testu na CRC.
V roce 2014 dva védecké tymy neza-
visle na sobé publikovaly studie pojed-
navajici o moznosti vyuziti mikrobiomu
jako screeningového néastroje pro dia-
gnostiku zacinajiciho CRC [64,65]. Oba
tymy dospély k zavéru, Ze kombinaci
zakladnich rizikovych faktor(i pro vznik
CRC (body mass index, vék a rasa) a mik-
robialniho slozeni stolice Ize lépe odliit
skupiny pacient s CRC, pacient( s ade-
nomem a zdravych lidi.

Mikrobiom, klinické a molekuldrni
proménné
Dal3i typ studii se zaméfuje na korelaci
bakterialniho sloZeni na povrchu né-
dorové tkéné nebo ve stolici pacienttl
s CRC s klinickymi proménnymi ve snaze
pochopit odlisnosti mezi rGznymi pod-
typy nadorl a podchytit mozné bio-
logické pozadi jejich heterogenity.
Lokalizace primérniho CRC se uka-
zuje jako vyznamny klinicky faktor, ktery
ovliviuje charakteristiku nadord tlus-
tého stieva, a to nejen histopatologic-
kou, ale i molekularni [66]. Je zndmo, Ze
proximalni ¢ast stieva je odlisného em-
bryonalniho vyvoje nez jeho distalni
¢ast [67] a s tim se poji i rozdil v cévnim
zasobovani, v expresi antigen a meta-
bolizmu glukézy, coz mé za nasledek od-
lisné osidleni bakteriemi i u zdravych je-
dincti [68]. Tento efekt se projevuje také
ve vyznamném rozdilu ve slozeni mik-
robiomu mezi pravostrannymi a levo-
strannymi nadory tlustého stieva [68].
Proximalni ¢ast zdravého stfeva napf.
obsahuje v&tsi pocet bakterii nez &ast
distalni [67], ale relativni prevalence do-
minantnich rodG (Lactococcus, Fusobac-
terium, Pseudomonas a Flavobacterium)
je v pravé a levé Casti zdravého stieva
podobna. U nadorl je oviem rod Fuso-

bacterium vice zastoupen v levé, distaIni
Easti tlustého streva [68]. Zde je také vice
zastoupena bakterie Escherichia-Shigella
{tyto dva druhy bakterii jsou natolik pfi-
buzné, Ze je nelze od sebe odlisit), jejiz
pfitomnost miiZe napomdhat rozvoji
karcinogeneze, ale u zdravych jedincd
jeji vyskyt pfevazuje v proximalni ¢asti.
Bakterie rodu Prevotella, které jsou spo-
jované se zvysenou produkci IL-17 ve
stfevni sliznici pacientd, dale pak Seleno-
monas, Peptostreptoccus a kmen Firmi-
cutes jsou vice zastoupeny v nadorech
s proximalni lokalizaci CRC [68]. Rozdil
mezi pravostrannymi a levostrannymi
nadory je i ve vyskytu bakteridliniho bio-
filmu. Ve studii Johnsona et al se biofilm
vyskytoval v 89 % nadorovych tkani a ve
viech vzorcich polypl vyskytujicich se
pravostranné, zatimco u levostrannych
nadorl se vyskytoval pouze ve 12 % na-
dortli a v Zadném polypu [60].

Dal3i asociace byla nalezena mezi
bakteridinim slozenim stievni mukdzy
a sporadickymi CRC asociovanymi s ko-
litidou, u nichz byl zaznamenan vy3si vy-
skyt bakterii z celedi Enterobacteriaceae
a rodu Sphingomonas a niZsi vyskyt Fu-
sobacterium a Ruminococcus v porov-
nani se sporadickymi CRC neasociova-
nymi s kolitidou [69].

Studii asociujicich molekularni pro-
ménné s mikrobiomem zatim neni
mnoho. Existuji publikace, které porov-
navaji slozeni mikrobiomu mezi mikro-
satelitné stabilnimi (MSS) CRC a nadory
s mikrosatelitni nestabilitou (MS1). MSS
nadory vykazuji zvyseny vyskyt E. coli
produkujici kolibaktin [70], zatimco
MSI nadory zvyseny vyskyt Fusobacte-
rium nucleatum a E. coli neprodukujici
kolibaktin [70-72].

V roce 2017 prvni a zatim jediné vy-
zkumné skupina publikovala vysledky
korelace mikrobiomu s konsenzudlnimi
molekuldrnimi podtypy CRC [73]. Analyza
bakterialniho sloZeni probéhla cilenou
sekvenaci genu pro 165 rRNA z nadoru
a zarover zkoumanim RNA sekvenci sa-
motného nadoru, které nebyly pfifazené
k referenénimu lidskému genomu. Vali-
dace pak probéhla pomoci kvantitativni
polymerazové fetézové reakce. Timto
zplsobem byly identifikovany bakte-
rie, které byly asociovany s konsenzuél-
nimi molekuldrnimi podtypy CRC [13].

Zvyseny vyskyt bakterii Fusobacterium
hwasooki a Porphyromonas gingivalis
je spojovan s molekulédrnim podtypem
CMS1 [73]. U tohoto podtypu se také ve
vétiim mnoZstvi vyskytovaly bakterie
Treponema denticola a Tannerrella forsy-
thia, které se spolecné s Porphyromonas
gingivalis podileji na tvorbé jiz vyse zmi-
néného biofilmu {74,751, Druhy moleku-
larni podtyp (CMS2 Canonical) obsaho-
val zvyseny vyskyt bakterii Sefenomonas
a Prevotella. Bacillus coagulants je aso-
ciovan s tretim molekularmim podtypem
{CMS3 Metabolic). Tato studie je oviem
limitovand malym mnoZstvim vzorkd
{n = 34), na kterych byla analyza prove-
dena, a faktem, Ze ani jeden vzorek nebyl
zatazen do ¢tvrtého konsenzuélniho
podtypu (CMS4 Mesenchymal), ktery je
navic prognosticky nejvyznamnéjsi [73].

