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1. Overview 

Colorectal cancer (CRC) is a highly heterogeneous disease, both at the molecular and cellular 

levels. This heterogeneity significantly influences tumor progression, therapy responses, and 

clinical outcomes. Fortunately, the advances in multi-omics technologies and computational 

methods provided new opportunities for comprehensive investigation. However, multi-omics 

data generated from high-throughput technologies are particularly sensitive to technical 

variability and batch effects. Producing meaningful and robust results requires careful 

preprocessing of raw data and highly specialized expertise in data mining. This thesis leverages 

my unique expertise in bioinformatics and computational modeling to analyze and integrate 

multi-omics data, with the aim of uncovering tumor-specific molecular patterns and the 

complex interactions within the tumor microenvironment. 

The thesis is organized into thematic areas reflecting the scope of my research contributions. 

While foundational work in computational methodology (chapter 3.1) and preclinical 

models (chapter 3.3) is included mostly for context, the primary emphasis is placed on 

molecular subtyping and tumor heterogeneity (chapter 3.2), the integration of imaging and 

omics data (part 4), the tumor microenvironment and microbiome (chapter 3.5), and 

clinical applications in diagnostics and therapy (chapter 3.6). These themes are supported 

by results from key publications that demonstrate how computational approaches in multiomics 

setting provide novel insights into CRC biology. 

The development and application of computational tools form the foundation of my research. 

This section highlights efforts to create robust bioinformatics pipelines and tools that enable 

effective multi-omics data analysis and interpretation. For instance, in [1] we introduced 

Rgtsp, a generalized top-scoring pairs package that enabled class prediction in gene 

expression datasets, setting a foundation for subsequent predictive modeling. Expanding on 

these efforts, in [2] we presented TopKLists, an R package designed for statistical inference 

and aggregation of ranked omics datasets, addressing challenges in integrating heterogeneous 

high-dimensional data. Similarly, in our work [3] we introduced ToPASeq, a novel package 

that implements six methods for topological analysis of RNA-Seq and microarray data analysis. 

Finally, in [4], we leveraged this R package and critically compared topology-based pathway 

analysis methods, evaluating their consistency and biological inference across diverse datasets. 

Collectively, these tools not only provide a methodological basis for subsequent studies but 
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also serve as valuable resources for the broader scientific community, facilitating 

reproducibility and innovation in data-driven cancer research. 

The chapter on molecular subtyping and tumor heterogeneity focuses on the identification 

and characterization of molecular subtypes in CRC, including their clinical relevance. This 

includes studies such as [7] and [9] in which we identified gene expression-based CRC 

subtypes and linked them to prognosis and treatment responses. In [5], we provided a 

comprehensive characterization of genome-wide copy number aberrations in CRC, revealing 

novel oncogenes and distinctive alteration patterns relevant to tumor heterogeneity. 

Furthermore, in [6], we examined differences between distal and proximal colon cancers, 

uncovering molecular, pathological, and clinical features that distinguish these CRC subtypes. 

In [8], we assessed the prognostic role of BRAF and KRAS mutation in the context of the 

tumour sidedness and MSI status. Last, we investigated tumor architecture and morphological 

heterogeneity, providing insights into how structural and molecular variations within tumors 

affect clinical outcomes [1]. These results collectively highlight the importance of 

understanding CRC at the molecular and structural levels to refine therapeutic strategies. 

Preclinical models are instrumental in bridging the gap between computational insights and 

biological validation. This theme focuses on cross-species analyses and experimental systems 

that enhance our understanding of cancer biology. In [10], we investigated molecular hallmarks 

of colorectal cancer using genetically engineered mouse models, identifying parallels with 

human disease at the transcriptomic level. Complementing this work, we emphasized the utility 

of patient-derived xenografts (PDX) in precision oncology, illustrating how computationally 

derived hypotheses can be tested in biologically relevant systems [11]. Additionally, preclinical 

efforts in projects like these have enriched the understanding of tumor evolution and 

therapeutic response, highlighting the synergy between computational modeling and biological 

experimentation.  

The integration of digital pathology and omics data represents a critical advancement in 

CRC research, as it bridges spatial and molecular heterogeneity. In [12], we contributed to this 

field by showing how joint analysis of histopathology images and transcriptomic data can yield 

biomarkers for molecular subtypes in breast cancer.  Consequently, in [13] we were the first to 

demonstrate how histopathological image features combined with gene expression data enable 

deeper insights into CRC biology. Building on this, in [14] we examined gene expression 

signatures within macro-dissected spatially resolved tumor regions, uncovering specific 
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spatially distributed molecular patterns. These integrative approaches have proven effective in 

identifying image-based molecular biomarkers, advancing precision oncology. 

The role of the tumor microenvironment and microbiome in CRC progression is presented 

in chapter 3.5. Our work, published in [16], demonstrated how stool sampling techniques 

influence microbiome composition, emphasizing the importance of methodological 

consistency in microbiome studies. This knowledge was further applied in the analysis of 

microbiome data of the Colobiome (AZV) study, which resulted in identification of distinct 

microbiome-defined CRC subtypes that correlate with tumor characteristics, revealing how 

microbial signatures associate with tumor progression [17]. In [18], we describe how microbial 

signatures correlate with tumor progression and immune modulation. These findings show the 

importance of environmental and microbial factors in CRC biology and their potential for 

biomarker development. 

Finally, the thesis emphasizes the practical applications in clinical diagnostics and treatment 

selection. In [19], we explored mRNA biomarkers for assessing FOLFIRI treatment efficacy 

in Stage III colon cancer, demonstrating the potential for optimizing therapy selection based 

on molecular profiling. Next, we derived fecal microRNA signature for CRC diagnosis [20] 

and a gene expression signature for identifying high-risk stage IIA CRC patients mining 

molecular data from macrodissected invasion front area [21]. These studies show the 

translational potential of computational approaches to improve patient care. 

By presenting results across these interconnected themes, this thesis provides a cohesive 

overview of CRC heterogeneity and demonstrates the role of integrative computational 

methods in advancing both basic and clinical cancer research in CRC.   

Technical note: Throughout the text, references are cited using numbered brackets [ ], with 

each number corresponding to the full citation in the reference list at the end of the thesis, 

presented in the order as they appear in the text. To distinguish between references to my own 

publications and those from other sources, references to my publications are numbered 

according to the list of my works provided in this thesis and are emphasized within the text. 

For example, a reference to the first entry in the list of my referenced publications appears as 

[1], whereas a reference to other sources is cited as [1]. This system ensures clarity when 

referring to my contributions in the referred list of publications in comparison to my other 

contributions (links to SW, patents, preprints of articles) or external works.  
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2. Introduction 

Modern cancer research is inherently multidisciplinary, employing multi-omics approaches to 

study cancer heterogeneity from different perspectives and is thus heavily reliant on 

computational, statistical, and bioinformatics approaches.  Among solid cancers, colorectal 

carcinoma (CRC) is one of the most common, representing a significant global health burden. 

Globally, CRC is the third most diagnosed cancer, accounting for 9.6% of all new cancer cases, 

following lung and breast cancers. It is also the second leading cause of cancer-related mortality, 

responsible for 9.3% of all cancer deaths, with over 1.9 million new cases and 904,000 deaths 

reported in 2022 [2]. In Europe, CRC is the second most frequently diagnosed cancer, making 

up approximately 12% of all cancer cases, with over 500,000 new cases diagnosed annually 

and around 250,000 deaths each year [2].  In the Czech Republic, CRC is particularly prevalent, 

consistently ranking among the top cancers in both incidence and mortality. Recent data 

indicate that the age-standardized incidence rate for CRC in Czech men is among the highest 

globally, ranking 13th worldwide and 12th in Europe, while for Czech women, it ranks 21st 

worldwide and 14th in Europe. The mortality-to-incidence ratio (M/I) for CRC in the Czech 

Republic is approximately 0.42, reflecting ongoing challenges in early detection and treatment 

[3]. 

Most importantly, CRC is among the most heterogeneous solid cancers, exhibiting extensive 

variability at the molecular, cellular, histopathological and clinical levels, including response 

to therapy [4–6]. The current standard treatments remain ineffective for a large group of CRC 

patients due to inappropriate patient selection. This means the patients are subjected to 

unneeded toxic treatments and that overall costs are too high with respect to achieved efficiency. 

Therefore, the identification of predictive biomarkers of clinical response is an absolute 

requirement for personalizing the treatment, with numerous benefits for the patients and the 

health care system. This translates into an urgent need for robust disease subclassifiers, that 

can explain the clinical heterogeneity of CRC beyond the currently used clinical risk factors 

(bowel obstruction and perforation, T4 tumour, presence of lymphovascular or perineural 

invasion, …) and molecular markers (such as microsatellite instability - MSI, or mutations in 

known oncogenes - KRAS or BRAF). The state-of-the-art approach to bridge this gap is tumour 

molecular profiling. Indeed, evidence of clinically relevant tumour molecular heterogeneity 

has been flowing from high-throughput gene expression and mutation analyses, copy number 

variation assessment, methylation, miRNA and proteomic studies [7,8] [5]. The molecular 
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profiling research has taken two main routes: The supervised approach stems from comparison 

of known groups (i.e. patients with early vs. late relapse of the disease) and aims at either 

explaining differences between groups by identification of the „affected“ molecular pathways, 

or searches for surrogate and measurable predictive or prognostic signatures, that would serve 

as decision tools in personalized medicine. The unsupervised approach, on the other hand, 

recognizes the molecular phenotype as an additional piece of the puzzle that complements the 

complex picture of tumour heterogeneity, which may or may not be correlated with known 

clinical risk factors, prognosis or response to therapy. Several studies deriving unsupervised 

CRC gene expression subtypes and stratifying tumour aggressiveness and response to 

treatment were published and led to the definition of four consensus molecular CRC subtypes 

[9].    

This heterogeneity underscores the need for multidisciplinary approaches and advanced 

methodologies to unravel its complexities and improve patient outcomes [4]. 
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3. Main text 

3.1. Computational methodology 

The rapid growth of multi-omics technologies has necessitated the development of 

computational methods capable of handling large, high-dimensional datasets. Since then, 

computational methodologies play a crucial role in uncovering hidden patterns and 

relationships within complex biological data and the integration of data across molecular, 

spatial, and temporal domains requires innovative algorithms to ensure meaningful biological 

interpretations.  As a mathematical biologist by training, my research focuses on using these 

skills to advance our understanding of cancer biology. While the development of computational 

tools is an integral aspect of my expertise, my primary motivation lies in applying them to 

translational cancer research. I advance methodologies and develop bioinformatics, data 

mining, and image analysis tools, when necessary, driven by the biological and clinical 

questions of my research, which aims at uncovering novel insights into colorectal cancer 

heterogeneity and its implications for diagnosis, treatment, and patient outcomes.  

Class prediction 

Development of clinically applicable biomarkers is usually a key focus of clinically oriented 

cancer research and requires identification of molecular or multi-omics signatures that are 

transferable across platforms and suitable for integration into routine clinical practice. 

Interpretability is a critical aspect of computational tools, particularly for applications in 

clinical decision-making. Achieving this often requires the use of explainable classification 

approaches that rely on a limited number of features.  

One of our early works [1] focused on the development of methodology for explainable class 

prediction, applicable beyond gene expression datasets. In this study, we developed a 

computational tool designed to enhance class prediction across various datasets, including gene 

expression profiles. This methodology centers on the Top Scoring Pairs (TSP) classifier [10], 

which utilizes relative ranking of variable pairs to predict class labels. By focusing on the 

relative expression ordering of gene pairs, the method offers robustness against technical 

variations across different platforms, making it particularly suitable for developing clinically 

applicable biomarkers. Our contributions include a parallel implementation of the TSP 

classifier to significantly reduce training time and extensions to handle multi-class 

classification problems. The Rgtsp package, implemented in C++ with R functions, offers 
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functions for k-fold cross-validation and proposes using classification trees built on top of TSP 

predictions for multi-class problems. This methodology has been implemented as an R package 

[11], which is freely accessible to the research community in GitHub [12]. This classifier was 

subsequently employed in [7], where we identified and characterized a subgroup of colorectal 

cancers that shared molecular and clinical features with BRAF-mutated tumors, despite not 

harboring the actual BRAF mutation. This involved developing an explainable classification 

system to stratify tumors into a BRAF-like subtype, as further detailed in Part 2 of this thesis. 

Ranked Data Aggregation (TopKLists) 

By pooling findings across different datasets, meta-analysis helps in identifying patterns, 

biomarkers, and pathways that remain consistent across various experiments. This is 

particularly valuable in cancer omics research, where high costs of experiments often 

necessitate combining data from multiple, diverse datasets to achieve reliable sample sizes.  In 

this context, rank-based approaches play a particularly significant role. One reason is that omics 

data often come from different platforms, each with unique technical characteristics and 

distributions. Absolute measurements from one platform may not be directly comparable to 

another. Ranked approaches solve this problem by focusing on the relative ordering of features 

instead of their absolute values, reducing biases caused by platform-specific differences.  

This was a driver of our research where we developed methods for the statistical inference and 

aggregation of ranked omics datasets, which led to the development of the TopKLists R 

package [2]. This package was specifically designed to tackle the challenges of integrating data 

from different high-throughput platforms, where datasets often vary in list lengths, 

measurement techniques, and even the items being ranked. By focusing on ranked lists, 

TopKLists provides a way to consolidate platform-independent results, making it particularly 

relevant for omics research. 

The package includes three main modules. TopKInference estimates the optimal length of top-

k lists for integration, even in noisy or incomplete rankings. It uses a moderate deviation-based 

method to handle cases where the reliability of rankings decreases after the first k items due to 

technical or biological variability. TopKSpace then aggregates these top-k lists using 

algorithms like Borda’s method, Markov chain techniques, and a more precise cross-entropy 

Monte Carlo (CEMC) method. These approaches consider weighted distances, such as 

Kendall’s τ or Spearman’s footrule, to create a consensus ranking. Finally, TopKGraphics 

provides graphical tools to explore and visualize ranked data, helping users interpret results 
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and select parameters, such as with the Δ-plot for visualizing inter-platform variability. The 

package has been optimized for use on standard desktop computers, with computationally 

heavy sections implemented in C to speed up processing. Most tasks, even for rankings of 

thousands of items, are completed in seconds, although the stochastic aggregation methods can 

take slightly longer. A graphical user interface (GUI) has been developed for TopKLists, using 

the gWidgets2 package, which makes it more accessible for users without advanced 

programming skills. TopKLists is freely available under the LGPL-3 license and can be 

downloaded from CRAN, with additional resources, documentation, and the latest 

development version available on its R-Forge page [13]. The package has already been applied 

to integrate microRNA data from non-small cell lung cancer studies conducted on multiple 

platforms, demonstrating its practical utility in handling ranked data from diverse sources. 

Topological Pathway Analysis (ToPASeq) 

Pathway analysis is a crucial step in interpreting results from molecular analyses, providing a 

biological context for the observed changes in gene or protein expression. By mapping these 

changes onto known biological pathways, researchers can uncover mechanisms underlying 

differences between conditions, disease progression, or other clinical outcomes. This type of 

analysis is often the logical next step in exploratory studies, transforming lists of differentially 

expressed genes into meaningful insights about cellular processes. 

There are two main approaches to pathway analysis: overrepresentation analysis (ORA) and 

topology-based methods. ORA identifies pathways that are significantly enriched with genes 

of interest, without considering their interactions or positions within the pathway. While 

straightforward, ORA assumes that all genes in a pathway are equally important, potentially 

missing key insights. In contrast, topology-based approaches account for the structure of the 

pathway, incorporating information about gene positions, interactions, and roles within the 

network. This additional layer of context allows researchers to prioritize biologically 

meaningful changes and identify key regulatory nodes, which are often critical for 

understanding disease mechanisms. By leveraging topology, these methods provide a more 

accurate and nuanced understanding of the biological processes at play, making them 

particularly valuable for studies aiming to uncover the mechanisms driving colorectal cancer 

heterogeneity or progression. 
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The landscape of topology-based pathway analysis methods is highly diverse, with each 

method employing distinct frameworks and assumptions to interpret molecular data. These 

differences often result in significant variability in the pathways identified as relevant, making 

it challenging for researchers to determine the most appropriate tool for their specific datasets 

and research questions. Recognizing this, we conducted a comprehensive comparison of seven 

representative topology-based pathway analysis methods [4]. Our aim was to evaluate their 

strengths and limitations across multiple criteria, guiding researchers in selecting the optimal 

method for their studies.  

To support this work and facilitate the practical application of topology-based pathway analysis, 

we developed a new R/Bioconductor package, ToPASeq [3]. This package offers a uniform 

interface to the seven analyzed methods, three of which we implemented de novo and four 

adapted from existing implementations. ToPASeq also includes tailored visualization tools, as 

well as functions for importing and manipulating pathways and their topologies, enabling its 

application across various species. The package is designed to analyze differential expressions 

of pathways between two conditions and is compatible with both gene expression microarray 

and RNA-Seq data. Written in R and distributed under an AGPL-3 license, ToPASeq is freely 

available from Bioconductor 3.12 [14,15], providing the research community with a powerful 

and accessible toolkit for pathway analysis. 

The comparison was based on an extensive set of criteria, addressing both dataset 

characteristics and methodological aspects. Data set-centric parameters included sample size, 

pathway size, the number of differentially expressed genes (DEGs) in the dataset, and 

thresholds used to identify DEGs. These factors were tested to describe the performance of 

each method under various conditions and provide recommendations for selecting the best tool 

for specific dataset configurations. In addition, the ability of the methods to control type I error 

was evaluated, ensuring reliability when no true signal exists. We also examined how the 

methods handled specific biological and technical challenges. For example, we tested the 

influence of overexpression of individual genes, the discarding of topological information, and 

the preprocessing of pathway topologies. These experiments were critical to assess whether the 

methods genuinely leveraged pathway topology in their analysis. If no effects were observed 

under these conditions, the method could not be considered a true topology-based approach. 

Furthermore, we evaluated the increased sensitivity and specificity expected from 
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incorporating topological information by assessing the identification of biologically relevant 

pathways, which is crucial for advancing our understanding of molecular mechanisms. 

Additional computational tools for integrating molecular data with image analysis were 

developed, and these will be discussed in detail in chapter 3.4. 

3.2. Molecular subtyping and tumor 
heterogeneity 

The last fifteen to twenty years have seen an intensive search for molecular markers of cancer 

progression and a deeper understanding of the biology underlying (non)-response to therapy. 

Colorectal cancer (CRC) is no exception, with many significant discoveries advancing our 

knowledge of the heterogeneity of this disease. The common approach to diagnosing CRC 

relies on a combination of clinical evaluation, endoscopic examination, and histopathological 

analysis of biopsy samples. Standard treatment strategies include surgical resection, often 

followed by adjuvant chemotherapy, particularly for stage III and high-risk stage II cases. 

Targeted therapies, such as those inhibiting EGFR or VEGF pathways, are used in advanced 

disease based on molecular profiling. 

In diagnostics, clinical and histopathological markers play a key role. Staging based on the 

TNM system (Tumor, Node, Metastasis) remains the cornerstone for assessing disease severity 

and guiding treatment decisions. Histopathological features such as tumor grade, 

lymphovascular invasion, and presence of perineural invasion provide additional prognostic 

information. Another critical factor in CRC is tumor sidedness, which reflects distinct 

biological and clinical differences between tumors originating in the proximal (right-sided) and 

distal (left-sided) colon. These differences are partly attributed to the embryonic development 

of the gut, where the right side arises from the midgut and the left side from the hindgut. 

Additionally, as I will discuss in chapter 3.5, this variation is likely influenced by the site-

specific microbial composition of the gut.  

Aside from histopathological features and staging, molecular testing has become increasingly 

important in CRC diagnostics, particularly for identifying mutations with therapeutic 

implications. The most commonly tested mutations include those in the KRAS and NRAS genes, 

as their presence predicts resistance to anti-EGFR therapies. BRAF mutations, particularly the 

V600E variant, are associated with a poor prognosis and also influence treatment strategies. 

Additionally, testing for mismatch repair (MMR) deficiency or microsatellite instability (MSI) 
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is now standard, as these biomarkers can identify patients eligible for immune checkpoint 

inhibitors. 

This section explores the identification and characterization of molecular subtypes and 

heterogeneity in colorectal cancer (CRC), emphasizing their clinical implications. 

Understanding CRC heterogeneity at the molecular, genetic, and structural levels is vital for 

refining therapeutic strategies and improving patient outcomes. My journey in this field began 

with the unique opportunity to contribute to the analysis of molecular data from the PETACC-

3 clinical trial [16]. The PETACC-3 clinical trial provided a unique opportunity to analyze 

colorectal cancer (CRC) at multiple molecular levels, combining transcriptomics, comparative 

genomic hybridization (CGH), histopathological images, and clinical molecular markers with 

comprehensive clinical data, including long-term follow-up for prognosis modeling. This 

experience led to my long-term interest in the subject and has shaped my scientific research 

career.  

Supervised approach to molecular profiling in CRC: Insights from Tumor Location, 

Mutational Status, Transcriptomics and Copy Number Aberrations 

Leveraging the unique PETACC-3 dataset, we performed comprehensive analyses to explore 

how tumor location (proximal vs. distal) and mutational status and morphology influence 

molecular profiles, clinical parameters, patient prognosis and response to therapy. 

In [5] we conducted a comprehensive analysis of somatic copy number aberrations (CNAs) in 

302 stage II/III CRC samples from PETACC-3. The aim was to provide a detailed molecular 

overview of CNAs, elucidate their underlying biology, and explore associations with clinical 

outcomes. We identified regions of recurrent CNAs, comprising both well-established 

oncogenes (e.g. MYC, EGFR, and CCND1), as well as novel loci with potential biological 

significance. Notably, amplification of 12p13.33 revealed WNK1 as a candidate oncogene 

implicated in MAPK signaling and various cancer hallmarks, while multiple loci on 20q 

(including 20q11.21, 20q13.12, and 20q13.31) pointed to oncogenic drivers such as HNF4A, 

WISP2, and BMP7, which are involved in epithelial-mesenchymal transition, metastasis, and 

tumor aggressiveness. Additionally, our findings on 10p15.3-p14 and 19p13.12 deletions 

linked these loci to poor survival outcomes, while 20q gains were unexpectedly associated with 

better overall survival in stage III tumors, contrasting prior reports. This was later shown to be 

consistent with definition of CRC molecular subtypes [9], see below. Importantly, our study 

highlighted a novel aspect of CNA interactions: significant non-random correlations between 
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unlinked DNA loci. This observation brought hypothesis of emergence of highly ordered 

structural changes during tumor progression, potentially driven by selective pressures acting 

on tumorigenic pathways.  

Right-sided CRCs often exhibit features such as microsatellite instability, higher mutation 

burden, and immune infiltration, and are associated with a worse prognosis and reduced 

response to anti-EGFR therapies compared to left-sided tumors. In contrast, left-sided CRCs 

are typically chromosomally unstable and show better responses to targeted therapies, 

highlighting the need to consider tumor location in treatment planning. Our work in [6] was 

among the studies that contributed to this understanding, offering key insights into the 

molecular and clinical differences between right- and left-sided CRCs by leveraging data from 

the PETACC-3 trial. We confirmed the well-established observation that proximal tumors are 

more frequently microsatellite unstable (MSI) and hypermutated, largely due to deficiencies in 

DNA mismatch repair (MMR). Even among microsatellite stable (MSS) proximal tumors, we 

found an enrichment of potentially deleterious mutations, including alterations in KRAS, BRAF, 

and PIK3CA. Consistent with prior studies, we observed that proximal tumors are often 

mucinous, densely infiltrated by tumor-infiltrating lymphocytes, and exhibit activated MAPK 

signaling. They also frequently express a serrated pathway signature and a high BRAF score, 

indicating pathway activation even in the absence of BRAF mutations. Potential contributors 

to these features are side-specific environmental factors (e.g., bacterial toxins, mutagenic 

metabolites) and tolerance to DNA repair defects and oncogenic stress. For distal CRCs, our 

work corroborated the frequent presence of large-scale chromosomal alterations, including 18q 

loss and 20q gain (leveraging data from [5]), hallmark features of chromosomal instability. We 

also observed the activation of EGFR signaling, with HER1 and HER2 amplifications present 

in a subset of distal tumors, particularly those wild-type for KRAS and BRAF. These findings 

suggested the importance of EGFR pathway activation in distal colon carcinogenesis and its 

potential as a therapeutic target. Beyond confirming these previously known patterns, our 

analysis provided new insights into the relationship between tumor location and clinical 

outcomes. We showed that tumor location acts as an independent prognostic factor for survival 

after resection (SAR) and relapse-free survival (RFS). Proximal tumors, even when MSS, were 

associated with higher mutation rates and cellular plasticity, which may exacerbate the 

deleterious effects of chemotherapy. These features likely contribute to poorer outcomes under 

current treatment regimens, suggesting that proximal tumors may require entirely different 

therapeutic approaches. Our observations also reinforced the benefit of anti-EGFR therapies in 
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distal CRCs. We found that EGFR pathway activation in distal tumors makes them more 

responsive to anti-EGFR agents than proximal tumors, later evidenced by results from a clinical 

study [17]. 

Another influential result in this category was the identification of a subgroup of colorectal 

tumors with a BRAF wild-type (BRAFm-like) phenotype but molecular profiles resembling 

BRAF-mutated (BRAFm) tumors [7]. This subgroup was identified through a high-sensitivity 

gene expression signature derived from BRAFm tumors, which was robust enough to support 

a patent filing for the BRAFm-like signature [18]. The methodology for developing this 

classifier was implemented using the Rgtsp tool, as previously described in chapter 3.1. The 

BRAFm-like subgroup was found to also share clinicopathologic features with BRAFm tumors, 

such as enrichment for MSI-H, mucinous histology, and right-sided location. Frequencies of 

high-grade tumors were 30% in BRAFm, 20% in BRAFm-like, and only 5% in predicted BRAF 

wild-type (pred-BRAFwt) tumors, while MSI-H rates were 30%, 30%, and 3%, respectively.  

Interestingly, this group also showed poor prognosis, even in microsatellite stable (MSS) cases 

(Figure 1). Importantly, this finding challenged the conventional understanding that KRAS-

mutated tumors form a homogeneous group, as the BRAFm-like subgroup included part of 

tumors with KRAS mutations as well as double wild-type (WT2) samples. Additionally, 

BRAFm-like tumors demonstrated a distinct adenoma-carcinoma progression sequence linked 

to the serrated pathway, suggesting a shared underlying biology with BRAFm tumors. From a 

biological perspective, the BRAFm-like subgroup highlights tissue-specific biology in CRC 

compared to melanoma, where BRAFm inhibitors have been successful. This tissue-specific 

biology may explain why inhibitors like PLX4032, effective in BRAFm melanoma, have shown 

limited efficacy in BRAFm CRC. The study’s results underscored the need for a revised 

definition of CRC subgroups, particularly within KRAS-mutated tumors, and provided a 

framework for developing tailored therapeutic strategies.  
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Figure 1. Kaplan-Meier curves for different stratifications of the stage III subpopulation and different end points. Columns correspond to 

overall survival and survival after relapse end points, respectively. Panels A-D correspond to stratifications into samples predicted to be BRAF 

mutant (pred-BRAFm)/predicted to be BRAF wild type (pred-BRAFwt; A, B) and BRAF mutant (BRAFm)/BRAF mutant like (BRAFm-

like)/pred-BRAFwt (C, D) in the whole stage III subpopulation (from [7]) 

In this work we established a novel subgroup with clear prognostic and histological 

significance and demonstrated the value of gene expression profiling in refining CRC 

classification. It also supported the need for further functional investigations and clinical trials 

aimed at identifying actionable targets within the BRAFm-like population and subsequent 

functional investigations, including search for actionable targets [19] and clinical trials [20]. 

 

 

Context-Dependent Prognostic Value of BRAF and KRAS Mutations 

While BRAF and KRAS mutations have been widely studied as prognostic markers in CRC, 

their predictive value has remained controversial, particularly for KRAS. The prevailing 
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assumption in earlier studies was that these mutations have a uniform prognostic effect across 

all patients, independent of clinical context. However, our work in [8] demonstrated that the 

prognostic impact of BRAF and KRAS mutations is highly context-dependent, varying 

significantly based on tumor location and microsatellite instability (MSI) status. 

By leveraging the PETACC-3 dataset, which included mutation data from over 1,400 stage II–

III CRC patients, we systematically assessed the prognostic value of BRAF and KRAS 

mutations across multiple clinically relevant subgroups. To ensure statistical robustness, only 

subgroups with at least 20 patients were considered for prognostic assessment. We employed 

univariate survival analyses using log-rank tests and estimated hazard ratios (HR) for overall 

survival (OS), relapse-free survival (RFS), and survival after relapse (SAR). Multiple testing 

correction was applied using the Bonferroni method, setting a stringent significance threshold 

(adjusted p ≤ 0.01). To assess potential interactions, we further performed multivariate Cox 

regression models incorporating second-degree interaction terms between MSI status, BRAF 

mutation, and tumor location, adjusting for grade, T stage, and N stage. 

Our analysis confirmed that BRAF mutations were strongly prognostic for overall survival (OS) 

and survival after relapse (SAR), but notably, this effect was almost entirely driven by 

microsatellite stable (MSS) tumors located in the left colon. Within this subgroup, BRAF 

mutations conferred a six-fold increase in mortality risk compared to BRAF-wild-type MSS 

left-sided tumors, whereas in MSI-high (MSI-H) or right-sided tumors, BRAF mutations had 

no significant prognostic value (Figure 2). This observation challenged the widespread practice 

of reporting hazard ratios for BRAF mutation without considering tumor location and MSI 

status, highlighting the need for more nuanced interpretation of prognostic biomarkers in CRC. 