Funkéni studie bakterie
Fusobacterium nucleatum
Casto pozorované asociace zvyseného
vyskytu bakterii Fusobacterium nuclea-
tum ve stolici i nadorové tkaniu pacientl
s CRC ved| k fadé naslednych detailnéj-
3ich studii, a tak se z bakterie F. nuclea-
tum stal ziejmé nejlépe popsany druh
tohoto bakteridlniho rodu z pohledu
CRC. Jednéa se o bakterie podporujici
zénét, které se abundantné vyskytuji ve
stievnim mikrobiomu pacient( se zanét-
livym stfevnim onemocnénim [76]. Pi-
tomnost F. nucleatum podporuje expresi
celé fady zanétlivych cytokind, napf. IL-6,
IL-8, 1L-10, IL-18, TNF-« [72-74]. F. nuclea-
tum usnadhuje diky ojedinélym dvéma
typim adherence spojeni primarnich
a sekundarnich kolonizatord a podili se
tak vyraznym zptsobem na vzniku bio-
filmu [58]. Schopnost F. nucleatum za-
chytit se na stfevni sliznici nebo do ni in-
vadovat je zavisla na formé adhezivniho
proteinu FadA, ktery umoZiuje jejich
piilnuti k epitelovym burikdm stfevni
sliznice. Soucasné dochazi k sérii uda-
losti, které vytsti ve stimulaci proliferace
CRC bunék [77]. Kromé uvedeného do-
chéazi k snizeni sekrece mucinl pohar-
kovymi bufikami stfeva jakoZto hlavni
slozky slizni¢ni ochrany stfeva [78-81].
Vyssi vyskyt F nucleatum v nédo-
dorovych lézi T lymfocyty, vy3iim sta-
diem onemocnéni a horsi prognozou
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z divodu vys3i agresivity téchto na-
dorli [72,82]. Zda se, Ze jednim z divodd,
pro¢ dochazi k potlacovani imunitni od-
povédi organizmu v misté nadorové
léze napadené F. nucleatum, je skute¢-
nost, ze metabolity této bakterie jsou
kratké peptidy a SCFA, které slouzi jako
chemoatraktant pro myeloidni supreso-
rové buriky [83]. Je zajimavé, ze vyskyt
F. nucleatum je spojovén s molekularmim
podtypem CRC, ktery je charakteristicky
vysokou MSI, mutaci BRAF a s pravo-
strannou anatomickou lokalizaci [72,84],
dale pak s hypermetylaci MLH1 a vyso-
kou metylaci CpG (CIMP-H) [72].

V roce 2017 provedli Bullman et al [85]
pokus na mysich, jimz byl zaveden 3tép
pochézejici z primarniho CRC ziskaného
od pacient(l. Tyto mysi byly nasledné lé-
ceny antibiotiky s cilem sniZit mnoz-
stvi F. nucleatum. Nésledné bylo pozoro-
vano zpomaleni proliferace nadorovych
bunék a ristu nadoru [85].

Nedavno byl identifikovan novy druh
bakterie Fusobacterium, Fusobacterium
hwasookii, kterd byla ve studiich zalo-
Zenych na cilené sekvenaci 165 rRNA
genu, kterd mé mensi pfesnost uréeni
do druht, vidy uréovéana jako F. nuclea-
tum [86]. Na zdkladé podobnosti v sek-
vencich F. hwasookii a F. nucleatum a vy-
skytu vysoce konzervovaného genu
FadA u F. hwasookii se zda, ze F. hwa-
sookii méd podobny vyznam v karcinoge-
nezi jako F. nucleatum.

Mikrobiom a lééba

kolorektainiho karcinomu

Rovnovaha mezi bakteriemi je dlezita
pro ochranu sliznice stfeva a zmény vy-
volané chemoterapii mohou zvyso-
vat riziko vyskytu infekce. Chemote-
rapie i radiacni lécba ovliviiuje slozeni
stfevniho mikrobiomu a pGsobi toxicky
na stfevni sliznici, ¢im2 umoZiuje pro-
stup bakterii do vrstvy epitelu. Zwieleh-
ner et al [87] ukazali, ze mnozstvi bakte-
rii klesa u pacientt ihned po aplikovani
chemoterapie a k obnoveni dochézi po
5-9 dnech. Chemoterapie vyznamné
ovlivnila vyskyt komenzélnich bakterii
z rodu Bacteroides a Bifidobacteria a po-
tenciadlnich patogent z rodu Clostridium
skupina IV [87]. PifemnoZeni potenciél-
nich patogen(, jako je napt. Clostridium
difficile, mize vést u pacientl s na-

dorovym onemocnénim k zavaznym
komplikacim [88,89].

Protinddorovd lécba ma vliv na slo-
zeni mikrobiomu a i sloZzeni mikro-
biomu muze mit vliv na d¢innost lécby.
Studie na my3ich modelech odhaluji,
Ze stievni mikrobiom ma viiv na Uspés-
nost chemoterapie tim, Ze ovliviiuje di-
ferenciaci a funkci myeloidnich bunék
v mikroprostiedi nadoru [38]. V této stu-
dii Goldszmid et al zkoumali vliv mikro-
biomu na lé¢bu platinovymi derivaty,
jako je napf. oxaliplatina nebo cisplatina.
Tyto slouceniny se vaZzou na DNA bunék,
narusuji jeji strukturu a tim inhibuji syn-
tézu a proliferaci proteind a indukuji
apoptdzu [90]. Oxaliplatina navic indu-
kuje imunogenni bunécnou smrt, ktera
pak aktivuje protinadorovou imunitu
zprostfedkovanou T lymfocyty [91]. Lé-
cebny efekt cisplatiny a oxaliplatiny byl
mnohem niz$i u mysi léc¢enych antibio-
tiky a bezmikrobnich mysi. U mysi 1é-
cenych antibiotiky se vytvorily sloude-
niny platiny a DNA néadorovych bunék
na stejné Urovni jako u kontrolnich
mysi, aviak jiz 48 hod po lécbé doslo
k vyznamnému poklesu cytotoxicity.
Antibioticka lé¢ba mysi potlacila veske-
rou modifikaci genové exprese induko-
vanou oxaliplatinou [38].