Figure 2. Overall survival: prognostic value of BRAF and KRAS mutations within MSS and by tumor site. A: all MSS tumors; B: MSS left-

sided tumors; C: MSS right-sided tumors. The light gray survival curve represents the whole subpopulation survival (A: all MSS, B: MSS 

left-sided, C: MSS right-sided tumors) (from [8]) 
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For relapse-free survival (RFS), we made the novel observation that BRAF mutations were also 

prognostic in MSS left-sided tumors, contradicting prior studies that did not find an association 

between BRAF and relapse (Figure 3). Importantly, these results were validated in multivariate 

models that accounted for tumor grade, T stage, and N stage, reinforcing the robustness of the 

findings. 

In contrast, KRAS mutations did not reach statistical significance as a prognostic marker for 

OS, SAR, or RFS in the overall cohort. However, our stratified analyses revealed that KRAS 

mutations showed trends towards significance in certain subpopulations, particularly for RFS 

in right-sided tumors. Intriguingly, in MSI-H right-sided tumors, KRAS mutations appeared to 

have a protective effect, identifying a subset of patients with better prognosis. While these 

results did not reach the stringent significance threshold after multiple testing correction, they 

suggest that the prognostic role of KRAS may be more complex than previously assumed. Our 

findings support the hypothesis that the KRAS-mutant population is molecularly 

heterogeneous, which may explain the inconsistent prognostic associations reported in the 

literature. 

 

Figure 3. Relapse-free survival: prognostic value of BRAF and KRAS in left-sided tumors. A: all left-sided tumors; B: MSS left-sided 

tumors. The light gray survival curve represents the whole subpopulation survival (A: all left tumors; B: MSS left). 

These results provided a key conceptual advance: the prognostic value of oncogenic mutations 

in CRC cannot be interpreted in isolation but must be considered within the broader tumor 

context. This insight has direct implications for clinical trial design, biomarker interpretation, 

and the development of prognostic gene signatures, reinforcing the need for stratification by 

MSI status and tumor location in future studies.  
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Unsupervised approach to CRC molecular heterogeneity – the CRC molecular 
subtypes 

While supervised approaches to exploring tumor heterogeneity are informative, they are 

inherently limited in their ability to uncover the unknown. Unsupervised methods, such as 

clustering, address critical questions like: ‘Do we have enough information? Are we 

overlooking key insights? What if our existing classifications are incorrect?‘. In 2015, an 

important study introduced the Consensus Molecular Subtypes (CMS), a framework that 

stratifies CRC into biologically distinct groups based solely on gene expression profiles of 

tumors, revealing subtype-specific differences in prognosis and therapy response. Our work in 

[9] played a pivotal role in the development of the CMS framework. Notably, our group was 

among the first to initiate efforts to define molecular subtypes of CRC. Our subtyping system 

was one of the six approaches included in the CMS study, reflecting its significance in shaping 

the consensus. Furthermore, the robustness of our subtypes was evident in their strong 

alignment with the CMS subtypes, highlighting the reproducibility as well as biological validity 

of our methodology (Figure 4). 

 

Figure 4. Sankey diagram of concordance between five Budinska gene expression subtypes (right) [9] and 4 CMS subtypes (left).  

The methodological approach we employed for gene expression-based subtyping was designed 

to ensure robustness and biological relevance. It consisted of the following key steps: 

i) Dimensionality Reduction: 

To reduce noise and focus on informative features, we implemented a multi-step 

dimensionality reduction process. First, we filtered for genes with high coefficients of variation 

(CV), eliminating low-expressed and non-informative genes. Next, we grouped the remaining 
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genes into clusters based on the correlation of their expression patterns, summarizing each 

cluster as a meta-gene represented by the median expression value of its member genes. These 

meta-genes were further clustered into higher-order structures, which were then subjected to 

gene set enrichment analysis. This final step enabled the identification of key biological 

processes driving CRC heterogeneity. 

ii) Consensus Clustering and Dynamic Hybrid Tree Cut for Sample Stratification:  

We applied robust consensus clustering [21] to group samples based on their meta-gene 

expression profiles into five distinct clusters. The principle of consensus clustering lies in 

aggregating results from multiple clustering iterations (in our case, hierarchical clustering), 

typically using subsampled data, to identify stable and reproducible groupings. This approach 

mitigates the sensitivity to initial conditions inherent in many clustering methods, leading to 

more reliable and reproducible results. This robustness is particularly relevant for high-

throughput molecular datasets, which are often prone to technical variability and batch effects. 

In each iteration, clusters were determined using a dynamic tree cut procedure [22], which 

provided a more robust and adaptive method for defining cluster boundaries. The dynamic 

hybrid method offers significant advantages over traditional fixed-height cutoffs for 

hierarchical clustering, particularly in the context of CRC molecular subtyping. Unlike fixed 

methods, it adapts to the shape and structure of dendrogram branches, enabling the detection 

of clusters with varying sizes and densities, which is crucial for capturing CRC heterogeneity. 

Additionally, it identifies nested clusters and effectively handles outliers, ensuring that subtle 

subtypes and unique molecular signatures are not misclassified or lost. Its flexibility allows for 

parameter tuning and automation, making it well-suited for large-scale genomic datasets. These 

features make the dynamic hybrid method a robust and precise tool for defining clinically 

relevant CRC subtypes. The final optimal number of clusters was determined using the 

consensus index, ensuring statistical robustness. To maintain homogeneity within the identified 

groups, we excluded samples that did not cluster with high probability. These outliers may 

represent rare subtypes or technical artifacts and excluding them helped to prevent the 

distortion of group-specific characteristics. 

iii) Validation Across Independent Datasets: 

The robustness of our findings was further validated by performing clustering across five 

independent external datasets. Cross-cluster training of classifiers was employed to assign 



  
 

  27
 

samples to their respective groups in these external cohorts, ensuring the reproducibility of our 

methodology. We compared the molecular, prognostic, mutational, and 

clinical/histopathological features of the groups across datasets, confirming the consistency 

and biological relevance of the identified subtypes.  

This approach resulted in the generation of five CRC molecular subtypes (A-E), characterized 

by distinct molecular processes, mutation profiles, and differences in overall survival (OS), 

relapse-free survival (RFS), and survival after relapse (SAR) (Figure 5). Importantly, and in 

contrast to other groups [23–26], we also characterized these subtypes from a histopathological 

perspective. Initially, our expert pathologist performed an unsupervised assessment of common 

histopathological features, such as tumor budding, hypoxia, peritumoral lymphocytic 

infiltration, necrosis etc. Statistical analysis, however, revealed no significant differences in the 

distribution of these characteristics among the subtypes. In a subsequent supervised analysis, 

we identified that the proportion of distinct morphologies - namely complex tubular, mucinous, 

solid/trabecular, serrated, papillary, and desmoplastic - varied significantly between subtypes. 

This finding aligned with molecular data. 

Subtype A, which exhibited a gene expression signature associated with differentiated colon, 

referred to as surface-crypt-like, was notably enriched in papillary and serrated morphologies. 

Papillary adenocarcinomas are characterized by finger-like epithelial projections, reflecting 

differentiation patterns akin to normal colonic crypts. Serrated adenocarcinomas, with their 

hallmark saw-toothed glandular pattern, arise from serrated polyps following the serrated 

neoplasia pathway, which involves BRAF mutations and Wnt signaling pathway alterations. 

These morphologies align with the differentiation process of normal colonic crypts, where stem 

cells at the crypt base give rise to epithelial cell types that migrate and differentiate along the 

crypt axis. Subtype B - Lower-crypt like, showed enrichment in the complex tubular pattern, 

aligning with the typical morphology of colorectal adenocarcinoma. This subtype's molecular 

profile exhibited active proliferation, amplification of chromosomes 20q and 20p, and 

deregulation of genes commonly associated with intestinal differentiation, including CDX2, 

IHH, VAV3, ASCL2, and PLAGL2. Histologically, this subtype demonstrated low immune cell 

infiltration and a minimal presence of epithelial-mesenchymal transition (EMT) or stromal 

components, consistent with a more proliferative and less invasive phenotype. 

Immunohistochemical staining revealed active β-catenin signaling, a hallmark of the Wnt 

pathway, which is frequently implicated in colorectal carcinogenesis and reflects the molecular 
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processes driving tumor progression in this subtype. Subtype C (CIMP-H like) displayed 

molecular and clinicopathological characteristics that closely align with the well-established 

CIMP-H phenotype of colorectal cancer. This subtype expressed the BRAF-mutant signature 

identified in our earlier work [7] (87.0% of cases) and a robust CIMP-H signature, 

characterized by widespread promoter hypermethylation. In addition, subtype C was enriched 

for MSI, right-sided location, and mucinous histology, hallmarks of the CIMP-H phenotype. 

Similar to previously reported hypermutated tumors, this subtype exhibited a low frequency of 

copy number variations (CNVs), suggesting that its tumorigenesis is driven more by epigenetic 

and mutational events than by chromosomal instability. 

Most interesting, however, was Subtype D, which exhibited a molecular signature strongly 

indicative of epithelial-to-mesenchymal transition (EMT), characterized by high immune cell 

infiltration and low proliferation. This suggested that the tumor might comprise cancer cells 

actively undergoing the process of EMT. Surprisingly, histopathological examination revealed 

that this molecular profile was not primarily due to high proportion of mesenchymal tumour 

cells but rather result of a high desmoplastic reaction. A desmoplastic reaction refers to the 

excessive growth of fibrous or connective tissue, often triggered by interactions between tumor 

cells and the surrounding stromal microenvironment. This process creates a dense, fibrotic 

stroma composed of activated fibroblasts, immune cells, and extracellular matrix proteins, 

which can mimic EMT at the molecular level by inducing similar gene expression patterns.  

 

Interestingly, Subtype D exhibited significantly lower overall survival (OS) and relapse-free 

survival (RFS), even after accounting for other clinically relevant variables, such as tumor stage 

or MSI status. The association between tumour stromal content and prognosis was not entirely 

novel [27], but our identification of stromal enrichment within unsupervised molecular 

subtypes prompted further studies to explore this relationship in greater depth [28]. Summary 

of subtype characteristics is shown in Table 1. 

This work consequently steered my research path in a very specific direction, focusing on the 

integration of histopathological and molecular data to better understand tumor heterogeneity in 

CRC. 
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Figure 5. Meta-gene expression pattern in subtypes, connected with prognostic effect of subtypes and meta-genes, in the discovery set. (A) 

Two heat maps clustering normal (left) and CRC (right) samples (columns) and meta-genes (rows). Colours represent decreased (blue) or 

increased (red) meta-gene expression relative to their medians. Normal samples were clustered independently on meta-genes centred to CRC 

meta-gene medians. For comparative purposes, ordering of meta-genes in normal samples is imposed to correspond to that of CRC samples. 

White horizontal lines denote eight unsupervised clusters of meta-genes, each assigned a colour bar on the left; meta-genes not belonging to 

a cluster have no colour bar. Names of the meta-genes corresponding to gene modules with gene–gene correlations in normal samples 

comparable to those in cancer samples are marked red (see Supplementary material, Figure S1D). (B) Effect of inter-quartile range (IQR) 

standardized expression of meta-genes on RFS, OS and SAR. Points represent estimated hazard ratio (HR), bars represent 95% CI. Bold lines 

represent effects significant at 5% without adjustment for multiple hypothesis testing; red lines represent effects significant at FDR < 10%; 

details are provided in Table S6 (see Supplementary material). (C) Kaplan–Meier plots for RFS, OS and SAR, with HR for significant pairwise 

comparisons (p values adjusted for FDR). Numbers below x axes represent number of patients at risk at selected time points. (from [9]) 

 

Table 1. Summary of subtype characteristics (adjusted from [9]) 
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 Molecular subtypes 

Feature 
A: Surface crypt-

like 

B: Lower 

crypt-like 
C: CIMP-H-like D: Mesenchymal E: Mixed 

MSI  – +  – 

BRAF + – +  – 

KRAS –     

P53   –  + 

Histopathology Papillary or serrated Complex tubular 
Solid/trabecular or 

mucinous 
Desmoplastic Complex tubular 

IHC (Nuclear β-

catenin at IF) 
– + – – + 

Median Survival 

(months) 

NA (OS), NA (RFS), 

28.9 (SAR) 

NA (OS), NA 

(RFS), 50.4 

(SAR) 

NA (OS), NA (RFS), 

6.9 

NA (OS), 79.5 

(RFS), 19.8 (SAR) 

NA (OS), NA (RFS), 19.6 

(SAR) 

Clinical Site  Left Right  Left 

Grade  2 3   

Up-regulated Genes 

Top colon crypt, 

secretory cell, 

metallothioneins 

Top colon crypt, 

proliferation, 

Wnt 

Proliferation, 

immune, 

metallothioneins 

EMT/stroma, CSC, 

immune 

EMT/stroma, immune, 

top colon crypt, Chr20q, 

GDC, CSC 

Down-regulated 

Genes 

EMT/stroma, Wnt, 

CSC, Chr20q, 

proliferation 

EMT/stroma, 

immune, 

secretory cell 

GDC, top colon 

crypt, Chr20q 

Proliferation, 

secretory cell, top 

colon crypt, GDC, 

Wnt, Chr20q 

Secretory cell 
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3.3. Preclinical models 
 

The study of colorectal cancer (CRC) has been transformed by the integration of computational 

modeling with experimental validation. While bioinformatics-driven analyses reveal critical 

aspects of tumor heterogeneity, drug resistance, and molecular subtypes, their true impact lies 

in biological validation. Preclinical models serve as a crucial link, allowing us to test 

hypotheses, confirm computationally derived biomarkers, and dissect the mechanisms 

underlying tumor progression and therapy response. 

Different experimental models offer complementary advantages, each addressing distinct 

aspects of CRC biology. Genetically engineered mouse models (GEMMs) provide a controlled 

system to study oncogenic pathways in vivo, capturing key molecular hallmarks of CRC. 

Patient-derived xenografts (PDXs) have proven invaluable for precision oncology, faithfully 

preserving patient-specific tumor characteristics and drug response profiles. More recently, 

patient-derived organoids (PDOs) have emerged as a versatile ex vivo system, bridging the gap 

between in vitro experimentation and in vivo validation, enabling high-throughput functional 

studies on molecular subtypes and therapy resistance. Beyond their individual strengths, 

preclinical models are most powerful when combined with computational analyses. Cross-

species transcriptomic comparisons refine computational predictions by identifying conserved 

molecular programs, while functional studies in PDX and organoid models validate key 

molecular drivers and therapeutic targets. These models have also provided new perspectives 

on tumor-microenvironment interactions, immune infiltration, and the role of the microbiome 

in CRC progression. 

Cross-Species Transcriptomic Analysis of CRC: Insights from Genetically Engineered 

Mouse Models 

For decades, GEMMs have been instrumental in modeling human CRC by introducing 

mutations in key driver genes, such as APC, TP53, KRAS, and BRAF, which are frequently 

altered in human tumors [29]. Unlike traditional cancer models, GEMMs allow for the 

stochastic and tissue-specific activation of these mutations, mimicking the sporadic nature of 

human CRC development. By combining GEMMs with high-throughput transcriptomic 

profiling, it is possible to assess how specific genetic alterations shape the tumor 

microenvironment and contribute to disease progression. I had the unique opportunity to be 
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involved in such efforts, where our expertise in mining large-scale CRC transcriptomic datasets 

was applied to evaluate the molecular fidelity of GEMMs and assess their relevance to human 

disease [10]. This study focused on establishing genotype-specific gene expression signatures 

in GEMMs and determining their molecular resemblance to human CRC and their utility in 

preclinical research. Gene expression profiling of GEMM-derived tumors was performed, and 

mutation-specific transcriptional signatures were identified through multivariable statistical 

modeling. These signatures were then validated in clinically annotated human CRC datasets 

(PETACC-3, GSE14333), revealing a strong overlap between the GEMM KRAS signature and 

human KRAS-mutant and BRAF-like tumors, both of which are associated with poor prognosis 

and MAPK pathway activation. In contrast, the BRAF signature did not align well with human 

BRAF-mutant CRC, likely reflecting biological differences in APC co-mutation frequencies. 

Further, the GEMM KRAS signature predicted increased sensitivity to MEK inhibitors (PD-

0325901, AZD6244) in CRC cell lines, providing a potential tool for therapeutic stratification. 

This confirmed the relevance of GEMMs in modeling CRC heterogeneity and emphasized the 

need for refined models to better capture BRAF-driven disease biology.  

Data Integration Challenges in PDX Models: Bridging Preclinical and Clinical 
Insights 

Patient-derived xenografts (PDXs) have emerged as a powerful tool in translational oncology, 

enabling high-throughput studies that link genetic and functional characteristics to therapeutic 

responses. However, the large-scale use of PDX models presents significant challenges, 

particularly in data management, integration, and analysis. The central focus of my work was 

developing strategies to harmonize preclinical PDX data with molecular classifications derived 

from patient tumors. This involved addressing the biological variability introduced during 

tumor engraftment and propagation, as well as ensuring robust data normalization, 

standardization of sample metadata, and applying analytical corrections to account for 

systematic biases, such as the loss of human immune and stromal components. This expertise 

was integrated into the review by Byrne et al. (2017) [11], where we critically assessed the role 

of PDXs in cancer precision medicine, highlighting both their advantages and limitations in 

preclinical research. The review examined how PDX models can bridge the gap between 

laboratory findings and clinical applications, especially in drug development and biomarker 

discovery. We emphasized the importance of standardized protocols, rigorous data integration, 

and careful result interpretation to maximize the translational value of PDX models in oncology. 

My contribution to the review focused specifically on the complexities of data stratification in 
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PDX studies, where we proposed computational solutions to mitigate population selection 

biases and improve integrative analyses across various experimental platforms. In particular, I 

helped design analytical workflows to standardize these processes, ensuring that PDX models 

could be meaningfully aligned with clinically relevant subgroups. These efforts are essential 

for enhancing the translational potential of PDX-based approaches, particularly in preclinical 

drug testing and biomarker discovery. 
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3.4. Integrating digital pathology and 
omics data 

Histopathological evaluation has long been a cornerstone of cancer diagnostics, providing 

essential insights into the structural and cellular organization of tumors. By examining stained 

tissue slides under the microscope, pathologists assess key features such as tumor grade, 

cellular morphology, tissue architecture, and the extent of invasion. These assessments not only 

guide clinical decision-making but also serve as a basis for understanding tumor biology. 

However, while traditional histopathology has been invaluable, its reliance on subjective visual 

interpretation introduces variability and limits its capacity to harness the vast information 

contained in high-resolution histological images. The advent of computational methods has 

revolutionized this field, enabling the extraction of quantitative features from histopathological 

slides. These features range from measurements of nuclear size, texture, and cell density to 

spatial arrangement and tissue heterogeneity.  

In our work, where we derived molecular subtypes of CRC based on gene expression profiles 

[9], we showed that the molecular subtypes correlate with tumour morphology – a 

histopathological variable which is not routinely assessed or reported.  Most interestingly, 

tumours classified as molecular subtype D (20% of tumours) had the worse relapse-free 

survival and were characterized by increased expression of epithelial-mesenchymal transition 

(EMT) genes. The histopathological evaluation, however, led to the discovery that these 

tumours comprised often of more than 70% fibroblasts (“desmoplastic” morphotype). In 

consequence, this means that the observed high expression of the EMT genes is due to high 

fibroblast content and not to the stem-cell like (mesenchymal) tumour phenotype, as incorrectly 

interpreted in other studies. In addition, this important tumour subtype has escaped the attention 

of some cataloguing studies, such as The Cancer Genome Atlas (TCGA), which excluded 

tumours with tumour cell content lower than 80%. Molecular profiles thus must be interpreted 

with respect to histopathological evaluation. In addition, we observed multiple morphological 

patterns within the same tumour, and each can express a different molecular profile. A thorough 

histopathological evaluation of different tumour regions and micro-dissection of 

morphologically homogenous populations prior to molecular analyses was necessary for 

correct molecular classification. This, however, is in many studies impossible to achieve – in 

order to be correctly histopathologically evaluated, tumour specimens are routinely formalin 

fixed, and paraffin embedded (FFPE) after surgical excision to preserve histology. Most 
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importantly, the examined specimen is usually taken from the invasive front of tumour on the 

colonic wall, since this region is the most important for characterization of tumour 

aggressiveness and its classification according to WHO standards. This part of tumour 

therefore cannot be stored as fresh frozen tissue, imposing important constraints on the 

methodology of sample collection. The studies performing molecular profiling from fresh 

frozen samples (considered of much better quality for molecular profiling) are therefore using 

material from a different tumour site, which can represent a different clonal population. This 

is often disregarded and introduces further bias into the interpretation of results.     

In retrospect, it is natural to expect that tumor gene expression profiles represent a mixed signal 

derived from various cell types within the tumor microenvironment. Consequently, the 

observation that different tumor (cell) morphologies correlate with distinct molecular profiles 

is not surprising. This principle underlies the concept of deconvolution methods, which aim to 

estimate the proportions of different cell types present within tumor samples, providing a more 

nuanced interpretation of molecular data. However, while estimating the proportions of 

different cell types provides valuable insights, it overlooks a critical aspect of tumor 

architecture: the spatial organization of these cells within the tissue. Morphology, in contrast, 

inherently captures this spatial context and is relatively easy to assess in formalin-fixed 

paraffin-embedded (FFPE) samples. This is particularly true when enhanced by AI-driven 

image analysis software, which can standardize and automate morphological evaluations. 

Approaching tumor heterogeneity from a morphological perspective is not only more practical 

but also cost-effective, faster, and more universally applicable in clinical settings, as it 

leverages resources already available in most pathology departments. 

In collaboration with Masaryk Memorial Cancer Institute, we collected multiple cohorts of 

colorectal samples, which enabled us to embark on a comprehensive exploration of the 

relationship between tumor morphology and molecular profiles, as well as the role of 

morphology in CRC heterogeneity. 

Traditional digital image analysis in histopathology focuses primarily on the automatic 

extraction of predefined features. These typically include measurements such as nuclear size, 

cell density, the recognition and classification of different cell types, and their proportions 

within the tissue. These features are then quantified and statistically correlated with prognostic 

or diagnostic variables, offering an objective means of evaluating tumor morphology. While 

this approach has greatly improved the reproducibility of histopathological assessments, it 
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remains constrained by human-defined criteria, effectively limiting the analysis to features that 

are already recognizable to the human eye. 

In contrast, our approach diverged from this paradigm by leveraging molecular data to guide 

the extraction of image features, enabling us to capture patterns and relationships that go 

beyond what is visually discernible. By integrating histopathological images with gene 

expression profiles, we aimed to identify novel features reflective of underlying molecular 

mechanisms. This data-driven strategy opens possibilities for uncovering previously 

unrecognized biomarkers and relationships, providing a deeper understanding of tumor biology 

that is both more comprehensive and more closely aligned with the molecular heterogeneity of 

the disease. 

Joint image and molecular analysis 

First, we demonstrated how histopathological image features could be jointly analyzed with 

gene expression data, initially in the context of breast cancer [12], to identify meaningful 

correlations between morphology and molecular signatures. Histopathology images, while rich 

in information, are inherently complex, containing billions of pixels. To extract meaningful 

patterns, we employed a bag-of-features approach, which compresses the image data into 

essential patterns called codeblocks, identified using Gabor wavelets. This method enables the 

representation of each image as a histogram of codeblock frequencies, supplemented with 

extended features describing the spatial distribution of codeblocks, such as area, compactness, 

and skewness. This approach retained critical morphological information that is often 

overlooked in conventional analyses. The codebook was optimized through clustering to 

minimize overlap among tissue categories (e.g., fat, connective tissue, tumor nuclei), ensuring 

that the image representation was both sparse and discriminative. The resulting codeblocks 

captured three key morphological components: proliferation, invasion/differentiation, and 

isolated tumor nuclei (Figure 6).  
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Figure 6. Hierarchical clustering of the codebook. Clustering the codeblocks led to identification of three major clusters, to which generic 

terms have been assigned. The codeblocks correlated with gene expression are marked with red dots. The codeblocks with potential prognostic 

value (in univariate analysis) are marked with blue squares (dark blue for p-value < 0.01, light blue for 0.01 ≤ p-value ≤ 0.05 (from [12]) 

The methodology also incorporated canonical correlation analysis (CCA) and other statistical 

tools to link these image features to gene expression, tumor size, grade, and relapse-free 

survival (RFS). A major contribution of this work was the development of an image-based 

prognostic score, derived from five key image features. This score was shown to be 

independent of genomic predictors and significantly improved prognostic models when 

combined with gene expression-based scores (Figure 7).   

Figure 7.  Kaplan-Meier curves for binarized scores. The genomic (a), image-based (b) and combined scores (c) were binarized by the 

respective median values into “low score” (low risk) and “high score” (high risk) categories. The combined score slightly improves on the 

genomic score (from [12]). 
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The code implementing this method was developed in R and made freely available for further 

research and application, laying the groundwork for broader integration of imaging and 

genomics in data mining and clinical practice [30]. 

Building on the observed link between tumor morphology and molecular profiles, we were the 

first to develop an image-based classifier capable of predicting CRC molecular subtypes from 

histopathological images [13]. Using histopathological slides from the PETACC-3 clinical trial, 

we analyzed a dataset of 300 tumor samples, which represented molecular subtypes A–E with 

the following frequencies: subtype A (n=21), B (n=140), C (n=37), D (n=81), and E (n=21). 

These samples were drawn from the PETACC-3 cohort of 458 molecularly annotated cases, 

focusing on those with high-quality images and sufficient tumor content, while excluding 

outliers and fragmented samples. The methodology involved processing hematoxylin-eosin 

(H&E) stained tumor sections, which were scanned at high magnification and subsequently 

downscaled to an equivalent magnification for computational efficiency. Tumoral regions were 

manually delineated based on expert pathologist annotations, ensuring that only relevant areas 

were analyzed. Local image features were extracted using a deep convolutional neural network 

(CNN) pre-trained on the ImageNet dataset, with the 4096-element descriptor vector from the 

penultimate layer reduced to 128 dimensions via principal component analysis (PCA). These 

local descriptors were pooled into global representations using Gaussian Mixture Models 

(GMMs), which facilitated the generation of a "visual codebook" summarizing key 

morphological features.  

 

 
Figure 8. Top four prototypes associated with each subtype: (a–d) Subtype A, (e–h) Subtype B, (i–l) Subtype C, (m–p) Subtype D and (q–t) 

Subtype E. Under each image the corresponding P value from Wilcoxon rank-sum test is shown (from [13]) 
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The image features were integrated into a multi-class support vector machine (SVM) 

classifier with a hierarchical design, optimized to first distinguish subtypes A and B from 

subtypes C, D, and E, before further separating individual subtypes. This decision tree structure 

was informed by misclassification patterns and the biological similarities between subtypes 

identified in previous studies. Model performance was assessed through 10-fold cross-

validation, achieving an overall accuracy of approximately 85%. Importantly, subtype-specific 

features, such as mucinous histology in subtype C or stromal desmoplasia in subtype D, were 

accurately captured by the classifier, reflecting the morphological heterogeneity across CRC 

molecular subtypes (Figure 8). Additionally, our analysis demonstrated that the image-based 

predictions could stratify patients by relapse-free survival (RFS) in a manner consistent with 

molecular subtyping, further validating the clinical relevance of the approach (Figure 9). While 

the SVM models we used for classification provided high accuracy, they are inherently difficult 

to interpret biologically. Future work aims to develop simplified models to facilitate biological 

interpretation, which is essential for clinical acceptance. 

Figure 9. Survival analysis: risk of relapse stratified by (a) molecular subtypes and (b) image-based classifier. Subtypes A and B represent a 
lower risk group, while subtypes C, D and E a higher risk (from [13].) 

 

Exploring molecular patterns of the morphotypes 

One question, however, remained unanswered. We showed a clear association of our molecular 

subtypes with morphology, but the comprehensive molecular characterization of each 
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morphological region was missing. In [14] we explored the transcriptomic landscape of the six 

morphotypes (CT, DE, MU, PP, SE and TB) and examined them alongside peritumoral regions, 

including normal adjacent tissue (NR) and supportive stroma (ST), to better understand how 

molecular programs map onto tumor histology. Using 111 unique primary CRC tumors across 

stages II (n=59), III (n=32), and IV (n=20), we macro-dissected 202 distinct regions, including 

149 tumor regions, of which 126 were core samples containing at least 80% of a single 

morphological pattern (Figure 10).  RNA extraction was performed on formalin-fixed paraffin-

embedded (FFPE) histopathological slides, ensuring compatibility with archived clinical 

samples. Transcriptomic profiling was conducted using the Clariom D Array for human 

samples (Thermo Fisher Scientific), a platform that captures both coding and multiple forms 

of non-coding RNA.  

The high-purity sampling allowed for a more accurate assessment of how distinct morphotypes 

contribute to the molecular heterogeneity of CRC. The samples originated from the 

COLOBIOME study, which we performed at Masaryk Memorial Cancer Institute in Brno [31].  
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Figure 10. Morphological patterns and their distribution in the dataset. (A) The six CRC morphological patterns of interest 
(morphotypes). Left: example of an original annotation used for macro-dissection and RNA extraction. Note that the original annotations in 
the image are not identical to the ones used in the main text. Here, A-SE stands for serrated (SE) in the text, B-DE for desmoplastic (DE) in 
the text, C-MUC for mucinous (MU) in the text, and D-ST for solid/trabecular (TB) in the text, respectively. Also, N indicates a tumor-
adjacent normal epithelial region and S a supportive stroma region, respectively. Right: examples of morphotypes – complex tubular (CT), 
desmoplastic (DE), mucinous (MU), papillary (PP), serrated (SE), and solid/trabecular (TB). (B) Morphotype distribution per case (unique 
tumor) and intersections thereof: some cases had several morphotypes profiled (from [14]).  

The morphotypes were characterized using gene set enrichment analyses (GSEA), and in silico 

deconvolution to identify differences in key biological processes, cell types, and pathway 

activity. Consistent with previous findings, MU and DE morphotypes (linked to CMS1 and 

CMS4) were enriched in fibroblast-associated signatures, TGF-β signaling, and immune 

response pathways, with DE further distinguished by inflammatory CAFs (IL-iCAF). 

Conversely, epithelial-rich SE and PP morphotypes showed downregulated EMT and KRAS 

signaling but upregulated MYC target pathways, reflecting their connection to the serrated 

oncogenic pathway. Interestingly, the CT and TB morphotypes demonstrated active 

proliferation and basal cell signatures, with TB also sharing stromal characteristics such as 

active TGF-β signaling with MU and DE (Figure 11). 
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Figure 11. Top differentially expressed genes and hallmark pathways. (A) GSEA scores for hallmark pathways in the six morphotypes 

and two non-tumoral regions. Only pathways with statistically significant scores are shown. (B) Principal component analysis of hallmark 

pathways: the median profiles of the six morphotypes (CT: complex tubular, DE: desmoplastic, MU: mucinous, PP: papillary, SE: serrated, 

and TB: solid/trabecular) and the two non-tumoral regions (NR: tumor-adjacent normal and ST: supportive stroma) are projected onto the 

space defined by first two principal components (74% of the total variance). The top pathways contributing to the principal axes are shown as 

well. See also Figure 3—figure supplement 1. (C) Heatmap of top 5 up- and down-regulated genes for each of the six morphotypes (from 

[14]). 

 

An important aspect of this study was the exploration of intra-tumoral heterogeneity. By 

analyzing matched regions within the same tumor, we showed that molecular classifiers like 

CMS are less stable at the regional level, with 60% of tumors displaying discordance between 

CMS assignments in whole-tumor profiles versus individual regions (Figure 12). 
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Figure 12. Intra-tumoral heterogeneity case study. For the same case, different CMS labels are assigned to regions and whole tumor profile. 

The hallmark pathways show various levels of activation (as computed by GSVA) within the same section. The relative change in prognostic 

scores indicates potential underestimation of risk for some signatures, while others appear to be stable across tumor. Note that in the pathology 

section image, the original annotations were preserved, and they are not identical to the ones used in the main text. Here, MUC stands for 

mucinous (MU) in the text. Also, N indicates a tumor-adjacent normal epithelial region and S a supportive stroma region, respectively (from 

[14]). 

 

Prognostic gene expression signatures also varied significantly across regions, with some 

morphotypes showing scores more than 50% higher than the corresponding whole-tumor score. 

This suggests that whole-tumor profiling may underestimate the risk in morphologically 

heterogeneous tumors. Our findings showed the need to account for tumor morphology in 

molecular profiling studies and that anchoring expression profiles to histopathological 

morphotypes can serve as a practical alternative to spatial transcriptomics, which remains 

challenging to implement in routine practice. To support further research, we developed a web 

application [32] for interrogating gene expression profiles in various morphological regions, 

providing a valuable resource for the broader scientific community. 
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How heterogenous the tumours are in terms of morphologies? 

Given these observations, we naturally turned our attention to exploring the full extent of tumor 

morphological heterogeneity across CRC cases and its potential clinical implications. In our 

recent study [1], we aimed to address this question by combining traditional pathology with 

cutting-edge AI-driven image analysis. Specifically, we sought to quantify the diversity of 

tumor morphotypes within individual cases and to assess the clinical relevance of this 

heterogeneity. 

We began with a pilot analysis of 22 CRC tumors, sampling four histological sections per 

tumor (n=88 slides) and employing three expert pathologists to evaluate the dominant, 

secondary, and tertiary morphologies in each section. This initial assessment revealed a high 

degree of morphological heterogeneity, with most tumors exhibiting 2–3 dominant 

morphotypes across different sections. The complex tubular (CT) morphotype was the most 

frequently observed, while desmoplastic (DE) the least observed. Inter-pathologist variability 

was minimal for CT and more prominent for DE and MU (mucinous) morphologies, 

emphasizing the need for a standardized, objective method to classify these patterns.  

To scale up the analysis, we developed an AI-based deep learning model trained on the 

annotations from the pathologists. This model was applied to an expanded cohort of 161 CRC 

cases (n=644 slides), allowing us to systematically characterize the distribution of morphotypes 

and their combinations. The AI-guided analysis confirmed the findings of the pilot study, with 

over 50% of tumors exhibiting more than two dominant morphotypes and medium to high 

morphological diversity, as measured by a normalized Shannon index (Figure 13).  
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Figure 13. A. Observed intratumoral patterns of dominant morphotype combinations (IPDMCs) and their frequency (main barplot) and 

frequency of their distribution patterns (embedded top right barplot). B. Distribution of normalized Shannon index of median tumor profiles 

in the IPDMCs. C. Median morphotype area in the IPDMCs and their further clustering into 9 clusters. D. Frequencies of pairwise 

combinations of dominant morphotypes in the sections. E. Examples of representative tumor morphological areas of slides from selected 

IPDMCs clusters as identified by image analysis. F-H. Examples of intratumoral morphological heterogeneity as assigned by image analysis 

over four examined slides/blocks. Values of normalized Shannon index (NSI) of each slide and the average tumor profile are shown. F. Tumor 

with low heterogeneity across all slides, expressing one dominant morphotype (CT). G. Tumor with low heterogeneity in two slides and 

medium heterogeneity in two slides, expressing two dominant morphotypes (CT and PP) H. Tumor with high heterogeneity in all four sections, 

expressing two dominant morphotypes (DE and MU) (from [1]). 

Importantly, this diversity was not itself associated with clinical variables, but the proportion 

of specific morphotypes—such as DE and MU—correlated strongly with outcomes. For 
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example, tumors with higher proportions of DE morphotype were associated with advanced T-

stage, N-stage, metastasis, and shorter relapse-free survival (RFS), while MU was linked to 

MSI, right-sided location, and poorer overall survival (OS). 

These findings highlighted the critical need to consider intratumoral heterogeneity when 

performing molecular analyses. For instance, we observed that morphotypes such as MU and 

PP often coexisted with other morphologies, potentially reflecting shared oncogenic programs 

like KRAS or BRAF mutations. Conversely, the SE morphotype, which is associated with the 

serrated neoplasia pathway, was rarely found alongside MU. Similarly, CT, the most common 

morphotype, often combined with other morphologies, while TB—a hallmark of 

dedifferentiation—was predominantly found in tumors with low diversity and was largely 

independent of specific oncogenic pathways. 
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3.5. Tumor microenvironment and 
microbiome 

At the same time, and somehow in parallel, more and more attention is paid to CRC tumour 

microenvironment and even more importantly to the role of gut microbiota. Human gut 

microbiota is composed of four major domains of life of which vast majority are Bacteria (95%), 

the rest being Archaea, Eucaryota and Viruses. Gut microbiota outnumbers 10 times the 

number of human cells in the human body and comprises majority of mammalian-associated 

microbes. It is referred to as commensal intestinal microbiota and forms a versatile 

microecosystem that changes its composition in response to the host’s development, diet, or 

disease state [33]. Most dense and metabolically active microbial community resides in the 

large intestine, comprised mainly of anaerobic bacteria of two phyla: Firmicutes and 

Bacteroidetes, accompanied by Actinobacteria, Proteobacteria and Verrucomicrobia. In a 

healthy organism, the gut microbiota is in a symbiotic relation with the human host and 

contributes to controlling the intestinal epithelial homeostasis, to food digestion, to synthesis 

of certain vitamins and to defense against pathogens. This has a great impact on the set-up of 

the human immune system, which uses specific mechanisms for discrimination of between 

harmful and helpful microbial species: immune exclusion (secretory IgA antibodies present in 

mucosa layer selectively block antigens and pathogenic microbiota from accessing cell 

epithelial receptors) and immunosuppression (recognizing antigens of pathogenic and 

commensal bacteria via Toll-like receptors - TLRs) [34,35]. The tumour microenvironment 

contains several different immune cell types, including tissue-associated macrophages (TAMs) 

and other innate immune cells, as well as T cells and B cells, which communicate with each 

other and the other cells in the tumour microenvironment via direct contact or via cytokine 

and/or chemokine signalling to control tumour growth. TAMs primarily promote tumour 

growth, and high numbers of TAMs generally correlate with cancer progression.  

Dysbiosis – chronic alteration of gut microbiota – is reported in many diseases, such as 

autoimmune diseases or even colon cancer and there is growing evidence that development of 

these diseases is influenced by microbiota - human immune response interactions [33]. Recent 

studies show that bacteria adherent to colorectal adenomas or carcinomas are different from 

bacteria adherent to healthy mucosa [36]. This is a result of changes in the local tumour 

microenvironment, which has decreased pH and changed nutritional conditions as a 

consequence of altered metabolism of tumour due to hypoxia [37]. Bacteria can promote colon 

cancer development or change the tumour invasion potential through immunomodulation 
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[38,39] or metabolic activity – through production of specific toxins inducing DNA damage 

responses [40]. This is enhanced by defects in barrier function of the gut, which allow luminal 

bacteria to translocate to epithelial layer and directly influence host cells. Overall, the evidence 

of microbiome importance in colon cancer development is so overwhelming that a bacterial 

driver-passenger model for colorectal cancer development and progression was suggested [36] 

as an alternative to the broadly accepted driver-passenger mutational adenoma-carcinoma 

model. 

Our expertise in the microbiome and its role in CRC was summarized in a review article 

published in Klinická onkologie [15]. This journal, written in Czech and targeted at clinical 

oncologists, aimed to bridge the gap between basic research and clinical practice by providing 

a comprehensive overview of the microbiome’s role in CRC development, progression, and 

potential therapeutic implications. This work served as a foundation for the more detailed 

experimental studies that followed. In addition, we contributed a chapter titled Mikrobiom v 

solidních nádorech to the book Mikrobiom a zdraví [41]. This chapter explored the 

microbiome’s interactions with solid tumors in depth, including microbiota residing on the 

tumor surface, within the tumor, and even inside tumor cells. It also examined the mechanisms 

of microbiome-tumor interaction, such as immune modulation and metabolic influence, and 

discussed the potential for directly targeting tumors through microbiota-based therapies. 

Together, these contributions reflect our multifaceted approach to understanding and 

leveraging microbiome in cancer research and clinical application. 

Gut microbiota plays an important role also in cancer therapy. Microbiota influences drug 

metabolism, immune responses, and the tumor microenvironment, thereby impacting the 

effectiveness of chemotherapy, immunotherapy, and radiotherapy. For example, Akkermansia 

muciniphila has been shown to enhance the efficacy of immune checkpoint inhibitors by 

stimulating anti-tumor immune responses [42]. In contrast, antibiotic-induced microbiome 

depletion can impair therapeutic efficacy, as observed in studies linking antibiotic use with 

reduced responses to both immunotherapy and chemotherapy [43]. Furthermore, certain 

microbes can either promote or inhibit tumor growth through their effects on drug metabolism, 

such as the modulation of gemcitabine efficacy by Gammaproteobacteria [44]. Microbiome 

can be perceived as both a therapeutic ally and a potential barrier, and it is of crucial importance 

to consider microbiota modulation as a complementary approach to optimize cancer treatments.  

It has been long recognized, that bacteria are capable of penetrating and moving within the 

tumour [45], making them a perfect candidate for anticancer agents. When using bacteria for 
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treatment, tumour regression can be achieved by native bacterial cytotoxicity caused by 

sensitization of the immune system and competition for nutrients [46]. This effect, however, 

can be hampered by the immune system preventing intra-tumoural bacterial dissemination [47]. 

One hypothesis we put forward is that the intra-tumoural presence of commensal bacteria 

(either recruited by the tumour or opportunistic) helps the tumour escape the immune system, 

since these bacteria are not recognized as pathogens. If this hypothesis can be validated, it could 

serve as the basis of a bacterial-targeted treatment. 

It is our strong belief that the identification of gut microbiota specific to treatment-resistant 

tumours is a key step towards a finer patient population stratification and more targeted 

therapies. 

 

The need for multimodal approach 

Molecular profiling, however powerful, constitutes only one modality of exploration of the 

complex picture of CRC heterogeneity. The machinery of molecular events adapts swiftly to 

the signals from its surrounding microenvironment, which plays an important role in shaping 

the tumour phenotype. Tumour and patient metabolome profiling is currently in its renaissance 

and is being exploited for identification of marker metabolites defined as surrogate indicators 

of colorectal cancer development [48]. Differences in metabolic profiles were found not only 

between normal and cancer tissue, but also within subtypes of CRC [49]. The metabolic and 

inflammatory milieu within the tumour microenvironment may affect the function and 

phenotype of tumour cells, irrespective of genotype.  

While we are witnessing increased interest in characterizing the gut microbiome from cancer 

clinical perspective, this research applied to colorectal cancer lags behind tumour molecular 

profiling by several years. Some studies tried to incorporate information on tumour associated 

microbiome in order to improve the accuracy of the existing patient CRC prognostic score [50] 

or developed new screening/prognostic models [51]. However, despite consistent patterns of 

gut microbial disruption in comparison to healthy individuals [52,53], the variability between 

diseased individuals remains too high. One source of this variability is the type of diet. Another 

source, however, can again be assigned to tumour molecular heterogeneity and the respective 

tumour metabolic profile, which might influence the tumour microbiota. Due to this, we 

suggested, that any study aiming at unveiling the role of microbiota in colorectal cancer 

progression or response to therapy should investigate the presence and distribution of bacteria 

and immune cell types accounting for the intra-tumoural heterogeneity and metabolism. If 
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microbiota is to answer some of the key outstanding questions about CRC heterogeneity that 

are not explained by molecular profiling, we have to move from simple healthy-

tissue/adenoma/carcinoma correlation studies towards complex multimodal approaches. A new 

approach is definitely needed, that is data-driven and can cleverly and efficiently mine and 

combine all the modalities (molecular data, clinical data, histopathology, metabolism and 

microbiome) and not only catalogue the existing correlations but also generate sound 

hypotheses that can be tested in further functional analyses.  

This perspective motivated us to submit the AZV research project (COLOBIOME), which 

aimed to integrate microbiome and tumour microenvironment analyses into the study of 

colorectal cancer heterogeneity. Through this project, we successfully established a prospective 

cohort of approximately 200 stage I–IV CRC patients. This cohort includes an extensive array 

of samples: stool samples, tumour and adjacent visually normal mucosa swabs for microbiome 

profiling, tumor resections preserved as FFPE and fresh-frozen tissues, as well as peripheral 

blood collected at the time of diagnosis. 

 

Methodological considerations of microbiome studies in clinical samples 

Studying the microbiome in clinical samples is inherently challenging due to numerous 

technical and biological factors that can influence the quality and reproducibility of results. In 

our study [16], we systematically evaluated the impact of stool sampling methods and DNA 

isolation kits on quality of extracted DNA and estimation of bacterial composition and diversity 

using 16S rRNA sequencing on the MiSeq Illumina platform.  Thanks to this study, we gained 

insights into the methodological aspects that need to be standardized to ensure robust 

microbiome profiling in our further studies. 

Sixteen volunteers provided samples from a single stool using three sampling kits: stool 

container (SK1), flocked swab (SK2), and cotton swab (SK3). DNA was extracted using two 

isolation kits, PowerLyzer PowerSoil (PS) and QIAamp DNA Stool Mini Kit (QS), resulting 

in 96 samples for analysis. User preference evaluations showed that 100% of participants 

favored the stool container (SK1) for ease of use, while 81.25% found the flocked swab (SK2) 

least convenient due to challenging handling. DNA quality assessments revealed higher yields 

with the QS kit, but PS preserved better DNA integrity, particularly when paired with stool 

containers. Interestingly, stool container samples also exhibited reduced PCR inhibitors, 

enhancing downstream processing efficiency. While bacterial diversity metrics (Chao 1 and 
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OTUs) were influenced by both sampling and isolation methods, PS consistently extracted 

more Gram-positive bacterial taxa due to its robust bead-beating procedure. 

Bacterial composition analysis confirmed that both the sampling and isolation methods 

significantly influenced taxonomic abundance, particularly at higher taxonomic levels (phylum, 

class, order) (Figure 14). PS exhibited greater efficiency in recovering Gram-positive taxa, a 

trend attributed to its superior cell lysis capabilities. Notably, stool container samples resulted 

in higher bacterial diversity, likely due to optimized sample dilution during preprocessing.  

 

Figure 14 Distributions of relative abundances of significantly affected taxa at family level. Four graphs represent families divided according 

to third quartile of their abundance. Only taxa that passed the filtering criteria (maximum abundance >1%), significantly affected by isolation 

or sampling kit are shown. The colored squares below the graph indicate whether the family was affected significantly by the sampling kit 

only, the isolation kit only or both. (from [16]) 

 

The tumour mucosa microbial subtypes 

The microbial composition within the colorectal cancer (CRC) tumor microenvironment 

represents a pivotal factor in understanding tumor biology and its progression. In our study 

[17], we adopted a microbial community-centric approach to comprehensively characterize the 

heterogeneity of the tumor-associated microbiome across three distinct sampling 

environments: tumor mucosa, adjacent visually normal mucosa, and stool samples. Utilizing a 
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cohort of 178 CRC patients (stages 0–IV) from the COLOBIOME project, and analyzing 483 

samples, our aim was to explore the microbial landscape and its association with clinical 

variables, while addressing limitations of earlier studies that were either species-centric or 

underpowered in sample size. By focusing on microbial communities rather than individual 

species, we provided a different perspective into the tumour microbial heterogeneity. Our final 

result was identification of CRC tumor mucosal microbial subtypes. 

To ensure robust methodology, 16S rRNA sequencing was used for microbial profiling, with 

data processing performed using state-of-the-art compositional data techniques. Prior to 

analysis, zero multiplicative replacement and centered log-ratio (clr) transformations were 

applied to address the compositional nature of microbiome data. Microbial diversity was 

evaluated using alpha diversity metrics, such as Chao 1 and observed species, while beta 

diversity was analyzed based on Aitchison distance matrices. Co-occurrence patterns among 

microbial taxa as well as clusters of tumours with similar microbial compositions were 

identified through hierarchical clustering. 

To identify differences in diversity and bacterial composition across environments and their 

associations with clinical variables, we applied comprehensive statistical analyses, including 

the Friedman test, rank regression, and permutational multivariate analysis of variance 

(PERMANOVA). Multiple testing corrections were conducted using the Benjamini-Hochberg 

procedure, with a false discovery rate (FDR) threshold set at < 0.1. 

 

The analysis of the tumor microbiome associations with clinical variables revealed numerous 

associations. Notably, higher-grade tumors (grade 3) were characterized by an increased 

abundance of the potentially pathogenic genera such as Fusobacterium, Campylobacter, 

Leptotrichia, Selenomonas, and Prevotella in tumor mucosa, reflecting their potential role in 

tumor progression and aggressiveness. These associations were particularly pronounced in 

right-sided tumors, where high-grade tumors were enriched in genera such as Prevotella and 

Selenomonas. In contrast, lower-grade tumors (grade 1 and 2) and left-sided tumors exhibited 

a depletion of pathogenic genera and an enrichment of commensal species such as 

Bifidobacterium, Ruminococcaceae UCG-010, and Victivallis. Tumor location was also a 

critical determinant of microbiome composition, with distinct microbial signatures observed 

for right-sided and left-sided tumors, reflecting the well-known biological differences between 

these tumor types. Advanced tumor stages (pT3/pT4) were associated with increased 

abundance of genera such as Peptoclostridium and Parvimonas in tumor mucosa, while 
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metastasis status primarily influenced the stool microbiome, with genera like Akkermansia 

enriched in patients with local or distant metastases. 

To characterize the microbial heterogeneity of tumor mucosa while excluding potential stool 

contaminants, we focused solely on species that were statistically significantly more abundant 

in tumor mucosa compared to stool. Overall, 121 genera showed significant differences in 

abundance across sample environments, leading to the definition of five microbial categories: 

tumor genera (enriched in tumors compared to stool), divided further into mucosa genera 

(shared enrichment in tumor and visually normal mucosa) and tumor-specific genera (enriched 

only in tumor mucosa). Then, we defined stool genera (enriched in stool), and no-difference 

genera (consistent abundance across sample types). The analysis uncovered 57 genera enriched 

in tumor mucosa compared to stool, 16 of which were defined as tumor-specific genera, 

uniquely associated with tumor tissue and absent in adjacent normal mucosa. Notably, these 

tumor-specific genera predominantly consisted of genera comprising oral pathogens such as 

Fusobacterium, Parvimonas, Campylobacter, and Leptotrichia, supporting their potential role 

in tumorigenesis. Similarly, bacterial groups dominated by gut commensals, such as 

Ruminococcus and Bacteroides, were primarily found in stool samples, emphasizing the 

distinct microbial ecosystems between mucosal and luminal compartments. 

The bacteria were classified into six groups, labeled B1–B6. Groups B1 and B2 predominantly 

represented typical gut microbiome members. The B1 group included the five most common 

and abundant genera: Fusobacterium, Lachnoclostridium, Bacteroides, Escherichia-Shigella, 

and an uncultured genus from the Lachnospiraceae family. Nearly all tumors contained at least 

three of these genera, with 78.7% containing all five. These bacteria exhibited high co-

occurrence across sample types, except for Fusobacterium, which was primarily found in 

mucosal samples. Group B4, referred to as the Selenomonas group, was exclusively composed 

of oral microbiome genera, enriched in Selenomonas. Groups B3 and B5 also primarily 

consisted of oral microbiome genera, which exhibited significantly lower incidence in stool 

samples, being absent in 45.7%–94.1% of cases where they were present in tumor mucosa. 

Finally, Group B6 comprised 27 less common species with incidence rates ranging from 0% to 

37% (median 11.1%). 

 

The new tumour microbial classification was proposed on the 57 tumour genera and comprised 

of three tumor microbial subtypes (TMS1–TMS3), each associated with distinct clinical and 

microbial features (Figure 15). 
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TMS1: High Pathogen Burden and Biofilm Association 

TMS1, representing 26% of tumors, was characterized by the highest microbial pathogen 

burden, with a high abundance of potential oral pathogens and bacteria associated with 

advanced tumor progression. This subtype contained all microbial groups (B1–B4) and was 

enriched in genera such as Fusobacterium, Campylobacter, Leptotrichia, Peptoclostridium, 

and Selenomonas. These bacteria have been linked to biofilm formation and cancer-associated 

inflammation, which might explain the more aggressive features of TMS1 tumors. Clinically, 

TMS1 was associated with right-sided tumors (60.9%), higher-grade tumors (58.7% grade 3), 

advanced pathological stages (95.6% pT3/pT4), and a higher prevalence of microsatellite 

instability-high (MSI-H, 34.8%) and BRAF mutations (15.2%). This subtype likely represents 

a biologically distinct group of tumors enriched in microbial biofilms, which could drive local 

inflammation and promote tumor progression. 

Figure 15. The characteristics of the three tumour microbial subtypes. (TMS—tumour microbial subtypes, pT—tumour pathologic stage, MSI-

H— microsatellite instability-high) (from [17]) 

TMS2: Intermediate Pathogen Burden and Left-Sided Tumors 
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TMS2 accounted for 31% of tumors and displayed an intermediate pathogen burden. Unlike 

TMS1, this subtype lacked bacteria from the Selenomonas group (B4) but included other oral 

and gut-associated genera such as Leptotrichia, Granulicatella, Aggregatibacter, and 

Veillonella. TMS2 tumors were predominantly left-sided, including rectosigmoid and rectal 

tumors (70.9%), and exhibited a more heterogeneous microbial composition. This subtype 

could be further divided into two groups: TMS2a, enriched in oral bacteria such as Neisseria 

and Granulicatella, and TMS2b, enriched in gut-associated bacteria such as Tyzzerella 4 and 

Hungatella. TMS2 mucosal microbiomes also showed a higher abundance of commensal 

bacteria such as Haemophilus and Sutterella, indicating a more balanced microbial 

environment compared to TMS1. 

TMS3: Low Pathogen Burden and Commensal-Enriched Microbiome 

TMS3, the largest subtype, comprised 43% of tumors and was defined by a low microbial 

pathogen burden. This subtype had a reduced presence of oral pathogens and biofilm-

associated bacteria and was characterized by a higher proportion of commensal gut bacteria. 

TMS3 tumors were equally distributed between right-sided and left-sided locations, with a 

notable enrichment of lower-grade tumors (15.6% grade 1). TMS3 was further divided into 

two subgroups: TMS3a, associated with an increased presence of Incertae Sedis from the 

Erysipelotrichaceae family and Tyzzerella 4, and TMS3b, characterized by genera such as 

Clostridium sensu stricto 1, Ruminococcaceae UCG-013, and Lachnospiraceae Incertae Sedis. 

Interestingly, TMS3 included all tumors that lacked Fusobacterium in both tumor mucosa and 

stool samples, suggesting a distinct microbial profile compared to the other subtypes. 

In conclusion, this study extended the characterization of the colorectal cancer microbiome in 

several important directions. By analyzing 483 samples from 178 patients, we identified 

bacterial genera previously unassociated with colorectal cancer mucosa or clinical variables, 

revealing novel avenues for understanding their roles in disease progression. Our focus on 

microbial community-level analysis rather than species-centric approaches allowed us to 

describe three major tumor-microbial subtypes, each differing in microbial composition, 

associations with clinical parameters, and what we define as microbial pathogen burden—

highlighting their potential relevance to tumor aggressiveness and progression. 

The complementary nature of the sampled environments—tumor mucosa, visually normal 

mucosa, and stool—provided insights into the distinct contributions of the microbiota across 

these niches. While tumor mucosa and visually normal mucosa reflected tumor-specific 
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variables, such as grade and location, stool microbiomes were more influenced by the presence 

of metastases and overall disease progression. It is evident that combining both mucosal and 

stool sampling is essential for gaining a more comprehensive understanding of CRC 

microbiome dynamics. 

Although this study provided valuable insights, the absence of validation data and the potential 

influence of dietary and lifestyle factors limit broader applicability. Further investigations with 

larger, geographically diverse cohorts are necessary to confirm and refine these findings. 

Nonetheless, the ability to associate tumor microbial subtypes with clinical variables suggests 

the potential for leveraging the microbiome in CRC management. Tailored strategies, such as 

diet modifications, probiotics, or antimicrobial interventions, may emerge as valuable additions 

to current therapeutic approaches. This study represented a significant step forward, offering 

new perspectives for exploring microbiome-related treatments and biomarkers in colorectal 

cancer. 

Our unique CRC dataset provided the foundation for our involvement in the H2020 project 

ONCOBIOME [54], which enabled us to further enhance our tumor sample data by 

incorporating whole metagenome sequencing (WMGS) and stool-derived miRNA profiling. 
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3.6. omics biomarkers in diagnostics 
and therapy of crc 

 

mRNA Biomarkers for Predicting FOLFIRI Treatment Response 

Personalized treatment strategies in colon cancer remain a major clinical need, particularly in 

optimizing adjuvant chemotherapy selection for Stage III patients. In our study using the 

PETACC-3 clinical trial cohort, we evaluated the predictive value of ABCG2 and 

topoisomerase 1 (TOP1) mRNA expression for assessing the benefit of irinotecan-based 

therapy (FOLFIRI) [18]. We analyzed mRNA expression data from 580 Stage III colon cancer 

patients randomized to receive either 5-fluorouracil/leucovorin (5FUL) alone or in combination 

with irinotecan (FOLFIRI). Patients were stratified into two biomarker-defined groups: a 

“resistant” group characterized by high ABCG2 and low TOP1 expression (n = 216) and a 

“sensitive” group encompassing all other expression profiles (n = 364). 

Applying Cox proportional hazards regression, Kaplan-Meier survival analysis, and log-rank 

testing, we demonstrated that patients classified as “sensitive” derived significant benefit from 

FOLFIRI, with improved recurrence-free survival (HR: 0.63, p = 0.016) and overall survival 

(HR: 0.60, p = 0.02) compared to the “resistant” group. These associations were even stronger 

in microsatellite-stable (MSS) and microsatellite-instability-low (MSI-L) patients (n = 470), 

while no survival differences were observed when patients received 5FUL alone. This 

suggested that the ABCG2/TOP1 mRNA profile may serve as a clinically relevant biomarker 

for predicting responsiveness to irinotecan-based chemotherapy. 

 

Fecal microRNA Signatures for Non-Invasive CRC Diagnosis 

Current colorectal cancer (CRC) screening programs rely on fecal tests, which often lack the 

sensitivity needed to detect early-stage tumors and precancerous lesions. Thanks to our 

participation in the H2020 project ONCOBIOME, I had the opportunity to address this 

limitation and explore stool microRNA (miRNA) profiles as potential biomarkers for non-

invasive CRC detection, leveraging a comprehensive multi-cohort study and explainable 

machine-learning approaches.  
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In this study [19] conducted 1,273 small RNA sequencing experiments across multiple 

biospecimens, analyzing fecal samples from both an Italian and a Czech cohort (155 CRC 

patients, 87 adenomas, 96 individuals with other intestinal diseases, and 141 colonoscopy-

negative controls) (Figure 16).  

Figure 16. Graphical abstract of the miRNA biomarker study (from [19]). 

Through systematic analysis, we identified a robust 5-miRNA signature (miR-149-3p, miR-

607-5p, miR-1246, miR-4488, and miR-6777-5p) capable of distinguishing CRC patients from 

controls with high accuracy (AUC = 0.86, 95% CI: 0.79–0.94). This signature was 

independently validated in our COLOBIOME cohort (AUC = 0.96, 95% CI: 0.92–1.00) and 

further tested in fecal immunochemical test (FIT) leftover samples, demonstrating 

compatibility with existing CRC screening workflows. Importantly, the signature effectively 

classified patients with early-stage tumors and advanced adenomas (AUC = 0.82, 95% CI: 

0.71–0.97), underscoring its potential utility for early detection. Beyond its diagnostic 

relevance, our study provided additional novel insights into the biological role of miRNAs in 

CRC progression. Very importantly, we found that stool miRNA profiles mirrored those of 

tumor tissues, reinforcing thus their potential as biomarkers. Moreover, the detection of CRC-

associated miRNA alterations in FIT leftover samples showed the feasibility of integrating 

stool miRNA analysis into routine screening programs. 

Despite the study’s strengths—such as its large sample size and rigorous multi-cohort 

validation—some challenges remain. CRC and adenoma subtypes were not exhaustively 

represented, and the investigation of miRNAs in screening samples remains in an early phase. 