Zéavér

Interakce hostitel-mikrobiom se zviast-
nim ddrazem na roli sttevniho mikro-
biomu nejen v imunitni homeostaze
a autoimunitnich onemocnénich, ale
i ve spojeni se vznikem nadord bude
velmi diskutovanym tématem nasledu-
jicich let. Posledni desetileti ve vyzkumu
CRC bylo vénovano pfedeviim studiu
prognostickych a prediktivnich markerd
na zakladé genové exprese. Nicméné
tyto poznatky oproti standardnim klinic-
kym faktorim v porovnani s vynaloZe-
nym Usilim na jejich ziskéni jen nepatrné
zasahly do klinické praxe. Vezmeme-li
v potaz nejnovéjii znalosti o vlivu mikro-
biomu na vznik a vyvoj CRC, da se pied-
pokladat, Ze studium mikrobiomu muze
vést k lepdimu porozuméni heterogenity
CRC a pfiblizi nas vice k efektivni dia-
gnostice a lé¢bé. Navic se v poslednich
par letech ukazuje, Ze nejen bakterie
v nadoru, ale i bakterie na jeho povrchu
tvofici bakterialni biofilm ovliviuji vyvoj

CRC. Vysledky studii je viak tfeba inter-
pretovat velmi opatrné, nebot vysledky
jsou zdavislé na typu odbéru, uchovani
vzorkt a izolace bakteridlni DNA ze
vzorku [92-94],

Z klinického hlediska existuje néko-
lik rozdilnych terapeutickych ptistupd,
které by potencidiné mohly byt pou-
Zity jako prevence vzniku nadorovych
onemocnéni, jako podplrné terapie pfi
lé¢hé nadorovych onemocnéni anebo
ke zvyieni odpovédi na lé¢bu. Mezi tyto
pfistupy patfi uZivani probiotik a prebio-
tik, zména stravovani nebo mikrobialni
transplantace. Posledni z vy3e zmifova-
nych ukazuje velmi slibné vysledky pfi
[é¢bé infekce bakterii Clostridium difficile
u lidi a je navrhovana jako lécebny po-
stup v pfipadé idiopatickych stfevnich
zanétli a metabolickych poruch [39].

Ackoliv pozorujeme velky pokrok
v oblasti vyzkumu mikrobiomu, coz do-
kazuje i rostouci pocet publikaci na toto
téma, stale existuje mnoho nezodpoveé-
zenych otazek souvisejicich s vlivem mi-
krobiomu na rozvoj CRC. V tomto sméru
zatim chybéji studie, které se na mikro-
biom divaji ze $irsi perspektivy, v¢. na-
dorového mikroprostfedi a jeho klinické
i molekuldrni heterogenity, a poskytly by
tak komplexni ndhled na vlivy vedouci
ke vzniku a vyvoji CRC.
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Stool sampling and DNA isolation
kits affect DNA quality and
bacterial composition following 16S
rRNA gene sequencing using MiSeq
lllumina platform

Petra Videnska?, Kristyna Smerkova(®?, Barbora Zwinsova?, Vlad Popovici?,
Lenka Micenkova?, Karel Sedlar? & Eva Budinska®

Many studies correlate changes in human gut microbiome with the onset of various diseases, mostly
by 165 rRNA gene sequencing. Setting up the optimal sampling and DNA isolation procedures is
crucial for robustness and reproducibility of the results. We performed a systematic comparison of
several sampling and DNA isolation kits, quantified their effect on bacterial gDNA quality and the
bacterial composition estimates at all taxonomic levels. Sixteen volunteers tested three sampling
kits. All samples were consequently processed by two DNA isolation kits. We found that the choice

of both stool sampling and DNA isolation kits have an effect on bacterial composition with respect to
Gram-positivity, however the isolation kit had a stronger effect than the sampling kit. The proportion
of bacteria affected by isolation and sampling kits was larger at higher taxa levels compared to lower
taxa levels. The PowerLyzer PowerSoil DNA Isolation Kit outperformed the QlAamp DNA Stool Mini Kit
mainly due to better lysis of Gram-positive bacteria while keeping the values of all the other assessed
parameters within a reasonable range. The presented effects need to be taken into account when
comparing results across multiple studies or computing ratios between Gram-positive and Gram-
negative bacteria.

The gut microbiome plays a key role in shaping human health and has been the subject of an increasing num-
ber of studies in the context of disease development, diagnostics and treatment. Important progress has been
made especially in investigating uncultured bacteria, which constitute the main part of the gut microbiome
and were previously difficult to characterize with standard techniques such as cloning, Sanger sequencing or
Denaturing Gradient Gel Electrophoresis (DGGE)"*. Next generation sequencing (NGS) provides new and more
detailed means to study the human microbiome and helps uncovering its impact on the human immune system
development’~, or on the development of chronic diseases®’. However, human microbiome is very dynamic
and can change rapidly in response to many factors such as diet, antibiotic use, lifestyle or environment®*¢.
Many diseases were associated with a phenomenon called dysbiosis — microbial imbalance. Unfortunately, due
to the huge microbiome variability it is very difficult to define a normality baseline for an individual. To extract
disease-relevant information and generate new or confirm existing biological hypotheses, large cohort microbi-
ome studies are needed. These studies face multiple challenges with the microbiome sampling. First, successful
compliance of participants with the established protocol demands both motivation and an easy sampling proce-
dure. Especially, sampling of the stool at home can induce a “yuck effect” and positive education and uncompli-
cated sampling workflow can significantly decrease the number of study drop-outs!”*%.

Another major problem is the large variability of methodological approaches employed by different micro-
biome studies. The final composition of bacteria as assessed by sequencing the 16S rRNA gene is influenced
by many factors: sampling method!*-2?, sample storage conditions**?>-?, DNA extraction®?1?22630-3% primers
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targeting different parts of the 16S rRNA gene***! and data analysis*?. All of these factors may lead to the mis-
interpretation of changes in the microbiome and thus hamper direct comparisons of results between individual
studies**~*. These technical problems, along with an as yet unknown gut microbiome diversity in the healthy
population, lead to challenges in the implementation of metagenomics into cohort studies and, in consequence,
delay the translation of the knowledge to clinical practice.