Nevertheless, this work laid the foundation for refining non-invasive CRC diagnostics. By 

integrating stool miRNA profiling into existing screening strategies, we may significantly 
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enhance early detection, improving patient outcomes while minimizing the need for invasive 

procedures. 

 

Gene Expression Profiling of the Invasion Front for Risk Stratification in Stage IIA 

CRC 

In a more applied extension of our work exploring CRC morphological heterogeneity, we 

hypothesized that focusing on the invasion front, rather than whole tumor sections, could 

provide additional insights for patient prognostic stratification. The tumor invasion front 

represents a biologically dynamic interface where cancer cells interact with the surrounding 

stroma, undergo epithelial-to-mesenchymal transition (EMT), and acquire invasive properties. 

Given its role in tumor progression, we investigated whether gene expression profiling of this 

specific region could improve risk assessment in Stage IIA CRC patients [20]. We specifically 

focused on Stage IIA CRC because this subgroup presents a major clinical challenge in 

treatment decision-making. While these patients generally have a good prognosis, a subset 

experiences early relapse despite the absence of traditional high-risk features. Unlike Stage III 

CRC, where adjuvant chemotherapy is standard, the benefit of additional treatment in Stage 

IIA remains debated. 

We analyzed matched bulk tumor and invasion front samples from 39 patients, divided into 

early relapse (n = 19) and no relapse (n = 20) groups. While differential expression analyses 

did not reveal individual genes with significant differences after multiple testing corrections, 

pathway analyses highlighted the epithelial-to-mesenchymal transition (EMT) pathway as 

notably upregulated in early relapse cases. This finding underscores the invasion front's role in 

tumor aggressiveness. 
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Figure 17. Prediction of early relapse. (A) Receiver operating characteristics (ROC) curves for the three models (baseline, 

bulk tumor, and invasion front) and the corresponding AUCs. (B) Univariate AUC, based on all samples, for top k = 200 

genes from bulk tumor and invasion front expression profiles. The top genes (AUC > 0.775) from MSigDB hallmark 

signatures are marked. (C) Scatter plots of scores from bulk tumor and invasion front (35 samples) and their marginal 

distributions. The points are colored according to their true category, and the quadrants marked (light yellow background) 

indicate regions of agreement for the two classifiers (from [21]) 

By developing predictive models using ElasticNet regression, we discovered that gene 

expression profiles from the invasion front were more effective in forecasting early relapse 

than those from bulk tumor samples. The invasion front model achieved an area under the curve 

(AUC) of 0.931, surpassing the bulk tumor model's AUC of 0.887. This suggests that the 

invasion front harbors critical molecular insights pertinent to tumor progression. 
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4. CONCLUSION 

Throughout my scientific journey, I have focused on integrating computational and molecular 

approaches to better understand the heterogeneity of colorectal cancer and its implications for 

clinical decision-making. My work has spanned multiple facets of CRC research, from mining 

large-scale molecular datasets to defining robust subtypes, linking these classifications to 

histopathological features, and validating key findings in preclinical models. The opportunity 

to work with the PETACC-3 clinical trial data allowed me to contribute to refining CRC 

molecular subtyping, particularly by identifying transcriptional programs associated with 

tumor location and progression. This naturally extended into investigating tumor morphology 

at a finer scale, where I explored how features at the invasion front contribute to patient risk 

stratification. 

Recognizing that CRC is not just a tumor-intrinsic disease but one shaped by its 

microenvironment, I also turned my attention to the role of the microbiome. By leveraging our 

unique dataset of paired mucosal and stool samples, I contributed to characterizing microbial 

signatures associated with tumor subtypes and clinical variables. These findings not only 

deepen our understanding of CRC biology but also open possibilities for microbial-based 

biomarkers and therapeutic strategies. 

A critical aspect of my work has been ensuring that computational insights are validated in 

biologically meaningful systems. I had the opportunity to contribute to efforts leveraging 

genetically engineered mouse models (GEMMs) and patient-derived xenografts (PDXs) to test 

hypotheses derived from our molecular analyses. This work underscored the challenges of 

translating in silico findings into preclinical models and the need for rigorous data integration 

strategies, some of which I helped shape. 

Finally, my research has always been driven by its translational potential. From identifying 

biomarkers that predict response to chemotherapy to developing fecal microRNA signatures 

for noninvasive CRC diagnosis, I have sought to bridge the gap between discovery and clinical 

application. The ability to contribute to projects with real-world impact, including those within 

the ONCOBIOME consortium, has been particularly rewarding. 

In summary, this thesis reflects my commitment to leveraging data-driven approaches to 

answer key questions in CRC research. By continuously refining methodologies and embracing 

interdisciplinary collaborations, I have aimed to contribute to a more precise and clinically 
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actionable understanding of CRC. While many questions remain open, I see this work as a 

foundation for further exploration—both in the laboratory and in clinical practice. 
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ABSTRACT

Summary: A top scoring pair (TSP) classifier consists of a pair
of variables whose relative ordering can be used for accurately
predicting the class label of a sample. This classification rule has
the advantage of being easily interpretable and more robust against
technical variations in data, as those due to different microarray
platforms. Here we describe a parallel implementation of this
classifier which significantly reduces the training time, and a number
of extensions, including a multi-class approach, which has the
potential of improving the classification performance.
Availability and Implementation: Full C++ source code and
R package Rgtsp are freely available from http://lausanne.isb-
sib.ch/~vpopovic/research/. The implementation relies on existing
OpenMP libraries.
Contact: vlad.popovici@isb-sib.ch
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1 INTRODUCTION
Top scoring pairs (TSPs; Geman et al., 2004) are simple two-
variables binary classifiers, in which the prediction of the class label
is based solely on the relative ranking of the expression levels of
the two genes. The rank-based approach to classification ensures a
higher degree of robustness to technical variations and makes the
rule easily portable across platforms. Also, the direct comparison of
the expression level of the genes is easily interpretable in the clinical
context, making the TSPs attractive for medical tests.

Let x=[xi]i=1,...,m ∈R
m be a vector of measurements (e.g. gene

expression) representing a sample and let the corresponding class
label be y, with two classes denoted by 0 and 1. Then, for all pairs
of variables i and j, a score is computed,

si,j =P(xi <xj|y=1)−P(xi <xj|y=0),1≤ i,j≤m (1)

where P are conditional probabilities estimated from the data, and
the corresponding decision rule is: if sign(si,j)xi <sign(si,j)xj then
predict y=1, otherwise y=0. The pairs are ordered by the absolute
values of their scores and the top t pairs (t ≥1) are then considered for
the final model (Geman et al., 2004; Tan et al., 2005; Xu et al., 2005).
Remarkably, training a TSP does not require the optimization of any
parameter and does not depend on any threshold. Selecting a suitable
value for t should be done following the usual machine learning

∗To whom correspondence should be addressed.

Fig. 1. Predicting estrogen receptor status: if GSTP1 < ESR1, then the
sample is considered ER+ (circles), otherwise ER− (triangles).

paradigm for optimizing meta-parameters (see, for example, Hastie
et al., 2001). Figure 1 shows an example of a TSP predicting the
estrogen receptor status. The decision boundary (in grey) is always
a line with a slope of 1.

2 IMPLEMENTATION
While the method briefly described above is simple and poses
no implementation problems, using it in the context of highly
dimensional data requires the evaluation of an extremely large
number of pairs of variables making its usage impractical, especially
in the context of resampling techniques for performance estimation.
However, most if not all of the modern desktop computers are multi-
core machines, making parallel programs a feasible alternative to
classical serial ones.

Our implementation in C++ exploits the multi-core architecture
by using the OpenMP libraries of the system (Chapman et al.,
2007), and is wrapped in an R package – Rgtsp. The full source
code and the R package are available from http://lausanne.isb-
sib.ch/~vpopovic/research/. As C++ is the main implementation
language, the library can easily be extended and integrated with
other software libraries. Also, the R functions are independent of
the domain of application so they could be applied to any kind of
data.
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3 USAGE EXAMPLES
We present a typical case of using Rgtsp package. These examples
represent solely some code snippets and not the full process of
developing and assessing the performance of a classifier.

The data used in these examples consists of 130 samples stage I
to III breast cancer (Hess et al., 2006) and the goal is to predict the
estrogen receptor status (positive or negative coded with ‘+1’ and
‘0’, respectively). For illustration purposes we use only a subset of
full dataset available from GEO repository under accession number
GSE16716.

Before starting R, the user has the option of choosing the
number of processing units that will be used, by setting the
environment variable OMP_NUM_THREADS. If not set, it defaults
to the maximum number of processing units available.

The first steps load the library and the data and build a list of TSPs
(note that the matrix X contains the variables as columns):

> library(Rgtsp)
> data(mdabr)
> tsp.list = tsp.n(X, y.erpos, 500)
> str(tsp.list)
> print(tsp.list)

The function tsp.n() returns at most n TSPs as a list with three
components: the first two correspond to the indexes of the selected
variables and the third one contains the associated scores. A similar
function, tsp.s(), returns all the TSPs that have a score larger
than a specified value.

For the p-th TSP, the prediction rule can be written as: predict
class ‘+1’ if X[,tsp.list$I[p]] < X[,tsp.list$J[p]]
and this forms the core of the predict function. The decision
function for p=1 in the above example is shown in Figure 1.
Given a list of TSPs one has different choices on how to obtain
the final predicted labels. Currently, Rgtsp proposes two means
of combining the predictions of individual TSPs: either by majority
voting or by weighting the votes with the correspoding scores—
giving more weight to the TSPs with better scores. This functionality
is available through the predict() generic function:

> yp = predict(tsp.list, X, combiner="majority")
> sum(yp != y.erpos) # count the errors
[1] 3

By inspecting the list of TSPs, it becomes clear that there are
variables that are selected many times as having always either higher
or lower value than all its pairing variables. We call such a structure
a TSP hub and we can construct all the hubs larger than a specified
size (25 pairs for example) using

> h = tsp.hub(tsp.list, min.hub.size=25)
> print(h)
Hub 1: 194 pairs

Center: 953 >
14 25 42 43 44 45 54 105 140 146 149 150 152 202 ...

This corresponds to a TSP hub in which the probeset
colnames(X)[953] (205225_at, ESR1) has a higher

expression than all other probesets in the list tsp.list. The TSP
hubs can also be used in predicting the labels, through the same
mechanism as above:

> yph = predict(h, X, combiner="majority")
> sum(yph != y.erpos) # no. of errors: 6

We see that in this particular case the prediction by TSP hubs is
slightly less accurate than the combined predictions of the individual
TSPs.

The generalization performance of the TSPs classifiers can be
estimated by various methods. The Rgtsp package provides a
function for k-fold cross-validation of the binary TSP classifiers
(either tsp.n() or tsp.s() functions), cv.tsp(), which
returns the training and validation performance of the classifier (it
defaults to 5-fold cross-validation).

> r = cv.tsp(X, y.erpos)
> print(r)
$tr.m
Error.rate Sensitivity Specificity AUC
0.02884615 0.97812500 0.96000000 0.96906250

In the case of a multi-class problem, we propose to use
classification trees built on top of TSPs predictions. For C >2
classes, one can train TSPs to solve each of the C(C−1)/2 pairwise
binary classification problems [called one-versus-one (Hsu and Lin,
2002) or round robin (Fürnkranz , 2002) strategy] and then combine
the predictions of the TSPs through a classification tree to predict
the original classes. For more details the reader is referred to the
package web page. This approach is implemented in the function
mtsp() and makes use of the ctree() function in the party R
package (y4 is an artificial 4–class label vector):

> m = mtsp(X, y4)
> yp = predict(m, X)
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Abstract: High-throughput sequencing techniques are increasingly affordable and produce massive amounts 
of data. Together with other high-throughput technologies, such as microarrays, there are an enormous 
amount of resources in databases. The collection of these valuable data has been routine for more than a 
decade. Despite different technologies, many experiments share the same goal. For instance, the aims of 
RNA-seq studies often coincide with those of differential gene expression experiments based on microar-
rays. As such, it would be logical to utilize all available data. However, there is a lack of biostatistical tools 
for the integration of results obtained from different technologies. Although diverse technological platforms 
produce different raw data, one commonality for experiments with the same goal is that all the outcomes 
can be transformed into a platform-independent data format – rankings – for the same set of items. Here we 
present the R package TopKLists, which allows for statistical inference on the lengths of informative (top-k) 
partial lists, for stochastic aggregation of full or partial lists, and for graphical exploration of the input and 
consolidated output. A graphical user interface has also been implemented for providing access to the under-
lying algorithms. To illustrate the applicability and usefulness of the package, we integrated microRNA data 
of non-small cell lung cancer across different measurement techniques and draw conclusions. The package 
can be obtained from CRAN under a LGPL-3 license.
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1  Introduction
Several high-throughput technologies have emerged in the past decade, most notably next generation 
sequencing, but also methods that estimate abundance levels of proteins and small molecules. Together, 
these methods are contributing to an enormous collection of experimental data. However, current research in 
molecular science is typically based on rather small studies in terms of sample size, many of them addressing 
the same disease or target. The findings obtained across platforms and studies are often quite diverse and an 
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increasingly important task is to strengthen the evidence of these findings. Hence, there is a strong demand 
for statistical methods that integrate such findings, for example for combining microarray-based expression 
measurements with RNA-seq results.

A central task is the integration of such data, which differ in important aspects such as laboratory tech-
nology, quantification, scale, and study size. When several studies are combined, the involved sets of genes 
or of other omics entities usually do not match and missing observations are likely to occur. Moreover, often 
only subsets of unknown size of these data are relevant or informative. In almost all situations the origi-
nal metric measurements from the involved studies can be transformed into rank data. Until recently, most 
integration tools for rank data have been heuristic in nature and could not meet all the above mentioned 
demands. The few statistical integration approaches in use are limited to microarray results (Yang et  al., 
2006; Plaisier et  al., 2010). A general methodology allowing for the integration of other high-throughput 
technologies, as well as allowing for a platform and technology mix, even when ranked lists are incomplete, 
had been lacking until the work of Lin and Ding (2009) and Hall and Schimek (2012). Schimek et al. (2012) 
combined these approaches and extended them with the goal of processing arbitrarily long multiple ranked 
lists. To turn such novel statistical methods into practical tools, we have implemented them in the Top-
KLists R package. It focuses on the nonparametric estimation of the top-k list length and on the stochastic 
aggregation of the identified top-k lists. In addition, it also includes conventional aggregation techniques and 
visual aids for the analysis of ranked lists and the interpretation of aggregation results. In the following, we 
give an overview of the package and its statistical background, and we apply it to microRNA lung cancer data 
obtained from a number of different platforms.

2  Structure and availability of the R package
The TopKLists package comprises three modules: (i) TopKInference offers exploratory nonparametric 
inference for the estimation of the top-k list length of paired rankings; (ii) TopKSpace provides various rank 
aggregation techniques; (iii) TopKGraphics comprises a collection of graphical tools for the exploration of 
data and for the visualization of aggregation results. The analysis pipeline is to estimate the top-k consensus 
list length first, which also works for more than two ranked lists comprising tens of thousands of items, and to 
then aggregate the already obtained truncated lists. A new graphical concept, the aggregation map, has been 
implemented to visualize this graphically. It displays the selected top items with quality measures indicating 
their relevance with respect to the full ranked lists. Venn-type representations and a summary list form the 
end of the pipeline. The obtained formal results can then be used in succeeding downstream analysis and 
experimental validation. The modules can be used as stand-alone R libraries or via a graphical user interface 
(GUI) for ease of use (see Figure 1 for an example of the GUI interface).

TopKLists is available under the LGPL-3 license from CRAN for all major operating systems. Its R-
Forge Web page http://TopKLists.r-forge.r-project.org/ offers the latest development version of the package, 
detailed vignette-based information about the methods and the package, and instructions on how to analyze 
the application data described in the example of this paper.

3  Implementation and performance of the R package
The TopKLists package has been designed and implemented for usage on standard desktop computers. To 
increase the computational speed and performance, parts of the sampling methods have been implemented 
in C. Therefore, when locally building the package from the source code these methods will be compiled. 
The graphical user interface, which provides interactive access to several TopKLists’ procedures, has been 
implemented using the gWidgets2 package (Verzani, 2014).

The time needed for computation in the modules TopKInference and TopKSpace depends strongly 
on the choice of tuning parameters (see next section). Typically, when these parameters are chosen 

http://TopKLists.r-forge.r-project.org/


M.G. Schimek et al.: TopKLists: R package for multiple omics ranked lists      313

appropriately, for lists with thousands of items, the runtime should be in the range of several seconds for 
inference as well as for aggregation. Most of the implemented aggregation techniques are computationally 
more demanding than the inference approach. For this reason, aggregation is usually performed on partial 
lists obtained from the inference procedure. For stochastic aggregation techniques runtime can amount to 
five or more seconds in a typical scenario.

4  Brief description of the statistical methods
The purpose of the TopKInference module is inference on the concordant top length of several rankings 
comprising the same set of items. The assumptions are: the reliability of rankings breaks down after the first 
k items due to lack of discriminatory information, irregular or even missing assessments, and substantially 
more ranked items than assessors exist. The index j0 is the rank position where the consensus information 
of two lists degenerates into noise. The estimation of 0

ˆˆ 1j k− =  is achieved via a moderate deviation-based 
method developed by Hall and Schimek (2012).

For a given set of items, the input is the overlap of rank positions represented by a sequence of indica-
tors, where Ij = 1 if the ranking, given by the second assessor to the item ranked j by the first assessor, is not 
more than δ index positions distant from j, otherwise Ij = 0. The assumption that the variables Ij follow a Ber-
noulli random distribution can be relaxed. There is theoretical and simulation evidence that dependencies 
among the ranked lists do not impair the estimates (Hall and Schimek, 2012). As well as the distance δ, the 

Figure 1: GUI window with the final aggregation map of the NSCLC application.
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inter-assessor or inter-platform variability, there is another tuning parameter, the pilot sample size ν, which 
is a smoothing parameter controlling the irregularity of assessments or expression measurements. A graphi-
cal method called Δ-plot is implemented in TopKGraphics which helps to select δ. The parameter ν can be 
chosen interactively via the GUI.

The overall estimate m̂axk  for ℓ multiple lists is calculated in the following way: The inference method 
is applied to all pairwise list combinations L   = (ℓ 2−ℓ) of the lists, thus we obtain L  values ˆ

jk  (j = 1, 2, …, L ). 
The overall top-k list length is then defined by ˆ ˆmax ( )max j jk k=  (note, other criteria could be chosen as well). 
The ℓ full lists truncated after m̂axk  form the input to TopKSpace. As the reader will see from the description 
below, TopKSpace is more general, and this specific scenario constitutes a special case that TopKSpace is 
applicable to.

The principle of the TopKSpace module is to consolidate information from the ℓ top-k lists to arrive 
at an aggregate list, AL. The top-k lists (L1, L2, …, L

ℓ
) may not only be of different lengths, they may also 

come from studies or assessments that consider different sets of items, hence the underlying spaces (S1, 
S2, …, S

ℓ
) from which the top-k lists are derived may actually be different. The goal therefore is to find the 

top-k list, AL, from the aggregate new space 1( ),i iL=∪�  such that the weighted sum of distances between 
each of the input lists and AL will be the minimum among lists of the same length. Two distance meas-
ures, Kendall’s τ and Spearman’s footrule, are available in the package. Both take the differences in the 
underlying spaces into account (Lin, 2010). There are three classes of algorithms implemented in TopK-
Space, namely Borda’s method, Markov chain (MC) algorithms (Lin, 2010), and a cross entropy Monte 
Carlo (CEMC) method taking advantage of the new order explicit algorithm (OEA) as described by Lin and 
Ding (2009). The Borda and MC methods consist of heuristic algorithms that do not directly optimize the 
objective function (i.e., minimizing the weighted distances), whereas the CEMC method employs a Monte 
Carlo search procedure for achieving this optimization. Borda and MC algorithms run substantially faster 
than the CEMC algorithm, however the latter usually achieves better results. Nevertheless, simulation 
studies indicate that taking the underlying space into consideration has a much greater impact than 
using different algorithms.

5  Application to cross platform microRNA profiles
Stimulated by the methodological discussion of microRNA profiling in Baker (2010), we compared non-small 
cell lung cancer (NSCLC) cell lines grown in vitro and in vivo as xenograft models across platforms. From 
the NCBI GEO database we retrieved data (Tam et al., 2014) of five in vitro and five in vivo samples from 
three different platforms: (i) GSE51501, Illumina Human v2 MicroRNA Expression BeadChip; (ii) GSE51504, 
NanoString nCounter Human v1 miRNA Expression Assay; (iii) GSE51507, Illumina HiSeq 2500 (High Through-
put Sequencing, abb. HTS). Data (i) and (ii) were normalized using Bioconductor’s normalize.quantiles 
and analysed with the R-package samr (Tibshirani et al., 2011) (cell line vs. xenograft). The next generation 
sequencing data (iii) were processed with Bioconductor’s DESeq2 (Love et al., 2014). The resulting miRNA 
expression values (items) from each platform were ranked according to their FDR-adjusted p-values. Those 
items common to all three lists were the input to the package TopKLists and comprise N = 531 miRNAs. The 
thus obtained ranked lists and the corresponding code for the data analysis can be accessed and downloaded 
from the TopKLists Web page.

Data exploration led to the choice of δ = 40 and ν = 22 for the inference procedure (for details please refer to 
the show case instructions on the Web page). The obtained result was ˆ =12maxk  and the three lists were trun-
cated at this index position. The associated aggregation map is displayed in Figure 1. Its left group (NanoString-
HTS-BeadChip) represents the aggregation result when all three platforms are integrated, and the right group 
(HTS-BeadChip) when NanoString is excluded. A group comparison allows us to identify platform differences 
(‘white’ denotes that an item is top-listed in only one of the concerned lists, ‘gray’ otherwise). NanoString 
had the strongest impact on the selection of top-ranking miRNAs and forms, with the other two platforms, 
a highly conforming group of six items. hsa-miR-107, on rank 7 in NanoString, is of special interest, as it was 
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shown to suppress growth of NSCLC cell lines and induced a G1 cell cycle arrest in H1299 cells (Takahashi 
et al., 2009). It was ranked 83 and 53 index positions away in HTS and BeadChip, and therefore is represented 
as close in the map by a ‘red’ color as opposed to more distant ranks, presenting themselves in ‘yellow’.

Finally, we calculated an optimized aggregate list �AL  for the three lists truncated after ˆ 12maxk =  via 
CEMC under Kendall’s τ and Spearman’s footrule. In Table 1 (columns 1 and 2) the final items are displayed 
in their new rank order. For comparison, the 12 top-ranked miRNAs based on Fisher’s method for combining 
p-values (Fisher, 1925) are listed in the third column of the same table. We have used the function fisher.
method from the R package MADAM (Kugler et al., 2010) with Benjamini-Hochberg p-value correction.

The CEMC stochastic search algorithm may select items that are top-ranked only in one of the lists (here 
BeadChip). This applies to the following items in Table 1: hsa-miR-576-5p, hsa-miR-490-5p, hsa-miR-139-5p, 
hsa-miR-1233, hsa-miR-1284, and hsa-miR-505. In contrast, Fisher’s method tends to select ’consensus’ items, 
thus having greater agreements with the aggregation map results. Within the top-5 positions the same items 
are selected by all methods. Only the orders are permuted. However, apart from this rather limited set of over-
lapping miRNAs, both aggregate lists from CEMC, as well as the aggregation map discussed before, clearly 
point at substantial platform differences.

Using the miRSystem (Lu et al., 2012) we found the final lists (one for Kendall, one for Spearman, and 
one for Fisher’s method) of ranked miRNAs to be highly enriched for the JAK-STAT signaling pathway and 
the Hedgehog signaling pathway both of which were suggested to play an important role in NSCLC. The 
interesting candidates comprise hsa-miR-143, which is among a set of 43 miRNAs that were found to be differ-
entially expressed between noncancerous lung tissues and lung cancer tissues (Yanaihara et al., 2006) and 
has also been suggested as a putative biomarker for NSCLC (Gao et al., 2010). Finally, on rank 1 and on rank 2, 
respectively, we have the RAB14 targeting tumor suppressor hsa-miR-451 (Wang et al., 2011).

6  Discussion
A major advantage over ground truth-based and other ad hoc methods is TopKLists’s ability to provide 
an objective data-driven top-list length estimate and a consolidated as well as optimized aggregate ranking 
based on multiple input lists. In the described NSCLC application it allowed us to efficiently select those 
miRNAs which are supported by all three or at least by two platforms. In addition, a consolidated set of 
miRNAs under different aggregation criteria (distance measures) could be obtained. The aggregation map 

Table 1: Aggregate list results of the NSCLC application.

Rank �AL (Kendall) �AL (Spearman) Fisher’s method

1 hsa-miR-451 hsa-miR-143 hsa-miR-143
2 hsa-miR-223 hsa-miR-451 hsa-miR-451
3 hsa-miR-199a-5p hsa-miR-223 hsa-miR-223
4 hsa-miR-143 hsa-miR-144 hsa-miR-144
5 hsa-miR-144 hsa-miR-199a-5p hsa-miR-199a-5p
6 hsa-miR-150 hsa-miR-1284 hsa-miR-145
7 hsa-miR-576-5p hsa-miR-139-5p hsa-miR-133a
8 hsa-miR-490-5p hsa-miR-150 hsa-miR-195
9 hsa-miR-139-5p hsa-miR-195 hsa-miR-214
10 hsa-miR-107 hsa-miR-145 hsa-miR-150
11 hsa-miR-1233 hsa-miR-505 hsa-miR-1246
12 hsa-miR-133a hsa-miR-1246 hsa-miR-142-5p

First and second columns: CEMC consolidated list results under the distance measures Kendall’s τ and Spearman’s footrule. 
Third column: consolidated list using Fisher’s method for combining p-values (miR-symbols in bold coincide with the 
aggregation map result in Figure 1).
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as well as the stochastic CEMC aggregation method also aid in giving an answer to the problem raised in 
Baker (2010): Although there is high conformity among the top-5 items across all (graphical and stochastic) 
aggregation techniques, our results support the observation that substantial platform differences exist with 
respect to all other miRNA measurements. As has been demonstrated in this paper, TopKLists offers a 
variety of highly useful and computationally efficient state-of-the-art methods for omics data integration, 
most of them implemented in R for the first time.
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Abstract

Background: Pathway analysis methods, in which differentially expressed genes are mapped to databases of
reference pathways and relative enrichment is assessed, help investigators to propose biologically relevant
hypotheses. The last generation of pathway analysis methods takes into account the topological structure of a
pathway, which helps to increase both specificity and sensitivity of the findings. Simultaneously, the RNA-Seq
technology is gaining popularity and becomes widely used for gene expression profiling. Unfortunately, majority of
topological pathway analysis methods remains without implementation and if an implementation exists, it is limited
in various factors.

Results: We developed a new R/Bioconductor package ToPASeq offering uniform interface to seven distinct
topology-based pathway analysis methods, of which three we implemented de-novo and four were adjusted from
existing implementations. Apart this, ToPASeq offers a set of tailored visualization functions and functions for
importing and manipulating pathways and their topologies, facilitating the application of the methods on different
species. The package can be used to compare the differential expression of pathways between two conditions on
both gene expression microarray and RNA-Seq data. The package is written in R and is available from Bioconductor 3.2
using AGPL-3 license.

Conclusion: ToPASeq is a novel package that offers seven distinct methods for topology-based pathway analysis,
which are easily applicable on microarray as well as RNA-Seq data, both in human and other species. At the same
time, it provides specific tools for visualization of the results.

Keywords: Topology, Pathway analysis, Microarray, RNA-Seq, Packages

Background
High-throughput gene expression technologies (such as
microarray or RNA-Seq) are used to estimate expression
levels of thousands of genes in one experiment. Often the
aim of such experiments is to find pathways and biologi-
cal processes altered between two conditions, which helps
investigators to propose biologically relevant hypotheses
for further research. Achieving this aim implies inte-
gration of a priori known pathway information into the
data analysis. Most often, a set of genes with similar
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biological function or participating in a regulatory pro-
cess is employed as a set of entities in enrichment-based
methods [1]. This approach, however, ignores known
interactions between particular genes reflected in the
topological structure. Thus, if a change in interactions
occurs, this is not reflected in the results. The last gener-
ation of pathway analysis methods takes into account the
topological structure of a pathway, which helps to increase
both specificity and sensitivity of the findings.
Several types of methods for topology-based pathway

analysis were proposed in the recent years (for review
see [2]) - in all of them, the topological structure of a
pathway is represented as graph with nodes (genes, pro-
teins) and edges (interactions between genes/proteins).
The methods test one of the two types of null hypothe-
ses as proposed in [3] for gene set enrichment analysis.
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Independently on the hypothesis tested, we can further
distinguish multivariable and univariable methods. For
more detailed description of differences between multi-
variable vs univariable methods, we refer the reader to
Additonal file 1.
Here, we focus on methods that (i) aim to identify

pathways affected between two conditions based on dif-
ferential expression of genes in the pathway - the most
frequent aim of high-throughput genomic data studies, (ii)
use the a priori known pathway topologies and (iii) use the
pathway topologies separately.
The vast majority of existing topology pathway analy-

sis methods were designed for continuous gene expression
measures as obtained from microarray experiments. In
order to apply them to discrete count data - a typical out-
put from RNA-Seq experiment (number of reads mapped
to a particular gene) - one must use a suitable transforma-
tion. Poisson or Negative binomial distribution are used
as model distributions in differential expression analysis
at gene-level for RNA-Seq data and a wide range of both
transformation methods and statistical tests for this pur-
pose exists. Performance of these methods is only recently
being compared in extensive simulation studies [4–7].
The publishedmethods are only rarely implemented as a

publicly available software tool or package, and sometimes
the existing implementation is not available anymore (e.g
TAPPA [8]). The existing implementations can be divided
into three categories: (i) commercial products (e.g. Meta-
Core [9]); (ii) R-packages (e.g. SPIA [10]) (iii) standalone
applications (e.g. PWEA [11] or PRS [12]) and (iv) web-
based applications (e.g. iPathwayGuide [13]). All of these
tools usually offer embedded pathway topologies with a
limited battery of methods (typically only one) and simple
visualization (if any) of the results. Simultaneous applica-
tion of different methods and comparison of their results
is therefore very time-consuming, cumbersome and prone
to clerical errors due to need for repeated data conversion
and transfer. Additionally, the results may not be directly
comparable, since some of the implementations use either
built-in pathway topologies or their own pathway topol-
ogy processing algorithm that leads to different topologi-
cal structures. One of the best existing tools offering com-
mon interface to four topology-based pathway analysis
methods (TopologyGSA [14], clipper [15], DEGraph [16]
and SPIA [17]) is the R/Bioconductor package graphite

[18]. The user can also access lists of parsed pathway
topologies for some of the most common experimen-
tal organisms (14 in version 1.14.1) from several distinct
databases (up to 6 for H. Sapiens, same version) stored as
objects of class PathwayList where individual pathways
are represented as instances of class Pathway. Although
more pathways can be obtained from public databases
or specialized websites and parsed to the R environment
with available CRAN/Bioconductor packages, there is no

transformation function from other pathway classes to
the PathwayList or Pathway. The current graphite

implementation has no uniform way of calling methods
or specification of their parameters, making simultaneous
application of different methods unhandy. Additionally,
SPIA is limited only to data with EntrezGene identi-
fiers and the signs of the interactions are neglected in
DEGraph.
Here, we present ToPASeq (Topology-based Pathway

Analysis of microarray and RNA-Seq data) - a Biocon-
ductor package that adjusts the set of methods available
through graphite and extends them by addition of three
moremethods. The package offers their unifiedmanipula-
tion and provides tools for their easy application on RNA-
Seq count data. In addition, it provides special functions
for conversion of user-imported pathways into Pathway

class and a set of tools for coercing graphs between dif-
ferent formats and manipulation and visualization of the
results.
In section Implementation, we describe the software

implementation and available functions. Concrete exam-
ples of package usage and its comparison to other tools are
given section Results and Discussion.