Most studies focused on the technical factors influencing the assessment of bacterial composition often pro-
vide only a description of the observed differences on a limited number of samples, while the comparison of the
effect sizes of these factors, or combination thereof remains unexplored. The effect of sampling was previously
described with respect to storage conditions (such as temperatures?*2>26282° periods at room temperature??* or
a presence and type of stabilizer'**?>272%) None of these studies reported on the volunteers’ compliance or the
differences in preprocessing steps specific to different sampling kits. Multiple studies describe the effect of stool
homogenization prior DNA extraction®S, but they only report its overall effect on the interindividual variation,
without quantifying this effect at different bacterial taxon levels.

The DNA extraction method was highlighted as a critical factor influencing the observed bacterial compo-
sition***”. Commercially available extraction kits use different lysis procedures such as enzymatic, chemical or
mechanical bacterial cell disruption methods. Generally, the combination of enzymatic and mechanical disrup-
tion is recommended as more effective in the lysis of Gram-positive bacteria®?>263+353739 However, these DNA
extraction comparison studies are limited to a rather small number of individuals (from 2 to 9) and none of them
compared the kits in terms of DNA yield and quality, presence of PCR inhibitors, the human to bacterial DNA
ratio, the efficiency of Gram-positive bacteria cell wall lysis and the observed bacterial composition at different
taxa levels all at once.

The aim of our study was therefore to perform systematic assessment of effect of sampling and DNA isolation
kits and their combinations on a full range of parameters of bacterial DNA quality, bacterial diversity and com-
position, with respect to user acceptance.

Results

We analyzed stool samples from sixteen volunteers. Each volunteer collected the samples from the same stool
sample using three different sampling kits (SK): a stool container (SK1); a flocked swab (SK2) and a cotton
swab (SK3). The DNA was extracted using two isolation kits PowerLyzer PowerSoil DNA Isolation Kit (PS) and
QIAamp DNA Stool Mini Kit (QS) (see Methods), totaling 96 samples for the analysis.

Evaluation of user acceptance of the sampling kits.  The participants were asked to select the best and
the worst kit based on their ease of manipulation including the time spent using it. All 16 volunteers selected the
stool container as the easiest to use and 13 out of 16 (81.25%) volunteers indicated the flocked swab as the worst
sampling kit. We believe that the manipulation with cotton and flocked swabs is uncomfortable due to the small
size and the necessity to insert the swab stick back into the tube without touching the tube wall. On the contrary,
the stool container is easy to manipulate even for people with reduced motoric skills. In addition, the flocked
swab is designed for sampling of liquid samples and the solid stool samples do not adhere on its synthetic fibers.

The effect of sampling and DNA isolation kits on the bacterial gDNA quality. DNA yield, purity
and integrity. Significantly higher DNA vyields were obtained with the QS isolation kit, regardless of the sam-
pling kit used (q < 0.01) (Fig. 1, Supplementary Table S1). The median values of the A260/A280 ratio (the meas-
ure of purity of DNA) were well within the expected range (1.8-2) and did not differ significantly between the
DNA isolation kits or between the sampling kits (Fig. 1, Supplementary Table S1).

The DNA integrity was determined using the GQN measure (on a scale from 1 to 10; low GQN indicates
strongly degraded gDNA sample) and the proportion of short fragments (<1500 bp; the larger the proportion
the more degraded gDNA). We observed interaction effects of isolation and sampling kit for both DNA integrity
measures. We found significantly lower proportion of short fragments when using the PS isolation kit (Fig. 1,
Supplementary Table S1) and this difference was much larger when the stool container was used for sampling.
There was no difference in GQN measure between the isolation kits when cotton or flocked swabs were used.
However, for stool container samples, the QS kit provided much lower GQN values compared to the PS kit. These
results point to worse DNA integrity for the QS isolation kit compared to the PS isolation kit mostly when stool
container is used for sampling.

Presence of PCR inhibitors. The presence of PCR inhibitors in the samples decreases the sensitivity of the PCR
reaction and even can lead to the impossibility of amplification of the selected region of 16S rRNA. It is usually
measured by median efficiency values estimated from inhibition plots. Ideally, the efficiency should be 100%,
meaning the template doubles in each cycle. Usually, the efficiency within 90-110% range is considered accept-
able, where lower efficiency is caused by non-optimal reagent concentration or lower enzyme quality, while higher
efficiency values are caused by the presence of PCR inhibitors. In our data, the efficiency values ranged from
96.7% to 114.0% (Fig. 1, Supplementary Table S2). In each of the isolation/sampling kit combinations, there were
minimum two samples which exceeded the efficiency of 110%. The efficiency values of all isolation/sampling kit
combinations, except for stool container samples after DNA isolation with the QS kit, were significantly increased
compared to control samples without PCR inhibitors (efficiency,,.q = 94.7%). No difference in efficiency values
was observed between the isolation kits. The samples from stool containers (regardless of the isolation kit used)
contained less PCR inhibitors in comparison to all other sampling/DNA isolation kit combinations (significantly
lower efficiency, Supplementary Table S2). We hypothesize that this sampling kit effect is due to the sample dilu-
tion step prior to the DNA isolation step.