Implementation
ToPASeq was implemented using statistical programming
language R and the package is available through the open-
source Bioconductor project [19].
In order to apply a topology-based pathway analysis

method we need (i) gene expression measurements (a
gene expression data matrix in which rows refer to genes
and columns to samples), (ii) a vector with sample class
labels and (iii) a list of pathways of interest together with
their topologies in a specific format. The gene expression
measurements and sample class information are usually
available from the experiment.

Pathway topologies and their manipulation
Pathway topologies are necessary for topology-based
pathway analysis and can be created manually, or - even
better - obtained from public databases or R packages,
where they are typically stored in one of the standard-
ized formats (KGML, BioPax, specific R classes). These
formats, however, need to be parsed (downloaded and
converted to specific format) to be used within the meth-
ods’ particular implementations. Within R framework,
multiple ways exist for pathway topology/graph represen-
tation. More detailed description of some of them in the
context of biological pathways can be found in Additional
file 1.
Our package requires the pathway topologies in for-

mat defined as S4 class PathwayList where individual
pathways are of class Pathway, which allows combina-
tion of oriented and not-oriented edges as well as multiple
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edges between nodes.We have especially designed several
transformation functions that convert the most common
formats into Pathway.
The users might be interested in manual editing of

topology of the parsed pathways. We added group of
methods such as (i) adding/removing of the nodes and
edges, (ii) changing the type of interaction/directionality,
(iii) merging two pathways into one, (iv) obtaining the
induced subgraph. Additionally, the user may need to
select only a subset of pathways based on their topologi-
cal properties (e.g. number of edges related to a particular
node, number of nodes, number of edges, number of con-
nected components etc.). These can be easily obtained
with other set of available functions.
Moreover, we especially designed a new function

reduceGraph which merges the user defined named
sets of nodes into a single node. The members of
the sets must form either a gene family or a pro-
tein complex. The another function estimateCF esti-
mates the maximal list of the sets of the nodes that
can be merged. Finally, we provide a general function
convertIdentifiersByVector which requires user
specified information. For the detailed desctiption of the
functionalities mentioned above we refer the reader to
Additional file 1.

Methods for topology-based pathway analysis
The package offers seven different methods covering
various approaches in topological pathway analysis (see
Table 1 for details). For detailed description of each
method the reader is referred to cited references. We will
focus on those aspects that are relevant to methods’ new
implementation. All methods are implemented as a single
function that applies the method over the list of pathways.
More detailed description of differences between previous
implementations of methods to our implementation can
be found in Additional file 1.
We imported and adjusted the implemetation of the

following methods: TopologyGSA, DEGraph, SPIA and
Clipper. We found that the original implementation of

the TopologyGSA method is extremely computationally
intense for some of the pathways as the authors employ
function that implements the exact branch-and-bound
algorithm [20] to detect all of the cliques (subsets of nodes
where every two nodes are connected by an edge) in
a pathway topology. In our implementation, we substi-
tuted this function with getCliques which implements
more efficient Bron-Kerbosch algorithm [21]. For the
DEGraph method we have created a new wrapper func-
tion that preserves the possibility to consider interaction
types (activation and inhibiton) and transforms the results
into more user-friendly format - a data frame. The pre-
vious implementations of the SPIA method were limited
to Entrez identificators. In our package we have bypassed
this limitation by incorporating a more general converting
function. Additionally, the user can also obtain a gene-
level net perturbation accumulation — a measure of the
importance of a gene in the topology. The Clipper method
constists of two steps: (i) first, the differential expression
of a pathway is assessed, (ii) then, the pathway topology is
transformed into a junction tree and the portions of the
tree which are mostly associated with phenotype are iden-
tified. We designed a new function that performs both
steps of the algorithm in a single call.
In all of the imported and adjusted implementations

we also added, when appropriate, an additional parameter
specifying how should be the undirected interactions ori-
ented. The user can choose whether an edge is oriented
in both directions or only in one according to the order of
the nodes.
We de-novo implemented three methods: TAPPA,

PWEA, PRS, for which there was no implementation
available within R framework. The PRS and PWEA are
implemented inMATLAB and C++ respectively and these
tools are discussed in the section Comparison with other
Tools. Our de-novo implementations are settled for path-
way topologies from graphite package where one node
is represented by only one gene or protein. Both PWEA
and PRSmethods incorporate a permutation-based test in
order to assess the statistical significance of the pathway

Table 1 Methods included in the package

Method Ref. Typea Hypothesis A/Ib Primary Graph Implementation Input datac

TopologyGSA [14] M self-contained No DAG adjusted GEDM

DEGraph [16] M self-contained Yes DAG adjusted GEDM

clipper [15] M self-contained No DAG adjusted GEDM

SPIA [17], U competitive Yes directed adjusted DEG and their log fold-change

[25]

PRS [26] U competitive No directed de novo DEG and their log-fold change

PWEA [27] U competitve No undirected de novo gene-level statistics

TAPPA [8] U self-contained No undirected de novo GEDM

a - M - multivariable, U - univariable b - A - Activation, I - Inhibition c - the data related to the pathway topology
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score. Considering the computational complexity of this
approach we parallelized the crucial step of the PWEA
method (repeated application of the differential expres-
sion analysis). In addition, the function for obtaining the
number of the differentially expressed genes in PRS algo-
rithm was implemented in C++ via Rcpp package.
While several methods (TopologyGSA, DEGraph,

Clipper and TAPPA) work directly with normalized
gene expression values, others (SPIA, PRS and PWEA)
use the result of differential gene-expression analysis
with or without application of significance thresholds to
obtain the list of differentially expressed genes (Fig. 1).
With respect to this, all the methods were adapted
also for a simple use of RNA-Seq count data. First, we
employed pre-processing step for RNA-Seq normaliza-
tion, with a selection of two best performing methods
TMM [22], DESeq [23], as compared in Dillies et al. [4]
and regularized log transformation from DESeq2 package
which effectively removes the mean-variance relation-
ship known in RNA-Seq data. Second, we added methods
for RNA-Seq differential gene expression analysis (from
limma and DESeq2 packages).

Usage and visualization
Each method is implemented as a single wrapper func-
tion which allows the user to call a method in a single
command. The wrapper function offers: (i) normaliza-
tion of count data; (ii) differential gene expression analysis
and (iii) pathway analysis. The data input types were uni-
fied for all the methods. Expression data can be supplied
both as matrix or as ExpressionSet. The functions’
outputs have uniform format defined as a new S3 class
topResult with specified output of generic functions

(print, plot, summary) and methods for accessing indi-
vidual slots of the resulting object. The users can specify
which method should be used for normalization or dif-
ferential expression analysis of the RNA-Seq data, with
respect to their own preferences. This data pre-processing
step can be completely omitted and users can submit
already normalized data or, if appropriate, the results of
the differential expression analysis (a table containing log
fold-changes, statistics and p-values). Note, that PWEA
method requires also so called Topology Influence Factors
(TIFs), which need to be calculated from normalized gene
expression data matrix.
When the generic function plot() is applied to a

topResult class, together with a name of the path-
way or position in the list of pathways identifying the
pathway to be plotted, a visualization of the pathway
with three gene-level statistics is produced (Fig. 1 in
Additional file 1. The user can specify a threshold by
which an agreement between the expression status of the
nodes and the interaction type between them is examined
(Fig. 2 in Additional file 1).
The topology can be reduced by user specified list of

nodes that are to be merged into one node. In this sit-
uation a pie chart is used as a representation of a node
and the number of slices equals to the number of nodes
merged. The filling colour and the radius is preserved
from the separated nodes (Fig. 2). By default a mean
change of the gene expression is used as a representative
of the values when the agreement between gene expres-
sion and the interaction type is examined, but the user can
specify another aggregation function. A slightly modified
graph is plotted for TopologyGSA and Clipper, which per-
form differential expression analysis of the cliques. Since

Fig. 1 Schema of a processing pipeline. The red boxes refer to the outputs from regular analysis of differentially expressed genes and possible
inputs for topology-based pathway analysis. Arrows indicate the processing pipeline of each of the methods implemented in the package
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Fig. 2 Visualization of the results after merging some of the gene families into one node. Some of the genes families present in the pathway were
merged into single nodes. Those nodes are drawn as pie-chart, in which the number of slices equals to the number of gene merged. The colour,
border and radius are preserved from the complete graph (Fig. 2 in Additional file 1). Average log fold-change is used as representative value, when
the agreement between expression and interaction type is assessed

a single node can be a member of more than one clique,
the colour of edges is used for their visualization (Fig. 4 in
Additional file 1).

Results and Discussion
For a simple example of how to create and manipulate a
pathway, we refer the reader to Additional file 1.
We provide a simple application example of imple-

mentedmethods on a RNA-Seq dataset. Formore detailed
descriptions of all the functions we refer the reader to the
package manual.
The aim is to compare gene expression profiles

between wild-type and RNA-binding protein hnRNP C
(HNRNPC) knockdown HeLa cells [24]. The RNA-Seq
dataset came from gageData package. There are four
knockdown samples and four experimental samples in
this dataset containing the count data for 22932 genes.
We load the data and remove genes with count 0 in
all samples:

> library(ToPASeq)

> library(gageData)

> data(hnrnp.cnts)

> group<-c(rep("sample",4),

rep("control",4))

> hnrnp.cnts<-hnrnp.cnts[rowSums

(hnrnp.cnts)>0,]

... download the KEGG pathways and apply all seven
topology-based pathway methods:

> kegg<-pathways("hsapiens","kegg")

> top<-TopologyGSA(hnrnp.cnts, group, kegg,

type="RNASeq")

> deg<-DEGraph(hnrnp.cnts, group, kegg,

type="RNASeq")

> cli<-clipper(hnrnp.cnts, group, kegg,

type="RNASeq")

> spi<-SPIA(hnrnp.cnts, group, kegg,

type="RNASeq")
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Table 2 Known implementation of the methods provided in ToPASeq

Method Language Source Pathways Format Input data Methods Issusses
topologyGSA R Bioconductor one example graphNEL GEDM topologyGSA too computationaly intense
clipper R Bioconductor imported from

graphite

pathway GEDM clipper two separate steps neces-
sary

DEGraph R Bioconductor parsing function for
KGML

graphNEL GEDM DEGraph

SPIA R Bioconductor parsing function for
KGML, H. sapiens and
M. musculus pre-parsed

list of adjacency matrices DEG and log
fold-changes

SPIA Only for EntrezGene IDs

PRS tool MATLAB weba KEGG unknown GEDM PRS can not add or modify path-
ways, the data must have
manufacturer probeset IDs,
limited set of: possible plat-
forms, DE tests,

PWEA C++ webb human pathways from
KEGG

unknown GSD PWEA only for UNIX-like

TAPPA Java webc KEGG or PPI added to
a gene set

- - TAPPA not available

graphite R Bioconductor pathways for 14 species
from up to 6 databases

Pathway depends on
the method

topologyGSA,
clipper, SPIA,
DEGraph,

suboptimal import of the
methods

a - http://www.buckingham.ac.uk/research/clore-laboratory-diabetes-obesity-and-metabolic-research/staff/maysson-al-haj-ibrahim/prs-tool/
b - http://zlab.bu.edu/PWEA/index.php
c - http://watson.mcgee.mcw.edu:8080/~sgao, the page is down. (First accessed 4 Apr 2012) PPI - protein-protein interactions GEDM - gene expression data matrix, log2-transformed and normalized expression profiles

http://www.buckingham.ac.uk/research/clore-laboratory-diabetes-obesity-and-metabolic-research/staff/maysson-al-haj-ibrahim/prs-tool/
http://zlab.bu.edu/PWEA/index.php
http://watson.mcgee.mcw.edu:8080/~sgao
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> prs<-PRS(hnrnp.cnts, group, kegg,

type="RNASeq")

> pwea<-PWEA(hnrnp.cnts, group, kegg,

type="RNASeq")

> tap<-TAPPA(hnrnp.cnts, group, kegg,

type="RNASeq")

The arguments of all functions are as follows (from left
to the right): a count matrix (or gene expression data
matrix), a grouping vector, list of pathways with topolo-
gies and a type of the data). The TMM normalization and
the limma-based differential gene-expression analysis are
used by default. The pre-set thresholds for considering a
gene significant are p-value less than 0.05 and the abso-
lute log fold change above 2. Further, the gene identifiers
in pathways are automatically converted to the Entrez-
Gene identifiers and the non-oriented edges are oriented
in both directions, when required.
The results for an individual pathway can be visualized

as shown in Fig. 1 in Additional file 1:

> plot(spi,"Prolactin signaling pathway",

+ kegg, fontsize=50)

Comparison with other tools
The known previous implementations of the methods
(if any) offered in ToPASeq are summarized in Table 2.
We will further discuss only the methods implemented
de-novo in R/Bioconductor frame work. For TAPPA
there is no other available implementation known to
the authors. A C++ implementation of PWEA can be
downloaded from http://zlab.bu.edu/PWEA/download.
php. The expression data have to be in the GSD for-
mat from Gene Expression Omnibus, where the probe-
sets are named by both manufacturer IDs and the gene
symbols. It is coupled with python script for retrieving
and processing of KEGG .xml and .gene files. Beside the
limitation to KEGG pathways and the need for manual
downloading of non-human pathways or conversion to
KGML format, it can be run only on UNIX-like systems.
Recently, a standalone MATLAB-based implementation
of PRS was published [12]. The application requires nor-
malized microarray data in XLS file with manufacturer
identifiers of the probesets, together with specification
of the platform and the normalization method that was
applied to the data. The set of possible platforms is limited
to selection of Affymetrix HG and one Agilent platform.
The user has no control over the pathway topologies that
are used.
None of these tools allows for different method for

normalization (e.g normalization with custom CDF-files
from http://brainarray.mbni.med.umich.edu) or differen-
tial expression analysis; nor can it be used to analyse the
RNA-Seq data.

Some users may prefer Cytoscape for visualization of
pathways, since it provides user-friendly and interactive
interface, which can be achieved using the RCytoscape

package.Within this interface, however, the user can spec-
ify only the basic graphical parameters like size, shape
or colour of the nodes or the styles of edges. Advanced
graphical approaches provided through plug-ins can be
accessed only directly from Cytoscape. We are currently
working on the option of interactive graph visualization.

Conclusions
Topology-based pathway analysis comprises a new gener-
ation of methods in gene set analysis, with the potential
of generating more sensitive and more specific results.
Currently, high-throughput technologies producing gene
expression data that serve as input to these methods
are employed in almost every biological and biomedical
research with RNA-Seq being in the leader position. Tools
for comfortable and quick application of these methods
and visualization of their results are needed. Available
packages or standalone applications are usually limited to
one or few methods, readily applicable mainly to human
studies and rarely contain also a visualization tool. We
propose ToPASeq, a Bioconductor package providing a
set of easy-to-use and general tools for topology-based
pathway analysis within the R workspace. It offers seven
distinct topology-based pathway analysis methods that
cover wide range of approaches and can be easily applied
on both microarray and RNA-Seq data. It also offers a
visualization tool that is able to capture all the relevant
information about the expression of genes within one
pathway. Finally, the functions for pathway conversion
extend the application of topology-based pathway analysis
to experiments on species other than human.

Availability and requirements
Project name: ToPASeq
Project home page: http://www.bioconductor.org/
packages/release/bioc/html/ToPASeq.html
Operating system(s): Platform independent
Programming language: R
Other requirements: R version 3.2.1, CRAN and Biocon-
ductor packages: graphite (>= 1.14), graph, gRbase
License: AGPL-3
Any restrictions to use by non-academics: none
Availability of supporting data: EBI ArrayExpress Exper-
iment E-MTAB-1147: http://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-1147/, also in gageData package

Additional file

Additional file 1: Supplementary material.pdf. The file contains
additional details on the following: i) common principles of the
multivariable and univariable topology-based methods; ii) the functions for

http://zlab.bu.edu/PWEA/download.php
http://zlab.bu.edu/PWEA/download.php
http://brainarray.mbni.med.umich.edu
http://www.bioconductor.org/packages/release/bioc/html/ToPASeq.html
http://www.bioconductor.org/packages/release/bioc/html/ToPASeq.html
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1147/
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1147/
http://dx.doi.org/10.1186/s12859-015-0763-1
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pathway creation and manipulation (desciption as well as demostration);
iii) comparison of ToPASeq with existing tools. (1013 Kb)
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Abstract

One of the aims of high-throughput gene/protein profiling experiments is the identification

of biological processes altered between two or more conditions. Pathway analysis is an

umbrella term for a multitude of computational approaches used for this purpose. While in

the beginning pathway analysis relied on enrichment-based approaches, a newer genera-

tion of methods is now available, exploiting pathway topologies in addition to gene/protein

expression levels. However, little effort has been invested in their critical assessment with

respect to their performance in different experimental setups. Here, we assessed the perfor-

mance of seven representative methods identifying differentially expressed pathways

between two groups of interest based on gene expression data with prior knowledge of path-

way topologies: SPIA, PRS, CePa, TAPPA, TopologyGSA, Clipper and DEGraph. We per-

formed a number of controlled experiments that investigated their sensitivity to sample and

pathway size, threshold-based filtering of differentially expressed genes, ability to detect tar-

get pathways, ability to exploit the topological information and the sensitivity to different pre-

processing strategies. We also verified type I error rates and described the influence of over-

expression of single genes, gene sets and topological motifs of various sizes on the detec-

tion of a pathway as differentially expressed. The results of our experiments demonstrate a

wide variability of the tested methods. We provide a set of recommendations for an informed

selection of the proper method for a given data analysis task.

Introduction

High-throughput gene expression technologies (microarrays or next-generation sequencing)

allow the estimation of the expression levels of thousands of genes in a single experiment.

Often these experiments are just a first step in a broader biological investigation and serve gen-

erating hypotheses based on identified differentially expressed genes and pathways. A biologi-

cal pathway is a collection of genes or molecules that act synergistically by means of chemical

reactions, molecule modifications or signal transduction to execute a biological function.

Thus, from a computational analysis perspective, a pathway is a set of genes (proteins) and

their associated pairwise interactions. Pathway analysis aims to discover those pathways whose
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activation/inactivation is associated with a group of interest. This type of analysis requires inte-

grating information about gene ontology and pathway structure.

Generally, there are two main approaches: one that relies only on the expression levels of

the constituent genes (of the pathway)—and is epitomised by the GSEA family of methods—

and a second one that additionally exploits the pathway topology. The second group of meth-

ods represents a more recent evolution of pathway analysis methods that try to improve both

specificity and sensitivity of the findings.

The application of topology-based methods is facilitated by the existence of public databases

which gather information about gene/protein interactions, such as the well-known Kyoto

Encyclopedia of Genes and Genomes (KEGG) database which provides access to hundreds of

pathways representing state-of-the-art knowledge about molecular interactions. Prior to per-

forming a topology-based pathway analysis, the pathway of interest must be pre-processed

into a simple interaction network.

Each new topology-based pathway method usually compares its performance to an enrich-

ment-based method (most often GSEA [1]) on a set of benchmark datasets. Sometimes, the

underlying mathematical model is verified by simulations. The reviews that include topology-

based pathway analysis methods either examine their algorithms from mathematical perspec-

tive [2–4] or their performance on both real and simulated data [5, 6]. The latter approach

revealed that topology-based methods outperform enrichment-based methods in accuracy and

sensitivity only for non-overlapping pathways [5] and that the FCS variant of CePa [7] method

exhibits the best cross-study concordance [6]. However, there are multiple limitations to the

existing comparisons which hamper the identification of actionable information about the

most appropriate method for a given analytical problem. First, the comparison of a topology-

based method with enrichment-based methods is oversimplistic as it does not investigate the

topological aspects of pathway deregulation (position and biological importance of a gene in a

pathway, deregulation of topological motifs etc.). Second, the existing reviews do not examine

the effect of pathway topology pre-processing strategy or whether the inclusion of the pathway

topology information in the analysis has actually any effect at all. Third, multiple other effects,

such as sample size (crucial aspect in biological experiments) or the effect of a deregulation of

a single or very few genes, are not explored either.

Given the proliferation of methods (see [8] for a review of 22 methods) and with limited

insight into their performance, data analysts are confronted with the difficult task of selecting

the best-suited method for analysing the data at hand. We propose a systematic investigation

of several prominent recently proposed methods and provide a simple guideline for decision-

making.

In this work, we consider a number of parameters that influence the quality of the results

obtained by topology-based pathway analysis. These parameters are varied in controlled exper-

iments in order to study the sensitivity of the methods and—when possible—to quantify it.

These experiments are performed on both artificial and real-world data, thus resulting in a

comprehensive characterisation of the behaviour of each considered method. From the begin-

ning, we did not expect to identify a single method that would fit all possible applications,

thus, in our investigations, we tried to capture most of the standard scenarios. The methods

under investigation were selected based on the following criteria: (i) the aim is to detect differ-

entially expressed pathways (DEPs) between two groups of interest based on gene expression

data; (ii) the pathway topology is a priori known and is modeled as simple interaction network

or graph G = (V, E), where V is a set of vertices/nodes represented by products of genes and E
is a set of edges representing interactions between them; (iii) the pathways are modeled and

analyzed individually (without cross-pathway interactions). The typical input data for these

methods consists of a gene expression data matrix (log2-transformed normalised expression
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profiles from a high-throughput technology after standard pre-processing), group member-

ship labels (as a vector) and the list of pathway topologies. Based on these criteria we selected

the following methods: SPIA [9], PRS [10], CePa [7], TAPPA [11], TopologyGSA [12], Clipper

[13] and DEGraph [14]. Each method assigns a test-statistic and a p-value to each pathway

(possibly other parameters like the number of differentially expressed genes, pathway size etc.)

and pathways with extreme test-statistic or low p-value are called‘differentially expressed’.

Materials and methods

We performed eight distinct experiments to provide comprehensive insight into the topology-

based pathway analysis methods (Fig 1, Table 1, S1 Text). In these experiments, we examined

the influence of the number of parameters on the results obtained by topology-based pathway

analysis methods. A detailed description of the experiments can be found in the S1 Text.

The first group of parameters are data set-centric (sample size, pathway size, number of

DEGs in the dataset and thresholds used to detect DEGs; Experiment 1) and helped us to

describe the performance of a method under various conditions and to guide the selection of

Fig 1. Overview of the eight controlled experiments (Ex. 1-8) performed.

https://doi.org/10.1371/journal.pone.0191154.g001
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the optimal method for a specific dataset. The methods’ ability to control type I error was stud-

ied in Experiment 2. The influence of overexpression of particular gene(s) (Experiments 3-5),

the influence of discarding the topological information (Experiment 7) and the effect of the

pre-processing of pathway topologies (Experiment 8) tested the topology-based nature of the

methods. If no effects were observed, the method should not be considered as topology-based

pathway analysis method. The increased sensitivity and specificity expected from the incorpo-

ration of the topological information were examined by the identification of biologically rele-

vant pathways (Experiments 6-8) since no proper method for identifying truly differentially

expressed pathways is known.

Following the categorization of GSEA methods, the topology-based pathway analysis meth-

ods can be grouped based on three main criteria: (i) the null hypothesis (competitive and self-
contained); (ii) the (non)identification of differentially expressed genes (DEGs) prior pathway

analysis (over-representation analysis (ORA) and functional class scoring (FCS)) and (iii) the

number of variables in the model (univariable and multivariable) (see S1 Text for the details).

We will use these categories in methods evaluation.

For each experiment we applied selected methods (Table 2) on gene expression datasets,

looking for differentially expressed pathway(s) between two groups of interest from a collec-

tion of pathways. In ORA methods we detected differentially expressed genes with moderated

t-test [15] and significance level α = 0.05, unless stated otherwise. For all methods estimating

significance threshold using permutations, the number of permutations was set to 1000. The

pathways were considered differentially expressed if their p-value was below the significance

threshold α = 0.05. All the analyses were performed in R statistical framework [16] and Bio-

conductor [17]. There are multiple freely-available implementations of the selected topology-

based pathway analysis methods: (i) original implementation (all but TAPPA), (ii) graphite

Table 1. Overview of the experiments performed to evaluate methods’ performance.

Experiment Parameter(s) under study Varied parameter(s)� Datasets Pathway

topologies

Evaluation

criterion †

1 Effect of sample size, pathway size and significance

thresholds for DEGs

n1, n2, |V|, θ Simulated,

Real

graphite Prop. DEPs

2 Type I error rate y Simulated graphite Prop. DEPs,

histogram

3 Single gene overexpression Xij, i 2 I� V, |I| = 1, j 2 1, 2, 3, . . ., n such

that yj = 1

Simulated graphite Prop. DEPs

4 Multiple genes overexpression Xij, i 2 I� V, |I| 2 2, 3, 4, 5, j 2 1, 2, 3, . . .,

n such that yj = 1

Simulated graphite Prop. DEPs

5 Topological motif overexpression Xij, i 2 I� V, |I| 2 3, 4, 5, j 2 1, 2, 3, . . ., n
such that yj = 1

Simulated graphite Prop. DEPs

6 Target pathway detection Xij, i 2 I� V, |I| = 1, j 2 1, 2, 3, . . ., n such

that yj = 1

Simulated,

Real

graphite Median p-value,

rank

7 Inclusion of topological information PT Simulated,

Real

graphite ‡ Prop. DEPs

8 Pre-processing of pathway topologies PT Simulated,

Real

ToPASeq Prop. DEPs

�X is a normalized log2-transformed gene expression data matrix of expression profiles of p genes (rows) and n1 + n2 samples (columns), n1 and n2 denote number of

samples in two compared groups, y is a vector of 1’s and 2’s assigning samples into the groups, PT is a set of pathway topologies (graphs) G = (V, E), where V is a set of

vertices/nodes represented by products of genes and E is a set of edges representing interactions between them, θ is the threshold used for detection of DEGs;
†Prop. DEPs denotes Proportion of Differentially Expressed Pathways;
‡without interactions

https://doi.org/10.1371/journal.pone.0191154.t001
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package (SPIA, TopologyGSA, Clipper, DEGraph) [18] and (iii) ToPASeq package [19] (all

methods). ToPASeq package is our previous work in which we either de novo implemented or

optimised existing implementations of a number of existing topology-based pathway analysis

methods. For the sake of access uniformity for method application and access to method-spe-

cific pre-processing, we chose to use the ToPASeq package in our work.

The following section describes gene expression data matrices and pathway topologies used

in each experiment. We do not define the basic terms from graph theory, since they are

explained in many textbooks, for example [22]. Statistical details of individual experiments

and key properties of the compared methods are described in the S1 Text.

Real datasets

In our study we used real gene expression microarray datasets from three public collections:

Gene Overexpression Data Collection [23, 24], Breast Cancer Data Collection [25] and Disease

Control Data Collection [26, 27]. These collections were obtained and pre-processed as

described in the S1 Text. For each real dataset, we can anticipate one or several pathways that

are expected to be differentially expressed or their identification is of particular interest due to

experimental design. However, those pathways cannot be called ‘true positive’. The Gene

Overexpression Data Collection was selected because it allows us to study the effect of one per-

turbed gene. The Breast Cancer Data Collection represents a collection of datasets related to

the same biological problem, and we focus on the reproducibility of the results. In the Disease-

Control Data Collection, datasets cover various biological problems (cancer, metabolic, neuro-

degenerative diseases etc.) in a unified experimental design in which expression profiles of

patients are compared to healthy controls. Additionally, we can identify a single pathway (tar-
get pathway) which is directly related to the particular disease and hence very likely to be dif-

ferentially expressed. These datasets were used in Experiments 1, 6, 7 and 8.

Simulated datasets

Since the proper statistical distribution of the pathway expression data is unknown, we decided

to use a real dataset (a dataset from Breast Cancer Data Collection denoted as VDX) as a base

for the generation of simulated data. It contains 344 expression profiles of breast tumours

obtained on an Affymetrix Human Genome U133A Array platform with 22 283 probesets

Table 2. Overview of the selected methods.