SCIENTIFIC REPORTS |

(2019) 9:13837 | https://doi.org/10.1038/s41598-019-49520-3


https://doi.org/10.1038/s41598-019-49520-3

www.nature.com/scientificreports/

A DNA yield and purity C Presence of PCR mh{bltors )
and human to bacterial DNA ratio
DNA yield [ng/pL] 'A260/A280 ratio qPCR efficiency _ Human to bacterial DNA ratio
200 = ) . e . 0.00035
) i 150
0.00030 <
600 —

500

400 o

300 o

200 o

100 o

-
- hs L 000025 -
i wlimTEgE
X R o = T ooz 4 M
' 20 - T T '
P '
: T . . I E 00005 4! .
! - ol B
! 18 ] . ' " 0 000010 4 o
B s or L - T
1 ° ° ! + - l
. i - . L 0.00005 ! B =
L L
- B2 ° 0 0.00000 - * +
T 1T T T LN I S S LI B S S —
Qs PS QS PS Qs PS Qs PS Q@S PS Qs PS Qs PS QS Ps Qs PS Qs PS QS Ps
sk2 SK3 SKi sk2 SK3 SKi sk2 SK3 SKi sk2 SK3
Legend
DNA interity D Bacterial diversity e
skcmm
GQN % of fragments <=1500bp No. of observed OTUs Chao1 SK3
——
P * qvalue <0.1
2200 7 * qvalue <0.01
7 T 4000 - *+ q value < 0.001

20004 1

3500

B
4
-

-4

1800

-
'
'
'
'
'
'
1600 3000 4
1400
2500 -
"
'
v
'
'
'
B

R EEEr

-
'
'
'
- '
50
-
' 40
] R
R ' '
! o
+ SK1 - stool container
SK2 - flocked swab
SK3 - cotton swab

QS - Qiamp®DNA Stool Mini Kit

-
'
° outlier
T 1.5*IQR
. 75%.
E median
- 25%
4 -15¥1QR
'
'
'
+

F---

-

'

'
- - 1200 o
' '

<

1000

'
. I
'
'
10 ' l . o
o 800
<

+

N
-

A 2000

F-

F---

-4
+-- - - -

1500 -

T T T T T T 1 [ s s s
Qs PS QS Ps Qs PSs Qs PS QS PS Qs PS QS PS Qs PS Qs PS QS PS Qs PS PS - PowerLyzer®@PowerSoil®

SK3 SK1 SK2 SK3 SK1 sK2 SK3 SK1 sk2 SK3 DNA Isolation kit

Figure 1. Comparison of sample DNA quality and diversity using different sampling and isolation Kkits.

(A) DNA yield and purity comparison. ‘the samples were five times diluted prior the DNA extraction (see
Methods); (B) DNA integrity comparison; (C) Presence of PCR inhibitors and human to bacterial DNA ratio
comparison. Horizontal dotted line represents median efficiency value of the positive control; (D) Bacterial
diversity comparison.

Human to bacterial DNA ratio. In all samples, the quantity of human DNA was lower than that of the bacterial
DNA (ranging from 2947x to 221239x, median 29369x, see Fig. 1, Supplementary Table S2). No difference was
found between sampling/isolation kit combinations in terms of human to bacterial DNA ratio, except for the
increased ratio in the stool container compared to flocked swab samples after isolation with the QS kit (q=0.03).

The effect of sampling and DNA isolation kits on bacterial diversity and composition. Bacterial
diversity. In total, 96 stool samples were sequenced. The number of reads after quality filtering and removal of
chimeras ranged from 27680 to 67809, with median of 46192. We assessed the bacterial diversity using the num-
ber of observed OTUs and the Chao 1 diversity metric (Fig. 1, Supplementary Table S1). Overall, both diversity
measures were independent of the DNA yield in all sampling/DNA isolation kit combinations.

While there was no difference in Chao 1 measure between the isolation kits, the number of observed OTUs was
significantly increased after isolation with the PS kit, but only for cotton swab samples (q-value =0.029). When
comparing diversity measures between the sampling kits within each isolation kit separately, the stool container
resulted in significantly higher number of observed OTUs in both DNA isolation kits (Fig. 1, Supplementary
Table S1). In addition, we observed significantly higher number of OTUs in flocked swab samples compared to
cotton swab samples after DNA isolation with the PS kit (q-value = 0.04) and significantly lower number of OTUs
in flocked swab samples compared to cotton swab samples after DNA isolation with the QS kit (q-value =0.09).
For the Chao 1 diversity metric, significant differences were found in stool container samples compared to flocked
swab samples in both PS and QS isolation kits (q=0.04 and q=0.09, respectively).

Bacterial composition. 'We identified 12,948 OTUs belonging to 13 bacterial phyla.

In order to quantify the effect of the sampling and isolation kits on bacterial composition, we performed mixed
linear regression on each taxon that passed the filtering criteria (maximum abundance across all samples >1%) at
all the seven taxonomical levels (phylum, class, order, family, genus, species, OTUs) separately. Interestingly, the
proportion of taxa significantly affected by isolation or sampling kit differed between taxonomical levels (Fig. 2).
The choice of sampling or DNA isolation kit affected 100% of taxa at phylum, class and order levels, and had
decreasing trend from family to OTU level. The effects of sampling and isolation kits on the ten most abundant
taxa at different taxa levels are summarized in Table 1 (see Supplementary Tables S3-S8 for complete results), the
composition of significantly affected families is shown in Fig. 3. Overall, the choice of the isolation kit affected the
abundance of more taxa than the choice of the sampling kit. In most of the cases where the taxa was affected by
both factors, the p-values associated with the effect of the isolation kit were smaller than those of the sampling kit,
indicating a more significant contribution of isolation kit to the overall model.

We hypothesized that the observed effect of the isolation kit was a result of different efficiency of the
kit-specific bacterial cell walls lysis procedure. In this case, one of the kits would be more successful in isolating
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Figure 2. The proportion of taxa significantly affected by sampling or isolation kit at different taxonomical
levels. Proportion of the tested taxa significantly affected by the sampling kit only (green), by the isolation
kit only (dark yellow) and by both sampling and isolation kit (brick red). Grey indicates taxa not affected by
sampling or isolation kit. The significance level was chosen at FDR < 10%, only taxa that met the selection
criteria (maximum abundance >1%) were tested.

Gram-positive (G+) bacterial species. The Table 2 shows the numbers of significantly affected G+ taxa in all taxo-
nomic levels and statistical pairwise comparison of their proportion after both isolation methods and all sampling
methods. We found significantly higher proportions of G+ bacteria after the isolation using the PS kit at all the
taxon levels. (96.4% to 100%, Table 2), compared to the QS isolation kit (G+ proportion varying from 0 to 44%).
Similar observations were made for the effect of the sampling kit (Table 2), but this trend was not significant on
any of the taxa levels except for the comparison of cotton swab (SK2) and stool container (SK1) on the genus level.
We hypothesize that these differences are attributed to the dilution of the samples during the preprocessing steps
specific to the stool container (see Methods for more details), resulting in lower sample density thus increasing
the efficiency of the bead beating procedure. No difference in proportion of Gram-positive bacteria was found
between flocked and cotton swabs. Figure 4 shows estimated effect sizes pairwise between the sampling kits on
the genus level. Figure 5 visualizes bacteria with significant changes in abundance between isolation or sampling
kits, with nodes colored according to Gram-positivity, where we can observe association of Gram-positive bac-
teria with the PS isolation kit.

Discussion

The gut microbiome seems to be crucial factor influencing human health and to date, a number of different
diseases were correlated with microbiome dysbiosis. Understanding the true role of microbiome and fully com-
prehending its variability will require many cohort studies and, most probably, comparison of their results in
large-scale meta-analyses. As with any other scientific domain, the incoherent methodological approaches con-
stitute an important obstacle for such comparisons*. In an attempt to elucidate some of the factors determining
the success of such studies, we focused on the effects of sampling and DNA extraction methods on a number of
relevant variables from DNA integrity to final bacterial composition at different taxa levels. For this purpose, we
selected sampling and DNA isolation kits that are the most common and accessible and hence are probably the
most relevant for majority of cohort studies.

Our group of sixteen healthy volunteers used three different sampling kits - stool container, flocked swabs
and cotton swabs. Without exception, the stool container was indicated as the most acceptable by the volun-
teers. Moreover, stool in the container can be easily diluted, homogenized and aliquoted for different analyses.
Unfortunately, the stool container is inconvenient for sampling diarrhea or baby stool. Importantly, as we discuss
below, the pre-processing specific to stool container samples influences both DNA quality and bacterial compo-
sition and these effects seem to interact with the DNA isolation kit.

For measuring the effect of different DNA extraction procedures, we used PowerLyzer PowerSoil DNA
Isolation Kit (PS) and QIAamp DNA Stool Mini Kit (QS).

While the PS kit cell-wall lysis procedure is based on combination of bead-beating step and enzymatic lysis,
the standard protocol of the QS kit comprises only enzymatic lysis. Considering the fact that the beat-beating step
leads to higher DNA yield and higher number of observed OTUs from difficult-to-lyse bacteria, we added the
bead-beating step also into the QS protocol, as commonly recommended®3%3433,

DNA isolation by the QS kit resulted in significantly higher DNA yields compared to the PS kit (regardless of
the sampling kit). Similar results were observed in other studies®®*. In agreement with previous studies***>*7, we
found no significant correlation between DNA yield and alpha diversity.
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q-value

Sign of the estimated effect size of
the isolation or sampling kit

Relative
Taxonomic level (# of all and | Taxa (show ten most isolation kit | sampling PSto | SK2to | SK3to | SK3to | abundance: | Gram
significantly affected taxa) abundant) effect kit effect QS SK1 SK1 SK2 total sum % | stain
Firmicutes 1.27E-15 4.43E-11 + — - + 68.3 G+
Phylum -
All taxa: 14 Bacteroidetes 3.42E-02 1.81E-02 — + + + 18.5 G—
Max >1% taxa: 6 Actinobacteria 3.67E-17 513E-04 |+ - - - 7.1 G+
Significantly affected taxa: 6
Isolation only: 1 Proteobacteria 5.05E-08 3.47E-04 - + + + 1.1 G—
Isgafglpléng only: 0 Verrucomicrobia 1.69E-03 239E-03 |- |- - + 05 G-
oth:
Tenericutes 2.08E-03 4.05E-01 — — — — 0.1 G—
F; Clostridia 2.66E-15 9.45E-12 + - - + 61.2 G+
B; Bacteroidia 1.02E-02 2.15E-02 — + + + 18.5 G—
A; Actinobacteria 5.80E-14 3.04E-04 + — — — 4.6 G+
Class
All taxa: 30 F; Negativicutes 2.58E-15 3.52E-04 - — - - 2.9 G—/var
Max >1% taxa: 12 A; Coriobacteria 5.80E-14 4.09E-03 |+ - - - 2 G+
Significantly affected taxa: 12
Isolation only: 1 F; Erysipelotrichia 2.66E-15 8.57E-05 + - - + 1.8 G+
ga‘z‘ﬁplﬁg only: 0 F; Bacilli 2.58E-15 361E05 |+ |- - + 1 G+
oth:
V; Verrucomicrobiae 1.94E-03 1.33E-06 — — — + 0.5 G—
P; Betaproteobacteria 2.14E-05 1.49E-09 - + + + 0.4 G—
P; Gammaproteobacteria 3.67E-07 7.22E-03 - - - + 0.2 G—
F; Clostridiales 9.46E-13 1.37E-11 + — - + 61.2 G+
B; Bacteroidales 4.58E-03 1.69E-02 — + + + 18.5 G—
A; Bifidobacteriales 5.63E-12 2.30E-03 + — — — 4.5 G+
Order
All taxa: 49 F; Selenomonadales 9.08E-17 2.42E-03 — — — + 2.9 G—/var
Max >1% taxa: 13 A; Coriobacteriales 5.73E-12 2.30E-02 + — — — 2 G+
Significantly affected taxa: 13
Isolation only: 1 F; Erysipelotrichales 3.05E-13 2.16E-04 + - - + 1.8 G+
SBafglpligg only: 0 F; Lactobacillales 3.05E-13 1.98E-04 |+ |- - + 1 G+
oth:
V; Verrucomicrobiales 3.29E-04 1.22E-05 - — - + 0.5 G—
P; Burkholderiales 1.33E-05 1.70E-09 — + + + 0.4 G—
T; Mollicutes 1.04E-05 6.43E-05 — — - + 0.1 G—
F; Ruminococcaceae 9.20E-01 6.81E-13 — + + + 27.1 G+
F; Lachnospimceae 5.68E-20 1.60E-03 + + + + 25.3 G+
B; Bacteroidaceae 7.55E-03 1.35E-02 — + + + 10.2 G—
Famil
All tays: 85 A; Bifidobacteriaceae 590E-11 | 6.87E03 |+ |+ + + 45 G+
Max >1% taxa: 23 F; Veillonellaceae 1.90E-12 1.55E-04 - + + + 24 G+
Significantly affected taxa: 22
Isolation only: 5 A; Coriobacteriaceae 7.68E-11 4.62E-02 — + + + 2 G+
;arglplir;g only: 2 F; Erysipelotrichaceae 1.74E-12 8.08E-04 - + + + 1.8 G+
oth:
F; Christensenellaceae 8.43E-01 1.24E-08 — + + + 1.4 G—
B; Rikenellaceae 5.90E-11 7.24E-01 - + + + 13 G—
B; Porphyromonadaceae 5.57E-04 4.03E-03 - + + + 1.1 G—
B; Bacteroides 6.18E-03 1.54E-02 — + + + 10.2 G—
F; Faecalibacterium 1.37E-02 9.70E-05 + - - + 7.2 G+
F; Blautia 1.24E-24 1.05E-01 + - - + 5 G+
Genus - -
All taxa: 277 A; Bifidobacterium 1.48E-10 2.48E-02 + - - - 4.5 G+
Max >19% taxa: 82 F; Subdoligranulum 4.64E-03 3.18E-01 - - - + 37 G—
Significantly affected taxa: 74
Isolation only: 27 F; Pseudobutyrivibrio 9.63E-10 6.32E-01 + — - + 2.8 G—
Sampling only: 9 F; Dialister 3.17E-09 5.86E-03 |— |- - + 22 G—
Both: 38
F; Roseburia 1.85E-02 4.95E-01 + - - + 1.5 G+
A; Collinsella 8.59E-05 3.91E-01 + + - - 1.4 G+
EChristensenellaceae R-7 group | 6.06E-01 1.50E-07 — — — — 14 G—