SPIA PRS CePa TAPPA TopologyGSA Clipper DEGraph

Reference [9, 20, 21] [10] [7] [11] [12] [13] [14]

Null hypothesis C C C � SC SC SC

ORA/FCS ORA ORA ORA FCS FCS FCS FCS

Type U U U U M M M

Pathway model DG DG UG, DG UG DAG DAG UG

Node statistic Log FC Log FC Log FC - - - -

Topology usage Perturbation factor Downstream DEG Centrality PCI GGM, IPS GGM, IPS GL, FT

Pathway statistic Impact factor Sum Sum � T2 T2 T2

Statistical significance Gene perm. Gene perm. Gene perm. � Sample perm. Sample perm. F-distribution

SC = self-contained, C = competitive, ORA = over-representation analysis, FCS = functional class scoring, M = multivariable, U = univariable, DAG = directed acyclic

graph, UG = undirected graph, DG = directed graph, PCI = Pathway Connectivity Index, GGM = Graphical Gaussian Models, IPS = Iterative Proportional Scaling,

GL = Graph Laplacian, � = various statistics are possible, for detection of differentially expressed pathways between two conditions authors suggests Mann-Whitney test.

https://doi.org/10.1371/journal.pone.0191154.t002
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corresponding to 13 091 unique Entrez IDs. We used estrogen receptor status as the main

parameter dividing samples into two clinical groups. The simulated datasets were used in all

experiments. The datasets for particular experiments were generated as shown in S1 Text.

Pathways and their topologies

We used human pathways from the KEGG database as the source of pathway topologies. For

our comparison we used graphite’s pre-processed pathways as a default set of pathway

topologies for the following reasons: (i) they are claimed to be superior to original imple-

mentation [28]; (ii) they allowed us to compare only the methods’ algorithms regardless of

the pre-processing strategy; (iii) the details of the pre-processing strategy are rarely described

in the corresponding publication; (iv) the graphite implementation is readily available

and widely used. In ToPASeq one can choose either graphite pre-processed pathways

(+GPT) or pathway pre-processing as in the original implementation (MSPT) (if available)

and hence evaluate the effect of different pre-processing strategies. The +GPT topologies

were used in all experiments, and the MSPT was used in Experiment 8 only. In Experiment 7

we also used non-topological variants of the compared methods corresponding to pathway

topologies without interactions (-GPT). To reduce computational complexity, we filtered

out pathways with more than 150 genes and with less than two genes with available expres-

sion data.

Results

Experiment 1: Effect of sample size, pathway size, platform density and

number of differentially expressed genes

Fig 2 shows the influence of sample size on the proportion of DEPs in both real and simulated

data. In the simulated datasets (Fig 2A), an increase in sample size results in an increase in the

proportion of DEPs for TAPPA and all the multivariable methods (TopologyGSA, Clipper,

DEGraph). For each of these methods, we observed a breakpoint (sample size) beyond which

the proportion of DEPs stabilised. For TopologyGSA and Clipper, this breakpoint was at 68

samples, with 94.9% and 93.4% DEPs, respectively. For the complete dataset (344 samples),

DEGraph and TAPPA identified 94.2% and 68.7% of pathways to be differentially expressed,

respectively. On the other hand, SPIA, PRS and CePa reported a rather stable proportion of

differentially expressed pathways across all sample sizes (medians between 4.7% and 14.2%).

Interestingly, there is a trend of decreasing number of DEPs with increasing sample size in

CePa.

Similar observations were made in the analysis of real datasets from the three real data col-

lections. Across all data collections, the highest proportion of DEPs was observed in Clipper

(median: 92.5%), followed by TopologyGSA (median: 73.7%), DEGraph (median: 48.0%) and

TAPPA (median: 36.1%). CePa, SPIA and PRS reported the smallest median proportion of

DEPs (27.9%, 16.5% and 13.9%, respectively). Results for individual disease collections are

shown in (Fig 2B). Although the Gene Overexpression Data Collection comprised of relatively

small datasets (Table 3), multivariable methods still reported a large proportion of DEPs, simi-

lar to the case of generally larger datasets in the Breast Cancer Data Collection. The smallest

dataset (with overexpressed c-Src) had the lowest proportion of DEPs in all methods.

The Breast Cancer Data Collection contained datasets of various microarray platform sizes

(probes representing between 2 780 and 20 389 unique Entrez IDs). For competitive methods

(SPIA, PRS and CePa), the statistical significance of the differential expression of a pathway

depends on the set of genes measured in the experiment. A smaller number of genes outside a
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Fig 2. The effect of sample size. (A) The selected dataset from Breast Cancer Data Collection (denoted as VDX) was reduced to 20 random subsets representing 5%,

10%, . . . 95% of its original sample size (while preserving the proportion of samples in the clinical groups) leading to sample sizes from 16 to 326. Differentially expressed

pathways between estrogen receptor positive and negative samples were detected. The lines show the median proportion of significant pathways (p< 0.05) over 20

subsets for each sample size. (B-D) Graphs indicating the percentage of differentially expressed pathways (DEPs) in the respective data collections. k denotes the number

of datasets. See Table 3 for the summary of sample sizes. The datasets from the Breast Cancer Data Collection were divided by platfrom densities into: low-density

platforms (2780-5486 EntrezIDs), medium-density platforms (9041-13091 EntezIDs) and high-density platforms (17779-20389 EntrezIDs).

https://doi.org/10.1371/journal.pone.0191154.g002
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pathway leads to reduced variability of the random sets of DEGs which results in lower proba-

bility of extreme pathway-statistic and, as consequence, higher p-value. Hence, we split the col-

lection into low-, medium- and high- density platform datasets, based on the number of

unique EntrezIDs their probes mapped to (from 2780 to 5486 EntrezIDs for low-density, 9041

to 13091 EntrezIDs for medium-density and 17779 to 20389 EntrezIDs for high-density plat-

forms) (Fig 2C and S1 Fig). Indeed, all the competitive methods reported fewer DEPs in the

datasets from low-density platforms. On the other hand, one self-contained method—

DEGraph also reported fewer DEPs. In DEGraph, each pathway is divided into connected

components which contain only the measured genes. In case of low-density microarray plat-

form, this results in the small size of the individual components which tend to have higher p–

values.

The Disease-Control Data Collection contained small to medium size datasets in which

patients with various diagnoses were compared to healthy controls. The proportion of DEPs

varied greatly between datasets from this collection (Fig 2B). However, when we divided the

datasets into cancer-related and non-cancer-related, all the methods reported more DEPs for

the cancer-related datasets (Fig 2D). We hypothesised that this was a consequence of the larger

number of differentially expressed genes (it is known that tumours have highly deregulated

gene expression in comparison to healthy tissue). The proportion of DEPs as a function of the

number of DEGs is shown in S2 Fig. Indeed, the percentage of DEPs depended on the number

of DEGs in multivariable methods and TAPPA, but not in SPIA, CePa and PRS. Since in ORA

methods (SPIA, PRS, CePa), fixed thresholds were used to identify DEGs, we assessed the

effect of three thresholds (p< 0.05, p< 0.01 and p< 0.001) on the proportion of DEPs (S4

Fig). For stricter thresholds (p< 0.01 and p< 0.001), in all methods, the number of DEPs

increased with increasing sample size, as one would expect based on statistical properties of

hypothesis testing. For p< 0.05, however, this trend holds only until a breakpoint in sample

size, which is method specific: between 85-120 samples in CePa, between 222-257 samples in

PRS and between 257-291 samples in SPIA. After the breakpoint, the number of DEPs rapidly

decreases for p< 0.05.

To study the effect of pathway size, we divided pathways into small (<35 nodes) and large

(�35 nodes) (following [29]). S3 Fig shows the median p-value of pathways within each group

as a function of dataset sample size for individual methods. Large pathways achieved lower

median p-values in comparison to small pathways, independently on the dataset sample size,

except PRS. In PRS, we observed the opposite effect starting at 137 (40%) samples. In multivar-

iable methods, median p-values decreased very rapidly with increasing sample size, dropping

below 0.01 at 33 (10%) and 51 (15%) for Clipper and TopologyGSA.

Experiment 2: Type I error rate

For all methods, the observed type I error rate was close to the expected 5% threshold, except

for CePa (12.8%), see Table 4 and S5 Fig.

Table 3. Overview of the data collections.

Data Collection Number of datasets Sample size Number of gene IDs

Median Min Max Median Min Max

Gene Overexpression 3 17 17 20 23 521 23 521 23 521

Breast Cancer 27 129 49 856 13 091 2 780 20 389

Disease-Control 36 21 8 153 20 535 12 438 20 535

https://doi.org/10.1371/journal.pone.0191154.t003
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Experiment 3: Effect of mean expression, difference in expression and

topology of a single gene

In this experiment, we studied the effect of group-specific increase of expression of single

genes in three selected pathways (increments of 0.1 to 2 in log2 fold change with step size 0.1

in 200 simulated datasets). The influence of a gene was quantified as a proportion of identified

differentially expressed pathways across all simulations and increments. For simplicity, we

divided the gene influence into five categories: very low influence (0%-20% DEPs), low influ-

ence (20%-40% DEPs), medium influence (40%-60% DEPs), high influence (60%-80% DEPs)

and very high influence (80%-100% DEPs) (S6 Fig), respectively.

An induced change in a single gene had a much stronger influence on the results of multi-

variable methods than on the results of univariable methods. The median proportion of DEPs

(combined across all induced differences) for multivariable methods was 82.5% for Topolo-

gyGSA, 82.3% for Clipper and 42.7% for DEGraph, compared to 29.3% for PRS, 25.9% for

CePa, 15.4% for TAPPA and 12.8% for SPIA.

We further examined the effect of relative change of gene expression between the groups,

the effect of gene mean expression and the effect of gene topology in a pathway (S6 Fig).

Fig 3 shows the proportion of DEPs across all genes in the Non-small cell lung cancer path-

way as a function of the induced change, for each method separately. TopologyGSA and Clip-

per were very sensitive to the increase in the induced log2 fold-change of a gene. The higher

the fold change, the higher the proportion of DEPs. In fact, both methods marked 96% of the

simulations as DEPs at log2FC = 1. In all the other methods, the effect of the increased induced

change was less dramatic, although monotone, except CePa that reached its plateau at the

induced change of 0.6 (28.3%).

The influence of gene topology was in agreement with methods’ algorithms (S6 Fig). In

TopologyGSA and Clipper, all the tested genes had a high or very high influence on the detec-

tion of DEPs, regardless of their topological properties (Table 5). The proportion of DEPs was

instead correlated with mean expression of the individual genes. The mean expression had no

significant effect on the proportion of DEPs in other methods. In DEGraph, the genes with the

highest influence were those without incoming interactions (root nodes). In SPIA, the most

influential genes had none or only neutral (e.g. binding) incoming interactions and many

downstream genes. In PRS, most of the genes had low influence on the pathway detection,

except for RIG-I-like receptor signalling pathway, which contained four genes with medium

influence. One of these genes was a common subunit of two multiprotein complexes. We

observed a correlation of the gene influence with the number of gene interactions in PRS and

TAPPA (Table 5). Although the number of interactions is one of the centralities (see S1 Text,

Table 4. Type I error rates: For each method the number (N) and the proportion (%) of rejected hypotheses out of

1000 tested is shown.

Method Rejected hypotheses N(%)

SPIA 30 (3.0%)

PRS 38 (3.8%)

Clipper 45 (4.5%)

TopologyGSA 47 (4.7%)

DEGraph 55 (5.5%)

TAPPA 57 (5.7%)

CePa 128 (12.8%)

https://doi.org/10.1371/journal.pone.0191154.t004
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section Materials and methods) used in CePa, the most influential genes were the nodes with

the highest betweenness centrality.

Experiment 4: Effect of overexpression of multiple genes

Here, we assessed the combined impact of overexpression of multiple genes (gene sets),

regardless of the possible topological motif. In all methods, the number of DEGs in a pathway

positively correlated with the number of DEPs. Within the same gene set size, the influence of

a gene set increased with the cumulative effect of individual genes as measured in Experiment

3 (S7 Fig).

Fig 3. Proportion of differentially expressed pathways (DEPs) combined across all genes as function of the induced change. The proportion of

differentially expressed pathways combined across all tested genes in the Non-small cell lung cancer pathway at different induced expression

changes. Each line represents one method. Results were very similar for TopologyGSA and Clipper, and the respective lines are overlapping. Solid

lines refer to pathway topology from graphite package (+GPT), dashed to pathway topology from graphite package without interactions (-GPT)

and dotted to method-specific pathway topology (MSPT).

https://doi.org/10.1371/journal.pone.0191154.g003
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Experiment 5: Effect of overexpression of topological motifs

In this experiment, we overexpressed three, four and five genes, respectively, representing one

of the 18 topological motifs present in the Non-small cell lung cancer pathway (see S1 Text).

Similarly to the previous experiments, the proportion of DEPs increased with the induced

change and with the number of genes in the motif.

For the multivariable methods, we did not observe the influence of the motif on the propor-

tion of DEPs when compared to the gene set effect from Experiment 4 (Fig 4). In all univari-

able methods, except SPIA, motif overexpression resulted in the increased proportion of DEPs

in comparison to gene set overexpression. This difference in overexpression was independent

of the number of overexpressed genes for TAPPA but diminished with the increasing number

of overexpressed genes in PRS and CePa. In contrast, motif overexpression resulted in the

decreased proportion of DEPs in SPIA in comparison to gene set overexpression.

The effect of the motifs in the context of previous findings and the motifs’ properties (size,

topology, the sum of effects of individual genes) is shown as a heatmap with information from

Experiment 3 overlaid (S8 Fig, Fig 5). The heatmap shows clustered proportions of DEPs at

different increments of log2 fold-changes (rows) in all tested topological motifs (columns).

The proportion of DEPs increased with the induced change, and this effect separated the ana-

lysed motifs into multiple clusters. We categorised the motifs based on their overall effect (the

proportion of DEPs from all the simulations and induced changes). We were also further inter-

ested to see how the clusters correlated with the size (3, 4 or 5 genes) and the topology of the

motif. For all methods but TopologyGSA and Clipper, we observed a clustering of the motifs

according to motif size (S8 Fig). Since Experiment 4 showed that effect of multiple genes is

directly dependent on the sum of effects of individual genes, we plotted the effect of individual

genes (as measured in Experiment 3) involved in the individual topological motifs in the panel

below the heatmap. Here, the gene-specific influence is indicated by color (white means gene

was not present in the motif). Clearly, in all methods, the impact of topological motif positively

correlated with the impact of individual genes of the motif (S8 Fig).

Experiment 6: Identification of target pathways

In this experiment, for each real dataset we identified a pathway that was related to the disease

or a biological problem and, in an ideal situation, this pathway should be detected as differen-

tially expressed with very low p-value in comparison to other pathways.

During the analysis, we encountered multiple method-specific problems that resulted in the

impossibility to analyse all available pathways. First, TopologyGSA requires the dataset to have

Table 5. Spearman’s correlations coefficients between the gene influence and the number of interactions stratified by interaction type.

Pathway

Bacterial invastion of epithelial cells Non-small cell lung cancer RIG-I-like receptor signaling pathway

Interaction type Interaction type Interaction type

Method Incoming Outgoing Both Incoming Outgoing Both Incoming Outgoing Both

TopologyGSA 0.434 0.149 0.368 0.102 -0.123 -0.005 0.413 -0.063 0.239

Clipper 0.437 0.153 0.374 0.103 -0.120 -0.002 0.414 -0.059 0.244

DEGraph -0.399 0.145 -0.264 -0.608 -0.158 -0.446 -0.585 -0.113 -0.477

SPIA -0.153 0.278 0.096 -0.127 0.070 0.023 0.041 0.314 0.208

PRS 0.220 0.861 0.779 0.355 0.826 0.779 0.610 0.713 0.917

CePa 0.325 0.394 0.648 0.373 0.207 0.493 0.563 0.782 0.916

TAPPA 0.161 0.273 0.403 0.543 0.536 0.747 0.653 0.584 0.873

https://doi.org/10.1371/journal.pone.0191154.t005

A critical comparison of topology-based pathway analysis methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0191154 January 25, 2018 11 / 24

https://doi.org/10.1371/journal.pone.0191154.t005
https://doi.org/10.1371/journal.pone.0191154


Fig 4. Comparison of the effect of expression change in a single gene, multiple genes and topological motifs.

Combined influence of single gene, multiple genes and topological motifs on the proportion of differentially expressed

pathways (DEPs) at varying induced expression changes is displayed. Sets of multiple genes and topological motifs are

shown in the dashed and solid lines of the same color, respectively.

https://doi.org/10.1371/journal.pone.0191154.g004
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more samples than the number of genes in the largest clique of the pathway and this condition

was met only by several pathways. For large datasets, such as SUPERTAM_HGU133A from

the Breast Cancer Data Collection (N = 856 expression profiles), we were unable to run Topo-

logyGSA on 80GB RAM machine. DEGraph encountered similar but less frequent problems

due to the singularity of pooled covariance matrices.

S9 and S10 Figs, and Tables 4 and 5 in S1 Text show results of the target pathway p-values

and ranks in the Disease-Control Data Collection and Breast Cancer Data Collection. The

results from the Gene Overexpression Data Collection can be found in S11 Fig. Since target

pathways are unique for each dataset from this collection, they were not suitable for trend

estimation.

Overall, multivariable methods assigned lower p–values and ranks to the target pathways

than univariable methods. In the Disease-Control Data Collection, the target pathway was

tested by TopologyGSA in only ten out of 36 datasets, of which nine times it was reported as

differentially expressed. In contrast, the ranks from the DEGraph method were the highest in

multivariable methods and the second largest in all methods. PRS and CePa reported consis-

tently low median p-values (0.031 and 0.034, respectively) and low median ranks (19.5 and

25.5, respectively). Amongst univariable methods, the highest median p-value and rank of tar-

get pathways were observed in SPIA and TAPPA. In the Breast Cancer Data Collection data-

sets, the aim was to detect differentially expressed pathways between the estrogen receptor

positive (ER+) and estrogen receptor negative (ER-) group. The set of target pathways there-

fore comprised of four pathways with estrogen receptor genes: Endocrine and other factor-reg-

ulated calcium reabsorption, Estrogen signalling pathway, Prolactin signalling pathway and

Thyroid hormone signalling pathway. Since estrogen receptor plays different roles in these

pathways and therefore harbours different topological ‘importance’, results for individual

pathways from topology-based pathway analysis may vary. For all these pathways, all multivar-

iable methods (TopologyGSA, Clipper, DEGraph) again reported very low p-values and ranks.

From the univariable methods, TAPPA returned the lowest median p-values (except Estrogen

Fig 5. Effect of topological motifs in SPIA. Proportions of differentially expressed pathways (DEPs) for individual motifs (columns) at variable induced log2 fold-

changes (rows) are displayed as a heatmap. Color bars on the top show influence of the motif, its size and topology (see S1 Text for details). Note, that colors used for

motif topology are unique only among motifs of the same size. The bottom panel shows the influence of the genes in a representation of a topological motif as discovered

in Experiment 3.

https://doi.org/10.1371/journal.pone.0191154.g005
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signalling pathway) and the highest ranks (except Endocrine and other factor-regulated cal-

cium reabsorption pathway). The lowest median p-values and ranks of all target pathways

amongst remaining univariable methods were observed in CePa. SPIA reports lower p-values

and ranks than PRS only for the Endocrine and other factor-regulated calcium reabsorption

pathway. Estrogen receptor is one of the root nodes and has a medium influence on this path-

way in SPIA (47% DEPs) and only low influence in PRS (22% DEPs). On the other hand, Pro-

lactin signalling pathway is the least significant by SPIA, and the estrogen receptor is a leaf

node in this pathway with very low influence (3.5% DEPs). In the original experiments of the

Gene Overexpression Data Collection, an overexpression of three genes (c-Myc, H-Ras, c-Src)

was induced experimentally via adenoviral infection. The fold change of the perturbed genes

ranged from 2.38 to 5.29 (S1 Text). 15, 40 and 14 target pathways were identified, for c-Myc,

H-Ras and c-Src, respectively. The results of the analysis of this collection are summarized

in Table 6. TopologyGSA was able to analyse only the Bladder cancer pathway, which was

detected as differentially expressed. Clipper identified all target pathways as differentially

expressed. Results of DEGraph, PRS, CePa and TAPPA, varied greatly between the three sets

of pathways, ranging from 21% to 80% target pathways as differentially expressed. All univari-

able methods reported a higher percentage of target pathways as differentially expressed in the

dataset with deregulated c-Myc in comparison to other datasets. When individual target path-

ways were assessed separately, DEGraph and univariate methods agreed on differential expres-

sion of the most biologically relevant pathways (S11 Fig).

Experiment 7: Effect of the exclusion of topological information

To assess the effect of exclusion of topological information, we studied the effect of individ-

ual genes on the proportion of differentially expressed pathways in the simulated datasets.

We hypothesised that, in the non-topological setting, individual genes influence the final

result equally. We applied the non-topological variants of the methods on both simulated

(from Experiment 3) and real (from Experiment 6) datasets and Non-small cell lung cancer

pathway was used as a model pathway for simulated data. Then we quantified the effect of

genes in simulated datasets and computed the corresponding p–values and ranks of target

pathways. The results were compared to the results obtained in Experiment 3 and the Experi-

ment 6 (Fig 3).

The effect of the individual genes in simulated data is shown in S12 Fig. In TopologyGSA

and Clipper, no difference between the topological and non-topological variant of the method

was found. In all other methods, we did observe, in agreement with our hypothesis, the equal

redistribution of the effect of the genes across the pathway in the non-topological variant. For

DEGraph and PRS, the non-topological variant resulted in an overall increase of the individual

gene effects, while in CePa and SPIA, the individual effects of the genes diminished. In the Dis-

ease-Control Data Collection (S9 Fig), we observed increased p-values and ranks for target

Table 6. Proportion of significant target pathways in the Gene Overexpression Data Collection.

Overexpressed gene in the target pathway Method

SPIA PRS CePa TAPPA TopologyGSA Clipper DEGraph

c-Myc 7/15

(46.7%)

8/15

(53.3%)

12/15

(80%)

10/15

(66.7%)

0/0 14/14

(100%)

3/9

(33.3%)

H-Ras 14/40

(35.0%)

6/40

(15.0%)

16/40

(40.0%)

9/40

(22.5%)

1/1

(100%)

39/39

(100%)

18/23

(78.3%)

c-Src 5/14

(35.7%)

3/14

(21.4%)

3/14

(21.4%)

3/14

(21.4%)

0/0 14/14

(100%)

3/6

(50%)

https://doi.org/10.1371/journal.pone.0191154.t006
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pathways in PRS and CePa and decreased p-values and ranks for DEGraph and SPIA. No effect

of exclusion of topological information was found in TAPPA, TopologyGSA and Clipper.

Note that the median p-value of the target pathway was below 0.2 in all methods regardless

pathway topologies. In PRS, the median p-value raised from 0.031 in the topological variant to

0.055 in the non-topological variant. In the Breast Cancer Data Collection (S10 Fig), we

observed the pathway-specific effect of the exclusion of pathway topologies in SPIA where p-

values increased only in the pathway in which estrogen receptor is one of the root nodes

(Endocrine and other factor-regulated calcium reabsorption) and decreased in other pathways.

In all estrogen receptor containing pathways, we observed increased p-values in CePa and

decreased in PRS. No difference was observed in multivariable methods.

Experiment 8: Effect of pre-processing of pathway topologies

To assess the effect of pre-processing of pathway topologies (methods’ original pre-processing

MSPT vs graphite pre-processing +GPT), we first compared effects of the individual genes

in model pathways (Fig 6). The main differences between +GPT and MSPT were in the pre-

processing of multisubunit protein complexes, gene families and interactions related to non-

gene product nodes (e.g. small chemical compounds). These differences had a direct effect on

individual genes by changing their properties or an indirect effect on the genes by altering the

distribution of a particular property in a pathway. No difference in the effects of individual

genes was observed in Clipper. In the DEGraph’s original pathway topology (MSPT) there

were no interactions between subunits of multiprotein complexes. These interactions were

introduced in graphite (S1 Text, [28]) pathway topologies (+GPT). In consequence, the

genes whose products were subunits of multiprotein complexes had a different effect in MSPT

compared to +GPT (see Fig 6, RIG-I-like receptor signalling pathway and Non-small cell lung

cancer pathway). There were no protein complexes in the Bacterial invasion of epithelial cells

pathway, so the gene effects were the same. In PRS, we observed a clear difference in the effect

of individual genes only in the Non-small cell lung cancer, where a group of six genes had

approximately two times higher effect in MSPT compared to +GPT. In this pathway, two

nodes involved each of these genes—either as a member of two different gene families or a sin-

gle node and a member of a gene family. In MSPT of PRS, gene families were processed into

combined nodes (S1 Text), hence possibly increasing the effect of genes present in multiple

nodes. We observed complex differences in gene effects between +GPT and MSPT for CePa.

In CePa’s MSPT, gene families and protein complexes are pre-processed into combined nodes,

thus decreasing their degree centralities (if they interacted with other families or complexes)

or decreasing the total number of nodes in a pathway resulting in the reduced influence of

family members or subunits of protein complexes. At the same time, both the influence and

the degree centrality of the genes interacting with these families was reduced. However, other

genes gained importance as consequence of the different distribution of centralities or pathway

topology. SPIA-specific pre-processing of pathway topologies did not propagate perturbations

of individual genes through as many interaction types (including compound-mediated inter-

actions) as in graphite. Therefore, in MSPT, the number of genes with high influence was

reduced.

In both the Breast Cancer Data Collection and Disease Control Data Collection, with the

agreement to the individual gene overexpression experiment, we observed increased p-values in

CePa; slightly increased ranks in DEGraph and decreased p–values in PRS and no difference in

p-values in Clipper (S10 Fig). For SPIA, we observed no difference in both p–values and ranks

in agreement with the individual gene overexpression experiment only in the Breast Cancer

Data Collection and decreased p–values and ranks in the Disease Control Data Collection.
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Fig 6. Effect of pre-processing of pathway topologies on simulated data—Overexpression of single gene. Each point represents a single gene. Only genes common

for pathway topologies from graphite package (+GPT) and method-specific pathway topologies (MSPT) are displayed. Points on diagonal represent genes with the

same influence in +GPT and MSPT. Points below (above) diagonal represent genes with higher (lower) influence in MSPT.

https://doi.org/10.1371/journal.pone.0191154.g006
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Discussion

We presented a series of eight controlled experiments designed to gauge the suitability of a

number of topological pathway analysis methods to various analytical scenarios. Since topo-

logical information can be used in different ways and for different goals, in our study, we

decided to focus on methods that (i) aim to detect differentially expressed pathways between

two groups of interest, (ii) use a priori known pathway structures (topologies) and (iii) model

each pathway separately. We described the performance of the selected methods on both simu-

lated and real datasets.

We studied the methods’ behavior from several perspectives: the sample size, pathway size,

platform density, effect size, number of differentially expressed genes, gene topologies, plat-

form density, gene sets and their topological motifs, the inclusion of topology information in

the method’s algorithm and different strategies for pre-processing of pathway topologies. The

influence of the tested variables was assessed by comparison of the proportion of differentially

expressed pathways, their p-values and ranks.

Table 7 shows the overall evaluation of the compared methods and summarises the most

important observations from our experiments.

In all the compared methods, large pathways (> 35 genes) were assigned lower p-values

than small pathways. Also, as expected, when a pathway contained more differentially

expressed genes it was more often detected as differentially expressed. The number of

Table 7. Overall assessment of the compared methods.

Parameter SPIA PRS CePa TAPPA TopologyGSA Clipper DEGraph

Median proportion of DEPs in real datasets 16.5% 13.9% 27.9% 36.1% 73.7% 92.5% 48.0%

Effect on proportion of DEPs due to

Increasing sample size ! ! slowly& % rapidly% rapidly% %

Increasing pathway size " " # " " " " "

DEGs threshold p< 0.001 " " " NA NA NA NA

DEGs threshold p< 0.01 " " " NA NA NA NA

DEGs threshold p< 0.05 " # " # " # NA NA NA NA

Single DEG [% DEPs] 12.8% 29.3% 25.9% 15.4% 82.5% 82.3% 42.7%

Characteristics of the most influential genes

Crutial node property root node connected DEGs betweenness degree mean expression mean expression root node

Incoming interactions !! - !! !! - - !!

Outgoing interactions !! !! !! !! - - -

Mean expression - - - - !! !! -

Impacts of individual genes as observed on simulated data

+GPT [% DEPs] 4.2 - 82.6 23.4 - 44.0 16.9 - 86.4 3.5 - 71.2 51.2 - 94.5 51.2 - 94.5 4.0 - 92.6

-GPT vs. +GPT # " # l " " "

MSPT vs. +GPT # " l NA NA ! "

Preferred scenario for hypotheses generation

Number of DEGs Many Many Many Any Few Few Few

Sample size Any Any Any Any Small Small Small

Pathway of interest Any Any Any Any Small Small Small

Experiment scale Genome Genome Genome Any Any Any Any

! - stable,& - decrease,% - increase, " - higher, more, # - lower, less, "# - trend changes at certain point, NA - not applicable, root node - node without incoming

interactions, !! - important, - - not important, l - both effects observed

https://doi.org/10.1371/journal.pone.0191154.t007
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differentially expressed genes usually surpassed their topological influence. None of the meth-

ods showed a preference for a particular differentially expressed topological motif.

The most striking difference was found between multivariable and univariable methods.