Table 1. Summary of taxa at all levels and detailed results for top 10 taxa significantly affected by sampling

or DNA isolation kit. The significant q - values are shown in bold. SK1- stool container; SK2 - flocked swabs;
SK3 - cotton swabs; PS — PowerLyzer PowerSoil DNA Isolation Kit; QS - QIAamp DNA Stool Mini Kit. All taxa
- number of taxa found at the respective taxa level; Max >1% taxa — number of taxa that fulfilled the selection
criteria for the analysis; Significantly affected taxa — the overall number of taxa at the respective taxa level
affected by the isolation or sampling kit; Isolation only — number of taxa at the respective taxa level affected by
the isolation kit only; Sampling only — number of taxa at the respective taxa level affected by the sampling kit
only; Both — number of taxa at the respective taxa level affected by both sampling and isolation kit.
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Figure 3. Distributions of relative abundances of significantly affected taxa at family level. Four graphs
represent families divided according to third quartile of their abundance. Only taxa that passed the filtering
criteria (maximum abundance >1%), significantly affected by isolation or sampling kit are shown. The colored
squares below the graph indicate whether the family was affected significantly by the sampling kit only, the
isolation kit only or both.

Phylum Class Order Family Genus

Sample Signif. more | % of G+ % of G+ % of G+ % of G+

groups abundant phyla q-val classes q-val orders q-val families q-val % of G+ geni | g-val
in PS 100% (2/2) 100% (5/5) 100% (5/5) 100% (8/8) 96.4% (27/28)

PSto QS 6.67E-02 2.71E-03 2.10E-03 1.98E-05 1.98E-05
in QS 0% (0/4) 0% (0/6) 0% (0/7) 0% (0/12) 44.1% (15/34)
in S1 66.7% (2/3) 71.4% (5/7) 62.5% (5/8) 58.3% (7/12) 80.8% (21/26)

SK2 to SK1 4.00E-01 2.27E-01 2.27E-01 1.10E-01 4.29E-02
in S2 0% (0/2) 0% (0/3) 0% (0/3) 0% (0/5) 44.4% (4/12)
in S1 66.7% (2/3) 71.4% (5/7) 62.5% (5/8) 58.3% (7/12) 80.0% (20/25)

SK3 to SK1 4.00E-01 2.27E-01 2.27E-01 1.10E-01 1.10E-01
in S3 0% (0/2) 0% (0/3) 0% (0/3) 0% (0/5) 38.5% (5/13)
in 83 25% (1/4) 37.5% (3/8) 33.3% (3/9) 35.7% (5/14) 60.7% (17/28)

SK3 to SK2 5.37E-01 5.37E-01 5.37E-01 5.37E-01 5.37E-01
in 2 50% (1/1) 100% (2/2) 100% (2/2) 66.7% (2/3) 80.0% (8/10)

Table 2. Results of statistical testing of the proportion of G+ bacteria between significantly more abundant
taxa within the selected isolation or sampling kit (pairwise). The significant q — values are shown in bold.

SK1- stool container; SK2 - flocked swabs; SK3 - cotton swabs; PS - PowerLyzer PowerSoil DNA Isolation Kit;
QS - QIAamp DNA Stool Mini Kit. Sample groups — which pairwise comparison was performed; Signif. more
abundant - in which group the taxa were significantly more abundant; % of G+ taxa — proportion of G+ in the
significantly more abundant taxa within the respective group and level.

On the other hand, the PS kit produced DNA of better integrity, even though in the PS protocol we applied
more rigorous mechanical lysis (or higher speed of bead beating), which, according to the literature, should result
in more degraded DNA*®. We hypothesize that the observed differences might be caused by another factor, such
as the type of the beads (0.1 mm glass in PS vs 0.1 mm zirconia in QS), the buffer composition, or the incubation
temperature. Overall, for preparation of the shotgun libraries or sequencing using third generation of sequencers,
we consider DNA integrity to be more important factor than the DNA yield, which favors PS kit over the QS kit.

To properly homogenize the samples from the stool container, we included a preprocessing procedure com-
prising five times dilution. This naturally resulted in lower yields of isolated DNA, but after adjustment for this
dilution we obtained higher final DNA concentrations compared to undiluted stool samples from flocked and
cotton swabs. It seems that the dilution step also affected the DNA integrity. Compared to the undiluted samples
from flocked and cotton swabs, stool container samples resulted in less degraded DNA after isolation using the PS
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SK1 - SK2 SK1 - SK3 SK3 - SK2

- -1.65 0.32 P; Sutterella
-0.85 0.31 B, Coprobacter
-0.79 0.18 B; Barnesiella
-0.78 0.18 F; Lachnospiraceae UCG-004
-0.7 0.05 B; Prevotella 9
-0.59 0.31 P; Thalassospira
-0.58 -0.03 F; Lachnospiraceae UCG—-001
-0.54 0.18 F; Lachnospira
-0.52 0.09 B, Bacteroides
-0.52 -0.04 P; Parasutterella
-0.36 -0.13 F; Coprococcus 2
-0.36 -0.09 F; Asteroleplasma
-0.2 -0.01 B; Prevotellaceae, uncultured bacterium
=0.19 0.06 B; Parabacteroides
-0.07 . -0.44 F; Erysipelotrichaceae, Incertae Sedis
0.1 i 0.36 F; [Eubacterium] ventriosum group
0.12 0.23 -0.11 A; Bifidobacterium
0.13 0.24 -0.11 F; Ruminiclostridium 5
0.15 0.16 -0.01 F; [Ruminococcus] gauvreauii group
0.16 0.13 0.03 F; Lachnoclostridium
0.18 0.08 0.1 F; Blautia
0.18 0.24 -0.05 F; Ruminococcaceae UCG—-010
0.19 0.14 0.05 F; Anaerotruncus
0.22 0.37 -0/15 T; Mollicutes RF9, uncultured bacterium
0.23 0.23 0.01 F; Lachnospiraceae, other
0.24 0.15 0.1 F; Coprococcus 1
0.26 0.22 0.04 F; Ruminococcaceae, uncultured bacterium
0.27 0.29 -0.03 F; Veillonella
0.27 0.38 -0;11 F; Ruminococcaceae UCG-013
0.29 0.18 0.1 F; Dorea
0.29 0.17 0.12 F; Ruminococcaceae UCG-002
0.3 0.3 0 F; Tyzzerella 3
0.32 -0.06 0.38 F; [Eubacterium] hallii group
0.38 0.17 0.16 F; Ruminococcaceae NK4A214 group
0.34 0.36 -0.02 F; Anaerostipes
0.35 0.19 0.16 F; Streptococcus
0.35 0.34 0.01 F; Peptoclostridium
04 0.29 0.1 F; Coprococcus 3
0.41 0.3 0.11 F; Dialister
0.44 0.42 0.01 F; Christensenellaceae R—7 group
0.45 0.49 -0.04 F; Erysipelatoclostridium
0.46 0.12 0.33 F; Faecalibacterium
0.46 0.17 0.29 F; Ruminococcaceae UCG-014
0.46 0.25 0.22 P; Escherichia—S higella
0.49 0.13 0.36 F; [Eubacterium] coprostanoligenes group
0.53 0.56 -0.03 V; Akkermansia
0.55 0.45 0:1 F; Erysipelotrichaceae UCG-003
Color Key Gram staining: @ G- B G+
MHHHH SK1 - stool container
| | : SK2 - flocked swab
-1 0 1 SK3 - cotton swab
Effect size

Figure 4. Comparison of sampling kits effects at genus level. Each column corresponds to a pair of sampling
kits and each row corresponds to a specific bacteria genus. The values represent log fold changes of bacterial
abundances (effect size) between the sampling kits, color coded from green (less abundant) to orange (more
abundant). Only significantly affected taxa are shown.

kit and, in contrast, in more degraded DNA after isolation using the QS kit. Interestingly, two other independent
studies, where different isolation kits were used, showed either a negative* or a positive*® effect of sample dilution
on the DNA integrity. This, together with our results leads us to conclude, that the effect of dilution step on DNA
integrity is dependent on the isolation kit.

PCR inhibitors persisted in the DNA of the samples after isolation with both kits. Presence of PCR inhib-
itors could complicate the use of conventional molecular methods for the detection of low abundance or rare

SCIENTIFIC REPORTS |

(2019) 9:13837 | https://doi.org/10.1038/s41598-019-49520-3


https://doi.org/10.1038/s41598-019-49520-3

www.nature.com/scientificreports/

F; Peptostreptococcaceae

F; Clostridiaceae 1
F; Lactobacillaceae

F; Ruminococcaceae

F; Christensenellaceae

A; Coriobacteriaceae

B; Bacteroidaceae F: Streptococcaceae V; Verrucomicrobiaceae

A; Coriobacteriaceae
. Bifidobacteriaceae

F; Erysipelotrichaceae T: Mollicutes RF9

F; Lachnospiraceae
T; Mollicutes RF9 ®
B; Bacteroidaceae

]

F; Lachnospiraceae P; Entergbacteriaceae

B; Rikenellaceae
F; Streptococcaceae ° ifidgbacteriaceae

B; Porphyromonadaceae
(]

SK3

h-)
F; Veillonellaceae

- Qs
V; Verrucomicrobiaceae

P; Enterobacteriaceae P Rhodzspr'nl/aceae

P; Alcaligenaceae F; Peptostreptococcaceae

@
B; Prevotellaceae B; Prevotellaceae

© L]
F; Veillonellaceae F; Erysipelotrichaceae

[ P; Rhodospirillaceae
©F; Pasteurellaceae ’ P

X i °
F; Acidaminococcaceae  p. Alcaligenaceae B; Porphyromonadaceae

QS - Qiamp®DNA Stool Mini Kit SK1 - stool container
PS - PowerLyzer®PowerSoil® Gram staining: @ G- B G+ SK2 - flocked swab
DNA Isolation kit SK3 - cotton swab

Figure 5. Association of bacterial families significantly differentially abundant between different sampling and
isolation kits. The strength of the edges is weighted by relative abundance of taxa between the different kits (the
stronger the edge, the larger the difference). Color-coding of the edges highlights taxa belonging to the same
community, as detected by network modularity (see Methods for details). Grey edges represent connections
between different communities.