Multivariable methods (TopologyGSA, Clipper and DEGraph) overall reported larger propor-

tions of differentially expressed pathways in comparison to univariable methods (SPIA, PRS,

CePa and TAPPA). Although all tested multivariable methods are derived from Hotelling’s T2

statistic, they differed significantly in their performance. TopologyGSA and Clipper assigned

very low p-values and ranks to all the target pathways. However, this seems to be the result of

overall low specificity, since they reported many other pathways (if not all) as differentially

expressed. These methods were also sensitive to the increase in the sample and pathway size,

the number of differentially expressed genes and the mean gene expression. The higher the

increase, the lower the p–values and the larger the proportion of differentially expressed path-

ways, independent of the platform density. These findings indicate that in the scenario where

(i) many differentially expressed genes are expected (e.g. cancer-related experiments); (ii) the

dataset contains more than a few tens of samples (> 68 samples in our experiments); (iii) a

pathway contains a gene with at least a subtle random change in the expression, the pathway

will be identified as significant. This behavior agrees with the self-contained nature of the meth-

ods, which is known to have higher sensitivity. However, many differentially expressed path-

ways identified by these methods might be false positives and therefore not useful for selection

of biological hypotheses for further research. Interestingly, in TopologyGSA and Clipper, the

exclusion of the topological information made no difference in the results. Therefore, despite

well-established mathematical background (Graphical Gaussian models), these methods do

not appear to fit the definition of topology-based methods for identification of differentially

expressed pathways.

In contrast, DEGraph detected fewer differentially expressed pathways compared to Topo-

logyGSA and Clipper, suggesting higher specificity. At the same time, in DEGraph the influ-

ence of individual genes was related to the pathway topology. DEGraph was less sensitive to

sample size, pathway size or the number of differentially expressed genes. The performance of

the non-topological variant of DEGraph was similar to the TopologyGSA and Clipper with or

without topology. Different pathway pre-processing strategies had only limited influence on

both DEGraph and Clipper (not assessed for TopologyGSA).

Univariable ORA methods SPIA, PRS and CePa, assigned low p-values only to some of the

target pathways depending on the topological properties of differentially expressed genes in

the pathway. This behaviour suggests higher specificity and stronger dependency on the topo-

logical information. These methods were less sensitive to the effects of sample size, pathway

size, number of DEGs or thresholds used to identify differentially expressed genes. However,

with increasing number of differentially expressed genes in a pathway, the effect of gene topol-

ogy became less important. Due to the competitive nature of SPIA, PRS and CePa, these meth-

ods reported less differentially expressed pathways on low-density platforms. The univariable

methods also exhibited higher sensitivity to the pre-processing of pathway topologies. Hence

they can be considered true representatives of the topology-based pathway methods. Pre-pro-

cessing of protein complexes, gene families and interactions involving non-gene products

(metabolites such as PIP3) was the key factor in methods’ performance and influence of the

individual genes. Although, our results suggest that, for PRS and CePa, the method-specific

pathway pre-processing seams to be more appropriate and should be preferred to graph-
ite’s approach, further research is needed to identify an optimal pre-processing strategy for

the compared methods. For instance, gene family members may be incomplete, and thus the

observed increased influence of a gene which is a member of two different gene families may

not be biologically sustained. Also, members of a gene family are seen as interchangeable
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regarding signal transduction, while each subunit of a protein complex is necessary for com-

plex assembly and biological function. Therefore the unified approach, as used in method-spe-

cific pathway pre-processing, may not be optimal. The TAPPA [11] method stands out with its

unique algorithm—a gene expression profile is being transformed into a pathway-level expres-

sion profile. Pathway-expression profiles were then analysed with traditional statistical meth-

ods (e.g. Mann-Whitney test for identification of differentially expressed pathways between

two groups). As a consequence, this method is suitable also for applications with a complex

experimental design. The sensitivity and specificity of TAPPA seemed to be well balanced.

Amongst univariable methods, it was the most sensitive to sample size and usually identified

most of the differentially expressed pathways. However, the proportion of differentially

expressed pathways was never as high as in TopologyGSA or Clipper. At the same time, the

method performance depended on the topological properties of the deregulated genes.

Guidelines for method selection

The increased sensitivity of multivariable methods (mainly TopologyGSA and Clipper) makes

them ideal candidates for pathway analysis of experiments, where subtle changes in expression

or a small number of differentially expressed genes between two conditions are expected—e.g.

as in the case of tumor samples which contain a significant proportion of non-tumoral tissue

(such as supporting stroma), thus confounding and diminishing measured signal of the gene

expression. Since multivariable methods do not use lists of differentially expressed genes based

on pre-defined thresholds but work with a complete list of the tested genes, they can be applied

even in cases where none or very few genes are significant after statistical testing (for instance

due to small sample size). The results of these methods, however, must be taken with caution

and the significance of a pathway of interest must be interpreted in the context of all the results

to ensure it is not just a consequence of overall low specificity of the method. To control for

low specificity of the result, we recommend using DEGraph.

Univariable methods are not sensitive to the sample size or the number of differentially

expressed genes in the datasets. Their ability to identify particular pathway as differentially

expressed is highly dependent on the topological properties of the deregulated genes, the inclu-

sion of the topological information and the pre-processing of the pathway topologies. Univari-

able methods are recommended in most applications and especially when the biological

hypothesis aims at a pathway where genes of certain topological properties (biological func-

tion) are expected to be affected (see below and Fig 7B). However, since SPIA, PRS and CePa

are ORA methods, they require at least some differentially expressed genes, and their applica-

bility on datasets with very subtle changes in gene expression can be limited (in contrast to

multivariable methods). On the other hand, if the differentially expressed genes occupy in the

pathway the “correct” topological positions, the topological properties of the methods help to

categorize this pathway as significant despite a small overall number of differentially expressed

genes in the pathway. TAPPA, in contrast, being the FCS method, is a good choice for applica-

tions with a limited number of differentially expressed genes overall. Since in TAPPA the most

important genes are those with many interactions, pre-processing of gene families and protein

complexes must be carefully considered as their expansion into individual members or sub-

units may unintentionally increase their effect.

Based on our results we propose some guidelines for optimal method selection based either

on (i) design of the experiment (comparison type, input data type, the platform density, sample

size, expected number of differentially expressed genes)—Fig 7A; or (ii) selected (preferred)

deregulation type—Fig 7B. Note, that the presence of many differentially expressed genes in a

pathway surpasses topological effect of individual genes. Fig 7C shows an example of the most

A critical comparison of topology-based pathway analysis methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0191154 January 25, 2018 19 / 24

https://doi.org/10.1371/journal.pone.0191154


Fig 7. Guide to selection of topology-based pathway analysis method. (A) Recommended methods for specific scenarios based on experimental design, available

input data, platform density, sample size and expected number of differentially expressed genes. (B) The most important deregulated genes in particular methods.

Individual methods prefer different genes as the most important for pathway deregulation, and these preferences represent another factor for optimal method

selection. The genes are defined mostly by their topological properties (e.g. number of interactions). Examples of genes must be interpreted within specific pathway

(p53 signalling pathway for p53, Non-small cell lung cancer for others), and specific pathway pre-processing (graphite). (C) An illustrative example of the most

important genes in the Non-small cell lung cancer pathway from KEGG database as available in the graphitepackage.

https://doi.org/10.1371/journal.pone.0191154.g007
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influential genes in the Non-small cell lung cancer pathway based on graphite pre-process-

ing of topologies (+GPT). In SPIA, CePa, TAPPA and DEGraph, we colored all the genes with

the highest influence as defined in Experiment 3 for each method. Details of the topological as

well as biological properties of the most influential genes are described in the S1 Text. In Topo-

logyGSA and Clipper, the most influential genes have the highest overall expression (usually

related to the cell cycle regulation [30]). In DEGraph and SPIA, the genes without incoming

interactions have the largest impact. These genes are often represented by ligands, receptors,

or transcription factors (E2F family dissociating from pRB). On the other hand, genes interact-

ing with many other genes (e.g. secondary effectors, such as PIK3CA or KRAS) have the high-

est influence in PRS, CePa and TAPPA.

The observed differences between topological methods should be considered when the

results of pathway analyses are to be compared across experiments in which different methods

were used to detect differentially expressed pathways. Currently, SPIA is the most often cited

method (282 citations from Web of Science Core Collection as of 14 February 2017). The

other compared methods were mainly used in methodological publications, in which the gen-

eral concepts were compared to the new method and only very rarely in applications.

Conclusion

We performed one of the largest studies of topology-based pathway analysis methods pub-

lished to date. In this study, we compared seven methods that aim to detect differentially

expressed pathways from expression data employing a priori known pathway topologies in

their algorithm. The methods were ranked according to their sensitivity to sample and path-

way size, ability to detect target pathways, the proportion of differentially expressed pathways,

benefit from incorporating topological information and sensitivity to different pathway pre-

processing strategies. We also verified type I error rates and described the influence of overex-

pression and topological properties of a single gene or gene sets on the detection of a pathway

as differentially expressed by the selected methods.

We demonstrated that multivariable self-contained methods are very sensitive to the

changes in gene expression within a pathway leading to the uninformative identification of

over 90% pathways as differentially expressed. As a consequence, a significant result can be eas-

ily obtained for a particular pathway. On the other hand, univariable methods (mostly compet-

itive) were less sensitive to subtle changes in gene expression but exhibited stable performance

over a wide range of scenarios and benefited from the inclusion of topological information.

Finally, we proposed guidelines for method selection based on a number of variables con-

nected to experimental design as well as biological hypotheses. Overall, we recommend any of

the multivariable approaches to be used mainly for applications with small sample size and

subtle changes in gene expression, whereas univariable methods should be preferred for

genome-scale applications with large changes in gene expression. The pre-processing strategy

for pathway topologies must be carefully considered for univariable methods, and further

research is required to identify an optimal pre-processing strategy.
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Abstract

To develop a comprehensive overview of copy number aberrations (CNAs) in stage-II/III colorectal cancer (CRC), we
characterized 302 tumors from the PETACC-3 clinical trial. Microsatellite-stable (MSS) samples (n = 269) had 66 minimal
common CNA regions, with frequent gains on 20 q (72.5%), 7 (41.8%), 8 q (33.1%) and 13 q (51.0%) and losses on 18
(58.6%), 4 q (26%) and 21 q (21.6%). MSS tumors have significantly more CNAs than microsatellite-instable (MSI) tumors:
within the MSI tumors a novel deletion of the tumor suppressor WWOX at 16 q23.1 was identified (p,0.01). Focal
aberrations identified by the GISTIC method confirmed amplifications of oncogenes including EGFR, ERBB2, CCND1, MET,
and MYC, and deletions of tumor suppressors including TP53, APC, and SMAD4, and gene expression was highly concordant
with copy number aberration for these genes. Novel amplicons included putative oncogenes such as WNK1 and HNF4A,
which also showed high concordance between copy number and expression. Survival analysis associated a specific patient
segment featured by chromosome 20 q gains to an improved overall survival, which might be due to higher expression of
genes such as EEF1B2 and PTK6. The CNA clustering also grouped tumors characterized by a poor prognosis BRAF-mutant-
like signature derived from mRNA data from this cohort. We further revealed non-random correlation between CNAs among
unlinked loci, including positive correlation between 20 q gain and 8 q gain, and 20 q gain and chromosome 18 loss,
consistent with co-selection of these CNAs. These results reinforce the non-random nature of somatic CNAs in stage-II/III
CRC and highlight loci and genes that may play an important role in driving the development and outcome of this disease.
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Introduction

Colorectal cancer (CRC) ranks second to lung cancer in both

incidence and mortality in developed countries [1]. It is

characterized by highly complex patterns of somatic genetic

alterations of oncogenes and tumor suppressors that drive

initiation and progression [2,3,4]. Understanding the cellular

and molecular mechanisms by which these genetic changes

facilitate colon cancer formation is critical for development of

targeted therapeutic strategies aimed at controlling disease

progression while minimizing toxic side effects.

One well-established genetic mechanism by which cancer cells

alter the activity of oncogenes and tumor suppressors is through

changes in gene dosage. Detailed characterization of DNA copy

number aberrations (CNAs) have helped identify important

oncogenes including ERBB2 and EGFR, as well as tumor

suppressors such as TP53 [5]. Numerous studies have documented

genome-wide somatic CNAs in CRC

[6,7,8,9,10,11,12,13,14,15,16,17,18], some of which have been

linked to clinical outcome or metastatic progression

[19,20,21,22,23,24]. However, many of these studies have been

limited by modest sample size, low resolution assays, or lack of

associated clinical annotation, particularly for early-stage (II/III)

colon cancer. Consequently, a comprehensive overview of CNAs

and their association with outcome in stage II/III colon cancer has

not been developed.

We surveyed somatic CNAs in a collection of 302 stage II/III

colon cancers derived from the Pan-European Trials in Adjuvant

Colon Cancer (PETACC)-3 trial, a large randomized phase III

assessment of the role of irinotecan added to fluorouracil (FU)/

leucovorin (FA) as adjuvant treatment for colon cancer [25]. The

results presented herein explore the relationship between CNA,

mRNA [26] and outcome, and contribute to a comprehensive

molecular overview of stage-II/III colon cancer, which is

PLoS ONE | www.plosone.org 1 July 2012 | Volume 7 | Issue 7 | e42001



paramount for refining patient classification and effective treat-

ment.

Materials and Methods

Clinical and mRNA Data for PETACC-3 Patients
All stage II/III colon cancer patients included in this study were

derived from the PETACC-3 clinical trial [25], with at least 5

years of clinical follow-up for each patient. The age, gender, stage,

MSI (microsatellite-instable) as well as BRAF and KRAS mutation

status of the patient population are listed in Table S1. mRNA

expression data was generated on the ALMAC Colorectal Cancer

DSA platform (Craigavon, Northern Ireland), as reported

previously [26]. Patient and ethics approval for this study was

obtained from the PETACC-3 Translational Research Working

Party (PTRW).

Molecular Inversion Probe Data Generation
DNA extractions were performed on macrodissected formalin-

fixed, paraffin-embedded (FFPE) tumor tissue derived from a

single 5 uM slide from 835 patient samples. Tumor tissue within

each section was identified and labeled by a qualified pathologist

(F. Bosman). For normal controls, DNA was extracted from

samples with sufficient amounts of histopathologically normal

adjacent tissue well away from the tumor margins. DNA was

quantified using the picogreen assay. For samples that yielded less

than the recommended input DNA amount (75 ng), all DNA was

carried forward into the Molecular Inversion Probe (MIP)

amplification, labelling, and hybridization protocols using Affyme-

trix’s OncoScan V1.0 FFPE Express services (Affymetrix, CA).

Samples that failed PCR amplification or displayed a Median

Average Pairwise Difference (MAPD) .0.6 after hybridization

were removed from the final analysis, resulting in 302 tumor

samples along with 44 adjacent normal samples as the normal

baseline comparator. Typically samples below 20 ng of input

DNA failed the MIP amplification cutoff and were not carried

forward to array hybridization. Samples with at least 75 ng of

input DNA universally yielded high quality copy number data

(MAPD,0.6). Results varied for input DNA amounts of 20–

75 ng, where the MAPD.0.6 filter served to eliminate excessively

noisy samples.

Copy Number Data Analysis
Copy number data was analyzed with the Nexus Copy Number

6.0 software (Biodiscovery, Inc., CA, USA). The raw copy number

data for each probe provided by Affymetrix was smoothed by a

quadratic correction provided by NEXUS and centered using

diploid regions. CNA frequency comparisons amongst sample

groups (e.g. MSS versus MSI; stage-II versus stage-III) was

performed using NEXUS default thresholds of .15% difference

and significance p,0.01 (Fisher’s exact test). To generate copy

number segments and minimal common regions (MCRs), we

applied a modified version of the Circular Binary Segmentation

(CBS) algorithm [27] called ‘‘Rank Segmentation’’ in NEXUS.

The p-value cutoff for CBS was 1.0E–6, and segments were

assigned to 1 of 5 bins: amplified (.3.8 copies), gained (2.3 to 3.8

copies), unchanged (1.7 to 2.3 copies), deleted (0.5 to 1.7 copies) or

homozygously deleted (,0.5 copies). For MCR frequency

significance testing, we used a p-value cutoff of ,0.01 from the

statistical Significance Testing for Aberrant Copy number (STAC)

method [28]. Hierarchical clustering of CNA was performed in

NEXUS too (complete linkage, sex chromosomes ignored). To

detect focal amplifications, we applied GISTIC (Genomic

Identification of Significant Targets in Cancer) version 2.0 [29]

using a Q-value cutoff ,0.25. Genes reported in GISTIC2

amplification peaks were further examined if they are enriched in

any biological pathways. We used canonical pathway database

provided by MSigDB [30]. Pathway gene sets with less than 10

members or greater than 500 members were excluded. Fisher’s

exact test was used to access if those genes are over-represented.

FDR was calculated based on 100 permutations where random

sets of genes of same size were tested. We also used Fisher’s exact

test to see if frequencies of certain CNAs differ among patient

groups (stage II vs. III, MSI vs. MSS etc). Survival analysis was

performed using the Kaplan–Meier method with a p value (log-

rank test) cutoff of ,0.01. For analysis of CNA/CNA correlations,

the Pearson correlation was computed at the gene level for all pairs

of genes as described previously [31]. To derive gene level

summaries from the copy number data, we assigned the copy

number values from the segment(s) overlapping each gene: when

there were multiple segments within the gene boundary, we

averaged the copy numbers from those segments. All genome-

based data reported in this manuscript are based on NCBI build

36 (hg18) of the human genome.

Expression Data Analysis
Gene expression data from the PETACC-3 patients was

reported previously [26]. We matched it with gene level copy

number data by ENTREZ ID. Copy number and gene expression

data were simultaneously available for 213 of the 269 MSS

patients with available CNA data. To test cis-correlation between

a gene’s copy number and its own mRNA expression level across

tumors, we categorized patients according to their aberration

status (amplification, gain, no-change, loss or homozygous

deletion) associated to the expression values of probe sets mapping

to the same gene.

Results

Copy Number Aberrations and Microsatellite Instability
33 of the 302 samples in our analysis were microsatellite instable

(MSI): consistent with previous studies [19,32], the average

number of CNAs in MSI tumors (10.266.5) was significantly

smaller (p,0.01, two sample t-test) than the average number of

CNAs in microsatellite stable (MSS) tumors (33.2617.6). Never-

theless, two focal regions were deleted significantly more

frequently in MSI samples: chr16q23.1 (chr16:77,231,391–

77,261,567 bp) in 24.2% of MSI samples vs. 7.1% of MSS

samples (p,0.01), and chr20q11.1 (chr20:28,118,678–28,244,164)

in 24.4% of MSI samples vs. 8.9% in MSS samples (p,0.01).

Interestingly, the only gene contained within the 16 q23.1 locus is

the WWOX tumor suppressor, an inhibitor of the WNT/beta-

catenin pathway [33], which is frequently activated in colon

cancer.

Recurrent CNAs, Novel Oncogenes and Affected
Pathways

Given the relatively low CNA prevalence in MSI tumors, we

focused our analyses on the 269 MSS tumors. As has been

reported previously [7,8,9,10,11,12,13,14,15,16,17], the frequen-

cies of copy number gains and losses across the genome were not

randomly distributed (Figure 1A), with CNAs ranging from single

copy gains and losses of broad chromosomal regions, to focal

homozygous deletions and high-level amplifications (Figure 2).

The most frequent regions of gain encompassed chromosomal

regions 7 p, 8 q, 13 q, and 20 q, and the most frequent regions of

loss encompassed 8 p, 17 p, and 18 q (Figure 1A).

Copy Number Aberrations in Colorectal Cancer
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To gain further insight, we summarized recurrent chromosomal

gains and losses into Minimal Common Regions (MCRs) using

Significant Testing of Aberrant Copy Number (STAC) [28], and

GISTIC [29] to highlight candidate oncogenes in the MCRs

based on the focality and amplitude of copy number change. A

total of 66 MCRs were identified at frequencies above 10%

(Table S2): there were 25 MCRs of gain ranging from 251 Kb to

104 Mb, and 41 MCRs of loss ranging from 286 kb to 138 Mb.

GISTIC helped to refine the MCRs to loci and genes of particular

significance (Table S3). Many of the significant peaks identified

by GISTIC contained established oncogenes including CCND1,

CDX2, EGFR, ERBB2, MET, and MYC (Figure 1B), along

with tumor suppressors such as APC, SMAD4, and TP53. Several

of the oncogenic peaks were driven by high-amplitude focal events

in a subset of tumors (Figure 2), and these focal amplifications led

to significant increases in mRNA expression for several of these

genes. Highly significant GISTIC peaks not associated with well-

established oncogenes or tumor suppressors include 12 p13.33

(Figure 2E, F) and 20 q13.12 (Figure 2G, H), which had

recurrent high-magnitude focal amplifications, as well as

14 q32.31 which, although not highly amplified, had gains of

sufficient recurrence and focality as to render a highly significant

GISTIC Q-value (Figure 1B, Table S3). With the GISTIC

amplicon data, we summarize 114 candidate cancer drivers in

Table S4, which include twelve (10%) established oncogenes such

as MYC, KRAS, and MET. Putative oncogenes including WNK1

(Figure 3A) and HNF4A (Figure 3B) have Q-score, amplified

frequency, and cis-acting effects on mRNA that are comparable to

established oncogenes (Figure S1). Our analysis has narrowed

more than 6,000 genes from MCR regions of the genome to a

manageable number of about 100 for further experimental

validation.

Figure 1. Summary of copy number aberrations detected in 269 MSS stage II/III colon cancer samples. (A) Frequencies of copy number
gain (above axis, blue) and copy number loss (below axis, red) across the human genome. (B) Significance of focal amplifications detected by GISTIC
2.0. Chromosome positions were indicated along the y axis with centromere positions indicated by dotted lines. The ten most significant GISTIC
peaks are shown in red text. Additional GISTIC peaks encoding established oncogenes are in black text. Details for all GISTIC peaks are provided in
Table S3.
doi:10.1371/journal.pone.0042001.g001
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To further search for patterns of affected pathway alterations,

we mapped the list of genes amplified in CRC (Table S4) onto

canonical molecular signaling pathways and cellular processes.

Table 1 shows top canonical pathways possibly affected by the

amplified genes. Cell cycle is one of the most enriched pathways

affected by somatic CNA involving genes such as CCND1, MYC,

TFDP1 and YWHAZ. KEGG ‘‘Pathways in Cancer’’ underlies

the broad spectrum effect of somatic CNAs in targeting multiple

key pathways in cancer simultaneously. More specifically, we also

identified individual cancer-related pathways that are significantly

over-represented among cis-acting genes driven by somatic CNAs,

including ERBB signaling pathway and MAPK kinase signaling

pathway. Taken together, these results suggest that these somatic

CNAs encode novel oncogenic driver genes and potential

therapeutic targets in colon cancer.

CNA Clustering and Non-random CNA Correlations in
CRC

We performed unsupervised hierarchical clustering of the global

CNA data and identified three major clusters. Though we didn’t

find significant associations to age, gender, stage or KRAS

mutation status, we observed that BRAF wild type tumors were

significantly enriched in the largest cluster and BRAF mutants in

one of the smaller clusters (p,0.01). Previously we [26] developed

a BRAF-mutant gene expression signature from the PETACC-3

cohort and studied its prognostic implications. Among 213 MSS

patients with mRNA expression data available, the signature

identified 37 ‘‘BRAFm-like’’ samples (including 8 BRAF mutants)

as well as 176 ‘‘non-BRAFm-like’’ samples. We re-ran clustering

analysis on those 213 samples (Figure 4A), and found very

significant enrichment of ‘‘non-BRAFm-like’’ samples (p,0.01) in

the largest cluster (cluster 2) and ‘‘BRAFm-like’’ samples in cluster

1 (P,0.01, Table 2). Compared to cluster 2, cluster 1 shows

much lower frequencies of amplification/deletion events, especial-

ly on chr13 q, 14 q, 18 q and 20 q (Figure 4B). A closer look

reveals that cluster 1 is completely depleted from CNAs at chr20

while 95% of cluster 2 samples had chr20 amplified. These results

corroborate with the observation of relative lower expression of

chr20 genes in BRAFm-like with respect to the rest of the BRAFwt

samples [26].

We previously reported that in cell lines CNAs at unlinked loci

were frequently correlated to each other and that such correlations

were likely the result of selection [31]. To assess whether a similar

phenomenon was evident in clinical stage II/III MSS colon

cancer, we conducted pair-wise correlations of copy number for all

genes (,22 k) across the genome. As expected, adjacent (linked)

genes were highly correlated (Figure 5A, close to diagonal). At a

higher level some chromosome arms became unlinked (e.g. chr1p

vs. 1 q, 10p vs. 10 q) or anti-correlated (e.g. chr8 p vs. 8 q). In

addition, there were numerous correlations between unlinked loci

(Figure 5A, off-diagonal), suggesting co-selection of these genomic

regions. For example, chromosome 8 p losses were correlated to

Figure 2. Focal amplification of genomic loci in selected stage II/III colon cancer samples. (A–H) Copy number plots for the entire
genome arranged in chromosomal order from the short arm of chromosome 1 (1pter) to the long arm of chromosome X (Xqter) for 8 independent
tumor samples. Amplicons of particular interest are highlighted with arrows, along with established oncogenes. Details regarding all amplicons and
GISTIC peaks are in Table S3.
doi:10.1371/journal.pone.0042001.g002
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losses of chromosomes 17 p and 18, along with gain of

chromosome 20 q. Chromosome 13 gains were correlated to

chromosome 14 losses. The distribution of gene-gene associations

was significantly different than a randomization of the CNV data

(Figure 5B). Similar to what was found in other cancer settings

[31,34] there was a scale-free structure where a few genes were

highly correlated to many other genes, while most genes correlated

to only a few genes. This suggests that a small number of DNA loci

act as hubs in a highly nonrandom hierarchical structure.

Relationship of CNA to Stage and Outcome
To identify individual CNAs that associate with tumor stage, we

compared CNA frequencies between stage II (n = 30) and stage III

MSS samples (n = 239). While both groups had similar patterns of

CNA, a deletion on chromosome 3p14.2 had significantly

(p,0.01) higher frequency in stage III tumors (24.3%) compared

to stage II tumors (3.3%). This locus encodes FHIT, a candidate

tumor suppressor and apoptotic regulator in colorectal cancer

[35], and the higher frequency of deletion in stage III tumors

suggests that loss of FHIT function may contribute to the

progression of colon cancer from a lower to higher stage disease.

The large set of stage II/III MSS colon cancer samples with

associated time-to-relapse, recurrence-free-survival (RFS) and

overall survival (OS) afforded a unique opportunity to identify

CNAs associated with outcome. Using Kaplan-Meier analysis, we

first investigated whether the ch20q amplification revealed by

sample clustering described previously lead to statistically signif-

icant differences in survival probability. A gained MCR on

chromosome 20 q11.21-q13.33 (chr20:29,297,270–

62,435,964 bp) was significantly associated with improved OS in

stage III tumors (p,0.01). GISTIC identified one amplicon in this

MCR on 20q13.33 (chr20:61,440,621–61,778,204 bp) which was

Figure 3. Boxplots for WNK1 (A) and HNF4A’s (B) mRNA expression grouped by CNA status. Tumor samples were categorized by their
CNA status (deletion, loss, normal, gain, amplification) for the indicated gene. The panels show the expression level by category for each probeset
from the ALMAC platform (see Materials and Methods) representing the specific gene. The values were centered for each probeset; categories are
plotted if there was at least one sample in it.
doi:10.1371/journal.pone.0042001.g003

Table 1. Top canonical pathways possibly affected by the amplified genes.

Term P-value FDR* Fold enrichment % tumor amplified

KEGG_ADHERENS_JUNCTION 1.79E-04 4.50E-03 14.37 11.2%

KEGG_CELL_CYCLE 1.35E-03 2.01E-02 8.42 10.4%

KEGG_PATHWAYS_IN_CANCER 1.44E-03 2.32E-02 4.93 9.7%

KEGG_ERBB_SIGNALING_PATHWAY 3.16E-04 5.83E-03 12.39 8.2%

SIG_PIP3_SIGNALING_IN_CARDIAC_MYOCTES 1.68E-03 2.42E-02 12.83 6.3%

BIOCARTA_TEL_PATHWAY 3.90E-05 2.13E-03 44.90 5.6%

KEGG_AXON_GUIDANCE 1.24E-02 7.48E-02 6.27 5.6%

KEGG_MAPK_SIGNALING_PATHWAY 1.77E-02 8.82E-02 4.04 5.6%

*FDR is based on was calculated based on 100 permutations where random sets of genes of same size were tested.
doi:10.1371/journal.pone.0042001.t001
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also significantly associated with improved OS. This region of

approximately 300 kb contains one interesting genes such as

EEF1A2 and PTK6. Anand et al. reported [36] EEF1A2’s over-

expression in about 30% of ovarian tumors and some established

ovarian cancer cells. However, high EEF1A2 protein expression

was associated with significantly increased 20-year survival

probability in women with serous ovarian tumors [37], or in

primary breast tumors, and this protective effect is thought to be

due to EEF1A2’s high expression in reducing the aggressiveness

[38]. PTK6 was also reported [39] as positive associated to

metastases-free survival in breast cancer; and shows strong cis

CN/mRNA correlation in our analysis (Table S4). Here the CNA

data suggest that amplification of the 20 q13.33 locus could be a

significant prognostic marker of CRC cancer.

Besides chr20q amplification, we applied Kaplan-Meier analysis

to assess the relationship of all other MCRs and GISTIC peaks

with RFS and OS. There were no significant associations between

MCRs or GISTIC peaks versus OS or RFS for stage II tumors,

possibly reflecting the limited number of samples in this group

(n = 30). However, a deletion on chromosome 10 p (Chr10:0–

10,743,764 bp) was significantly associated with poor RFS in stage

III tumors alone (p,0.01) or stage II/III tumors combined

(p,0.01), as well as poor OS in stage II/III tumors combined

(p,0.01). Similarly, a deleted MCR on 19 p13.12

(chr19:14,425,490–15,580,441 bp) was significantly associated

with OS (p,0.01) in stage II/III tumors combined (Figure S2).

Discussion

The main goals of this study were to develop a comprehensive

overview of copy number aberrations (CNAs) and their associated

Figure 4. Unsupervised hierarchical clustering analysis based of genome-wide copy number data. (A) Three major clusters. The right-
hand annotation indicates, in order, the BRAFm (in yellow, BRAF mutants; in blue, BRAF wild-types), KRASm (mutants in green), and BRAFm-like (in
green, BRAFm-like; in red, non-BRAFm-like). Purple color indicates missing values. (B) Genome-wide frequency plot of copy number gain (above axis,
blue) and copy number loss (below axis, red) across three major clusters.
doi:10.1371/journal.pone.0042001.g004

Table 2. Unsupervised hierarchical clustering indentified
three major CNA clusters.

Cluster samples
BRAFm-
like

non-
BRAF-likeBRAFm BRAFwt missing

1 34 16* 18 4* 27 3

2 153 12 141* 2 144* 7

3 26 9 17 2 22 2

Subtotal 213 37 176 8 193 12

*indicates significant over-representation in the category.
doi:10.1371/journal.pone.0042001.t002
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genes in stage II/III colon cancer, to elucidate the underlying

biology, and to associate CNAs with outcome. Regions of

recurrent and focal CNA identified in these tumors highlight

genomic regions most likely to encode oncogenes and tumor

suppressors. Established oncogenes identified in this study that

represent positive controls include MYC, CDX2, EGFR, MET,

ERBB2, and CCND1.

The most prominent novel amplicons identified in this study

include 12 p13.33 and multiple loci on 20 q (20 q11.21,

20 q13.12, 20 q13.31). The 12 p13.33 amplicon encodes the

intriguing candidate WNK1, a member of the WNK family of

serine/threonine kinases which affect MAPK signaling and a

variety of cancer hallmarks including cell cycle progression,

evasion of apoptosis, invasion and metastasis, and metabolic

adaptation [40]. The complex pattern of gains and amplification

on chromosome 20 q suggest multiple oncogenic drivers on this

chromosome arm, consistent with observations in breast tumors

[41]and other cancer types. The 20 q13.12 amplicon, which was

observed in multiple tumors (Figure 2G, 2H) and is the most

significant GISTIC peak on 20 q, encodes 11 genes, none of

which have been unequivocally described as oncogenic drivers in

colon cancer. Nonetheless, the reported functions of some of these

genes suggest that further investigation is warranted. For example,

the transcription factor HNF4A controls epithelial cell polarity and

promotes gut neoplasia in mice [42]. WISP2 (WNT1 Inducible

Signaling Pathway protein 2/CCN5) regulates the activity of the

transforming growth factor â (TGFâ) signaling pathway and

expression of genes associated with the epithelial-to-mesenchymal

transition [43]. The peak at 20 q13.31 encodes BMP7, a member

of the TGFâ superfamily of proteins whose overexpression in

colorectal cancer significantly correlates with markers of patho-

logical aggressiveness such as liver metastasis and is an indepen-

dent prognostic factor of overall survival [44]. Functional

characterization of these and other candidate oncogenes in colon

cancer cell culture, patient-derived xenografts, or genetically

engineered mouse models will help elucidate potential functional

implications. Pathway analysis presented previously provides not

only a better understanding of the possible biological context of

candidate CNA drivers but also help to infer other genes on the

altered pathway for which therapeutic options may be available.

On the other hand, survival analysis shows improved overall

survival for the sample segment with chr20 q13.33 amplification.

This association contrasts with findings of another group who

reported amplification of 20 q13 is indicating worse overall

survival in sporadic colorectal cancers [45]. The exact basis for

this discrepancy with our findings for is not clear, although the

analyses of Aust et al. were on a substantially smaller cohort (120

samples).

Our analyses of associations between CNA and outcome in this

set of stage II/III colon cancers revealed three loci that were

significantly associated with overall survival (OS) or recurrence

free survival (RFS). Deletion of the distal tip of chromosome 10 p

(10 p15.3-p14) was associated with poor OS and RFS, while an

interstitial deletion of chromosome 19 p (19 p13.12) was associ-

ated with poor OS, and gain of 20 q was associated with

significantly better OS in stage III tumors. While 10 p deletions,

19 p deletions, and 20 q gains have been previously reported in

stage II/III colon cancers [16], none of these loci have been

previously linked to outcome in these tumors. Conversely, we did

not observe significant associations of outcome to previously

reported CNAs such as deletion of 16 p13.2 in stage II/III colon

cancer [46], or deletion of 5 q34 and gain of 13 q22.1 in stage II

tumors [17]. One potential explanation for these apparent

discrepancies may relate to the limited power of the respective

studies. For stage III MSS tumors, our results represent analyses of

markedly higher sample numbers (n = 239) compared to published

work (for e.g. 31 stage III tumors in [46]). For stage II MSS

tumors, our sample set is underpowered, representing 30 samples

compared to 41 [46] and 39 [17] tumors in earlier studies. These

results emphasize the need for comprehensive analyses of large

collections of clinically annotated tumor samples such as the stage

III MSS tumor set described in this work.

We also reported here a significant non-random correlation of

unlinked DNA loci with a scale-free structure in stage II/III colon

cancer. These highly connected structures suggest a cycle of

random changes in copy number followed by selection of a subset

of changes that confer a selective advantage to tumor initiation

and progression. While this is a long standing idea in cancer,

correlation between unlinked loci suggests that highly ordered

structures can emerge, potentially focused around biological

functions of importance to the tumor. Future analyses could assess

the effect of unlinked copy number correlations on gene

expression, including enrichment of pathways and networks, and

determining if the mRNA controlled by a pair of correlated loci

overlap, where an independent effect of each loci was observable.

This would identify pathways that were selectively altered during

tumorigenesis and which therefore may represent new targetable

functions.
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Background: Differences exist between the proximal and distal colon in terms of developmental origin, exposure to pat-
terning genes, environmental mutagens, and gut flora. Little is known on how these differences may affect mechanisms of
tumorigenesis, side-specific therapy response or prognosis. We explored systematic differences in pathway activation
and their clinical implications.
Materials and methods: Detailed clinicopathological data for 3045 colon carcinoma patients enrolled in the PETACC3
adjuvant chemotherapy trial were available for analysis. A subset of 1404 samples had molecular data, including gene ex-
pression and DNA copy number profiles for 589 and 199 samples, respectively. In addition, 413 colon adenocarcinoma
from TCGA collection were also analyzed. Tumor side-effect on anti-epidermal growth factor receptor (EGFR) therapy
was assessed in a cohort of 325 metastatic patients. Outcome variables considered were relapse-free survival and
survival after relapse (SAR).
Results: Proximal carcinomas were more often mucinous, microsatellite instable (MSI)-high, mutated in key tumorigenic
pathways, expressed a B-Raf proto-oncogene, serine/threonine kinase (BRAF)-like and a serrated pathway signature, re-
gardless of histological type. Distal carcinomas were more often chromosome instable and EGFR or human epidermal
growth factor receptor 2 (HER2) amplified, and more frequently overexpressed epiregulin. While risk of relapse was not
different per side, SAR was much poorer for proximal than for distal stage III carcinomas in a multivariable model including
BRAF mutation status [N = 285; HR 1.95, 95% CI (1.6–2.4), P < 0.001]. Only patients with metastases from a distal car-
cinoma responded to anti-EGFR therapy, in line with the predictions of our pathway enrichment analysis.
Conclusions: Colorectal carcinoma side is associated with differences in key molecular features, some immediately
druggable, with important prognostic effects which are maintained in metastatic lesions. Although within side significant
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molecular heterogeneity remains, our findings justify stratification of patients by side for retrospective and prospective
analyses of drug efficacy and prognosis.
Key words: colon cancer, expression profiling, mutations, oncogenic pathways, survival

introduction
Current understanding of molecular mechanisms involved in
colorectal cancer (CRC) supports three main molecular path-
ways. The almost classical chromosomal instability (CIN)
pathway is based on the seminal publication of Vogelstein and
contains most of the kirsten rat sarcoma viral oncogene
homolog (KRAS) mutated CRCs. The mismatch repair deficient
or microsatellite instable (MSI) pathway was discovered through
elucidation of the gene mutations responsible for Lynch syn-
drome and is characterized by a hypermutating state and fre-
quent B-Raf proto-oncogene, serine/threonine kinase (BRAF)
V600E mutation. The CpG island methylator phenotype
(CIMP) pathway goes along with the occurrence of serrated pre-
cursor lesions and is also strongly related to the MSI pathway,
notably through frequent methylation of the mutL homolog 1
promoter, which confers MSI-high status [1]. The pathways are
sufficiently distinct to be conceptually valid, but they also signifi-
cantly overlap. This makes the development of new molecular
modalities of classification of CRC a complex task [2].
Different approaches toward molecular classification have been

undertaken, based on gene expression profiles and the TCGA
whole-genome sequencing effort. We and others have proposed
gene expression-based molecular subgroups [3–6] that share
(groups of) molecular characteristics while maintaining significant
intragroup heterogeneity. Typical examples are the segregation of
clinically significant subgroups such as those BRAF-mutated or
expressing a BRAF-mutated gene expression signature [7] and
MSI or expressing an MSI-like signature [8]. Signatures and sub-
groups identified by them intend to define patient categories for
which treatment needs and/or response to treatment may differ.
The systematic attempt toward subclassification is epitomized

in the TNM staging approach and stage grouping as its deriva-
tive. Anatomic characteristics related to tumor spread still
dictate to a large extent, even in this era of molecular scrutiny,
how a patient will be treated. Strikingly, tumor side in terms of
proximal or distal colon has gained in prominence in recent
years. Initially, this was recognized mostly through the strong
preference for the proximal colon for cancers associated with
the Lynch syndrome. This paved the way toward the recognition
that proximal carcinomas are more often MSI, BRAF-mutated
and express the CIMP phenotype [9, 10]. This might be related
to differences in biology between the proximal and distal colon,
with potentially significant impact on tumorigenesis in these re-
spective sides. However, little is known about the mechanisms
responsible for such tumor heterogeneity. One distinctive fea-
ture is represented by their embryonic derivation, which is the
midgut and the hindgut for the proximal and distal colon,
respectively. The pathways involved in the development of these
segments have been extensively explored and should be taken
into consideration when the biology of their derived cancers is
considered. Additionally, the differences in luminal content and
bacterial flora between the left and right colon may influence
oncogenesis [11]. Therefore, tumor location is a major source

of biological heterogeneity, potentially with prognostic and pre-
dictive implications in view of the fact that the mortality rate is
higher in proximal than in distal colon cancer (CC) [12–15].
We hypothesized that the carcinogenic pathway is different

between proximal and distal colon tumors, and that this would
be reflected in size-associated differences in the molecular char-
acteristics of the tumors. This might have profound prognostic
and therapeutic implications. We tested this by comparing clini-
copathological and molecular characteristics of carcinomas in
the proximal versus distal colon in two large CC cohorts.

materials andmethods

patients
Clinicopathological data were available for a cohort of 3045 CC patients en-
rolled in the PETACC3 adjuvant chemotherapy trial. A subset of those
patients had molecular data (N = 1404), including BRAF, KRAS, and
PIK3CA mutation status, MSI status, and 18q arm loss of heterozygosity
(LOS). Parallel gene expression (N = 589) and DNA copy number profiles
(N = 199) were also available [16, 17]. Clinicopathological (N = 413) and
molecular information (somatic mutations N = 199, RNAseq N = 325) for
additional CC patients were obtained from the TCGA data portal (https://
tcga-data.nci.nih.gov/tcga/) [18].

Gene expression profiles of 84 normal colon samples were derived from
four datasets (TCGACC, GSE14333, GSE8671, and GSE41258).

To assess tumor side-effect on response to anti-epidermal growth factor
receptor (EGFR) therapy, we studied a cohort of 435 chemorefractory meta-
static CRC patients [19].

Tumors located in the splenic flexure, descending colon, and sigmoid
colon were defined as proximal, while cecum, ascending, and hepatic flexure
were classified as distal. Intraperitoneal rectum and distal rectum were
excluded from the analysis. Transverse CCs (for the lack of clarity as to the
exact location) were included exclusively when assessing feature distribution
along the bowel. Further information is given in supplementary Materials
and Methods, available at Annals of Oncology online.

statistical analysis
Gene expression and copy number data analyses were processed as described
elsewhere [3, 16]. Biological interpretation was carried out using tools and
signatures described in supplementary Materials and Methods, available at
Annals of Oncology online. We applied a Bayesian model selection approach
to test if variables could be explained better by a flat, dichotomous, or a
continuum model of variation along the bowel.

We assessed differences in the distribution of categorical variables with
Fisher’s test or Pearson’s χ2 test, as indicated. We used the Cox proportional
hazards model to assess the association of tumor side with time-to-event end
points and Kaplan–Meier method for figures.

results
The frequency distribution of the clinicopathological features
along the bowel was analyzed using the PETACC3 and TCGA
cohorts. Proximal carcinomas were associated with higher age,
node-negative stage, high grade, and mucinous differentiation
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(supplementary Table S1 and S2, available at Annals of Oncology
online). Furthermore, proximal carcinomas disseminated more
often to the abdominal viscera and lymph nodes, whereas distal
carcinomas had a higher frequency of liver and chest metastases.
Concerning the distributions of the variables along the bowel,
including, for this, the transverse colon (supplementary Table S3
and S4, available at Annals of Oncology online) most of them
favored a biphasic model, with the exception of MSI in the
PETACC3 dataset which showed a gradual distribution. Based
on these findings, we explored the molecular bases of such dif-
ferences starting from the colon normal mucosa.
Gene expression profiles of 84 normal samples (34 proxi-

mal and 50 distal) collected from four public datasets were ana-
lyzed to assess the effect on gene expression in normal mucosa
based on their location. In a meta-analytical approach including
colon side as a predictor, we identified 351 genes differentially
expressed—157 overexpressed in the proximal and 194 in the
distal colon (supplementary Table S5, available at Annals of
Oncology online). Notably, the expression of some HOX genes
involved in colon development (HOXC6, HOXB6, and HOXB13)
as well as of the EGFR ligand epiregulin (EREG) was different
according to side. Gene set enrichment analysis using DAVID
evidenced that genes overexpressed in the proximal colon were
associated with an inflammatory response and drug metabolism
(notably of cytochrome P450 superfamily—supplementary
Table S6, available at Annals of Oncology online).

Difference in gene expression between proximal and distal
tumors was explored in 589 CC samples (211 proximal and 378
distal) from the PETACC3 dataset, using a linear model controlling
for potential confounders such as BRAF and KRAS mutation
status and MSI. After correction for multiple testing, 576 genes
were found differentially expressed (158 genes up-regulated in
proximal and 418 in distal carcinomas—supplementary Table S7,
available at Annals of Oncology online), showing mainly a
biphasic midgut/hindgut pattern, as for the clinicopathological
features. Overall, gene expression fold-changes between the two
sides were small in magnitude.
Only 20 genes (including two HOX genes—HOXC6 and

HOXB13) were found to be in common with the 351 genes
found differentially expressed in the normal colon. Notably,
within the group of BRAF-mutated carcinomas (which are
mostly proximal), no differences were found between proximal
and distal carcinomas (data not shown).
To elucidate if tumor side influences the type of pathways

exploited by tumor cells to promote and sustain CC tumori-
genesis, we selected a set of gene signatures representing the
main biological processes involved in CC (details in supple-
mentary Table S8, available at Annals of Oncology online). The
level of those signatures was compared between sides in 589
CC from the PETACC3 dataset and 325 from the TCGA
dataset and results combined meta-analytically. Figure 1 sum-
marizes the strength and direction of the association between
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the signatures and tumor side considering all samples or focus-
ing exclusively on microsatellite stable (MSS), BRAF, and
KRAS wild-type patients. BRAF-like, MSI-like, and serrated
adenoma signatures showed the strongest bias between sides,
suggesting that these are the most prevalent signatures distin-
guishing proximal from distal tumors. Notably, this difference
is also observed in the set of MSS, KRAS, and BRAF wild-type
tumors (supplementary Figure S1, available at Annals of
Oncology online). In the whole patient cohort, we also found a
significant positive association between proximal tumors and
T-cell activation, JAK-STAT, angiogenesis, apoptosis, RAS,
and mitogen-activated protein kinase (MAPK) activation. In
contrast, distal carcinomas were associated with WNT, MYC,
and SCR activation as well as the presence of intestinal stem
cells. Notably, distal MSS and BRAF and KRAS wild-type
carcinomas were also associated with human epidermal
growth factor receptor 2 (HER2) and EGFR activation signal-
ing, which parallels the observation that EREG (EGF ligand)
was among the most overexpressed genes in distal carcinomas.
Copy number variation (CNV) analysis was carried out on a

subset of 199 patients (127 distal and 72 proximal) from
the PETACC3 study. Distal carcinomas showed a significantly
higher proportion of CIN+ patients (57%) than proximal
carcinomas (40%) (χ2 test, P = 0.029), as well as a higher
number of amplification/deletions (supplementary Figure S2,
available at Annals of Oncology online). Regions on chromo-
somes 10, 11, 14, 18, and 20 were altered with different fre-
quency (supplementary Table S9 and Figure S3 and S4, available
at Annals of Oncology online). Notably, gain of 20q and loss of
18q were found significantly more often in distal carcinomas
(supplementary Figure S2 and Table S1, available at Annals of
Oncology online), which corroborate overexpressed in distal
tumors of a significant proportion (20%) of genes located on
20q (Fisher’s test, P < 0.0001).
Chromosomal regions hosting receptor tyrosine kinases were

more often amplified in distal (60/127, 47%) than in proximal
(23/72; 32%) carcinomas, including the ErbB family members
HER2 and EGFR (16/127 versus 1/72, Fisher’s test P < 0.001;
supplementary Figure S5, available at Annals of Oncology
online).
Mutation frequency was analyzed in 199 tumors (78 distal and

121 proximal) from the TCGA CC collection. As previously
described [18], mutations were more frequent in MSI-high than
in MSS carcinomas (data not shown). However, in proximal MSS
carcinomas, the number of deleterious mutations was higher
than in distal MSS carcinomas (supplementary Figure S6, avail-
able at Annals of Oncology online), even after removing all hyper-
mutant tumors (non-silent mutation rate >450). A similar trend
was also observed when considering only oncogenes, indicating
that the higher mutation rate was potentially an important
feature of proximal tumors beyond the MSI/hypermutated status.
This was confirmed by the observation that important sig-

naling pathways such as MAPK, ErbB, TGF-beta, and insulin
signaling pathways were found more frequently mutated in pro-
ximal than in distal carcinomas (supplementary Table S10,
available at Annals of Oncology online). As supportive evidence,
we found a similar mutation bias in the PETACC3 dataset for
oncogenes, such as BRAF, KRAS, and PIK3Ca (supplementary
Table S1, available at Annals of Oncology online).

We explored the association of tumor side with relapse-free
survival (RFS) and survival after relapse (SAR) in the PETACC3
cohort. Surprisingly, stage II proximal carcinomas relapsed
significantly less frequently than those in the distal colon (sup-
plementary Figure S7, available at Annals of Oncology online).
However, this appeared to be entirely due to the MSI popula-
tion (mostly proximal), as this was no longer found when only
MSS carcinomas were considered. For stage III patients, no
effect of side was found on RFS (supplementary Figure S8,
available at Annals of Oncology online). Multivariable analysis
confirmed that side is not an independent prognostic factor for
RFS (supplementary Table S11, available at Annals of Oncology
online).
In contrast, when stage III patients with a proximal carcinoma

became metastatic, they had a significantly worse survival than
those with a metastatic distal carcinoma [HR 1.97, 95% CI (1.6–
2.3), P < 0.001; supplementary Figure S7, available at Annals of
Oncology online]. Multivariable analysis showed that this effect
was independent of MSI and KRAS or BRAF mutation status
[HR 1.7, 95% CI (1.3–2.4), P < 0.001; supplementary Table S11,
available at Annals of Oncology online]. The BRAF signature
score, which is higher in proximal carcinomas and itself highly
prognostic for SAR [7], outcompeted side in a multivariable
model (data not shown), although in the non-BRAF mutant-
like subset side was still a significant factor (supplementary
Figure S8, available at Annals of Oncology online).
In the smaller stage II proximal carcinoma cohort, we also

observed a trend toward poorer outcome. This was confirmed in
an independent untreated population (supplementary Figure S8,
available at Annals of Oncology online).
In view of our finding that, in distal tumors, the frequency of

amplification of ErbB family members is higher and the activa-
tion of EGFR signaling stronger, we explored if EGFR inhibitor
efficacy is affected by tumor side. To this end, we studied 435
metastatic chemorefractory patients (126 or 29% proximal and
309 or 71% distal), of whom 207 were KRAS and BRAF wild-
type (WT2) and had been treated with cetuximab combined
with chemotherapy [19].
Overall, in univariable models, patients with a distal carcin-

oma showed better progression-free survival [PFS; 21 weeks
(95% CI 19–24 weeks)] than those with a proximal carcinoma
[13 weeks (95% CI 11–17 weeks); P < 0.001; supplementary
Figure S9, available at Annals of Oncology online]. This was
largely due to patients with a WT2 carcinoma, of whom the
median PFS was 18 weeks in case of a proximal carcinoma (95%
CI 11–31 weeks) but 30 weeks in case of a distal carcinoma
(95% CI 26–34 weeks, P = 0.02). In contrast, KRAS or BRAF-
mutated carcinomas did not show any difference in outcome
according to side (data not shown).

discussion
It is now clear that CRC is a molecularly heterogeneous disease
[3–6], and that this heterogeneity should be used to stratify
patients for optimal response to current and novel therapeutic
strategies. We confirm the emerging notion that a significant
part of this heterogeneity is captured by the anatomic location
of the tumor. However, we were not able to confirm that those
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changes occur gradually along the bowel, as previously hypothe-
sized [10].
We found differences in gene expression between the prox-

imal and distal normal colon, which mostly overlapped with
those found by LaPointe et al. [20], but which did not emerge
as significant in the differences between proximal and distal
carcinomas.
We confirm that proximal tumors are more often MSI and

hypermutated, which is at least in part due to their deficient
DNA mismatch repair status. However, in both the PETACC3
and TCGA series, even non-hypermutant proximal MSS carcin-
omas harbor more potentially deleterious mutations, including
mutations of KRAS, BRAF, and PIK3Ca. We observed a higher
frequency of BRAF-mutated, BRAF score, and serrated signature
expressing proximal carcinomas, as was also found in mouse
models recapitulating human BRAFV600E mutated serrated lesions
with an MSI phenotype [21]. Proximal carcinomas, often charac-
teristically mucinous, densely infiltrated with tumor-infiltrating
lymphocytes, and with activated MAPK signaling, might develop
from precursor lesions driven by pathways which are associated
with side-specific cellular characteristics, such as tolerance to DNA
repair defects and to oncogenic stress. In addition, environmen-
tal factors like bacterial toxins or mutagenic CYP450

metabolites, which increase the mutation rate, may contribute
to the specific characteristics of these cancers [11].
In contrast, distal carcinomas characteristically harbor nu-

merous large chromosomal alterations (notably gain of 20q and
loss of 18q), for which the responsible mechanisms are not fully
understood. Loss of 18q [22] as well as activation of EGF signal-
ing, which induce the expression of AURKA [23], might be
implicated. We found HER1 and HER2, directly druggable
targets, amplified in 12% of distal carcinomas (9% of which
wild-type for KRAS and BRAF) and gene expression evidence of
activation of the EGFR pathway largely restricted to the distal
colon. The observation that, in the adenomatous polyposis coli
mouse model, the disruption of the pan-ErbB-negative regulator
LRIG1 predominantly induces distal neoplasms [24] supports
the hypothesis of an important contribution of EGF signaling to
distal colon carcinogenesis.
These differences in mutation rate and genomic instability

between the two colon sides are striking and need to be better
understood both in terms of their bearing on prognosis as well as
response to DNA repair targeting chemotherapies. Multivariable
analyses, containing all major known risk factors including
BRAF and KRAS mutations, showed that side is an independent
prognostic factor for SAR. Furthermore, BRAF mutant or BRAF-
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like distal carcinomas have poorer SAR and RFS [7]. We hy-
pothesize that metastases of proximal colon carcinomas have an
increased mutation rate and higher cellular plasticity, potentially
exacerbated by the effects of chemotherapy, with as a potential
consequence a deleterious effect of (neo)adjuvant therapy. The
combination of hypermethylation and a hypermutant state may
induce, in metastases of proximal carcinomas, resistance to the
current, mostly 5-fluorouracil-based, chemotherapeutic regimens.
Our current working hypothesis is that proximal carcinomas have
a poor prognosis under current best care, which should be
confirmed by reanalysis by tumor side of all major CRC trials.
Efficacious treatment of proximal carcinomas might require com-
pletely different drug regimens.
Our observations of an active EGFR signaling in distal car-

cinomas also suggest that those tumors benefit significantly
more from anti-EGFR agents than proximal carcinomas, which
was supported by our results obtained from a single-arm study.
This finding also emerged recently from the NCIC-CTG-
CO.17 reanalysis of cetuximab monotherapy versus best sup-
portive care and emphasizes that benefit is restricted to proximal
carcinomas [25].
In summary, the molecular and clinical characteristics of

proximal and distal colon carcinomas are significantly different
(as is summarized in Figures 2 and 3) and show to go beyond
the simple MSI–MSS grouping. It remains to be seen if the
findings hold also in advanced diseases, under-represented in
our study. Tumor location is yet another simplistic subdivision
of CRC, but it does go along with significant and characteristic
molecular heterogeneity based on differences in biology, which
is potentially highly relevant for therapeutic decision-making.
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Fourfold increased detection of Lynch syndrome
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Background: Recognising colorectal cancer (CRC) patients with Lynch syndrome (LS) can increase life expectancy of
these patients and their close relatives. To improve identification of this under-diagnosed disease, experts suggested
raising the age limit for CRC tumour genetic testing from 50 to 70 years. The present study evaluates the efficacy and
cost-effectiveness of this strategy.
Methods: Probabilistic efficacy and cost-effectiveness analyses were carried out comparing tumour genetic testing of
CRC diagnosed at age 70 or below (experimental strategy) versus CRC diagnosed at age 50 or below (current practice).
The proportions of LS patients identified and cost-effectiveness including cascade screening of relatives, were calculated
by decision analytic models based on real-life data.
Results: Using the experimental strategy, four times more LS patients can be identified among CRC patients when com-
pared with current practice. Both the costs to detect one LS patient (E9437/carrier versus E4837/carrier), and the
number needed to test for detecting one LS patient (42 versus 19) doubled. When family cascade screening was
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Distal and proximal colon cancers differ in terms
of molecular, pathological, and clinical features
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abstract-results
Proximal carcinomas were more often mucinous, microsatellite
instable (MSI)-high, mutated in key tumorigenic pathways,
expressed a B-Raf proto-oncogene, serine/threonine kinase
(BRAF)-like and a serrated pathway signature, regardless of
histological type. Distal carcinomas were more often chromo-
some instable and EGFR or human epidermal growth factor re-
ceptor 2 (HER2) amplified, and more frequently overexpressed
epiregulin. While risk of relapse was not different per side, SAR
was much poorer for proximal than for distal stage III carcin-
omas in a multivariable model including BRAF mutation status
[N = 285; HR 1.95, 95% CI (1.6–2.4), P < 0.001]. Only patients
with metastases from a distal carcinoma responded to anti-
EGFR therapy, in line with the predictions of our pathway en-
richment analysis.

materials and methods

patients
Clinicopathological data were available for a cohort of 3045 CC patients
enrolled in the PETACC3 adjuvant chemotherapy trial. A subset of those
patients had molecular data (N= 1404), including BRAF, KRAS, and PIK3CA
mutation status, MSI status, and 18q arm loss of heterozygosity (LOS). Parallel
gene expression (N= 589) and DNA copy number profiles (N= 199) were also

available [16, 17]. Clinicopathological (N= 413) and molecular information
(somatic mutations N = 199, RNAseq N = 325) for additional CC patients were
obtained from the TCGA data portal (https://tcga-data.nci.nih.gov/tcga/) [18].

Gene expression profiles of 84 normal colon samples were derived from four
datasets (TCGA CC, GSE14333, GSE8671, and GSE41258). To assess tumor
side-effect on response to anti-epidermal growth factor receptor (EGFR) therapy,
we studied a cohort of 435 chemorefractorymetastatic CRC patients [19].

Tumors located in the splenic flexure, descending colon, and sigmoid
colon were defined as distal, while cecum, ascending, and hepatic flexure
were classified as proximal. Intraperitoneal rectum and distal rectum were
excluded from the analysis. Transverse CCs (for the lack of clarity as to the
exact location) were included exclusively when assessing feature distribution
along the bowel. Further information is given in supplementary Materials
and Methods, available at Annals of Oncology online.
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A B S T R A C T

Purpose
Our purpose was development and assessment of a BRAF-mutant gene expression signature for
colon cancer (CC) and the study of its prognostic implications.

Materials and Methods
A set of 668 stage II and III CC samples from the PETACC-3 (Pan-European Trails in Alimentary Tract
Cancers) clinical trial were used to assess differential gene expression between c.1799T�A (p.V600E)
BRAF mutant and non-BRAF, non-KRAS mutant cancers (double wild type) and to construct a gene
expression–based classifier for detecting BRAF mutant samples with high sensitivity. The classifier was
validated in independent data sets, and survival rates were compared between classifier positive and
negative tumors.

Results
A 64 gene-based classifier was developed with 96% sensitivity and 86% specificity for detecting
BRAF mutant tumors in PETACC-3 and independent samples. A subpopulation of BRAF wild-type
patients (30% of KRAS mutants, 13% of double wild type) showed a gene expression pattern and
had poor overall survival and survival after relapse, similar to those observed in BRAF-mutant
patients. Thus they form a distinct prognostic subgroup within their mutation class.

Conclusion
A characteristic pattern of gene expression is associated with and accurately predicts BRAF
mutation status and, in addition, identifies a population of BRAF mutated-like KRAS mutants and
double wild-type patients with similarly poor prognosis. This suggests a common biology between
these tumors and provides a novel classification tool for cancers, adding prognostic and biologic
information that is not captured by the mutation status alone. These results may guide therapeutic
strategies for this patient segment and may help in population stratification for clinical trials.

J Clin Oncol 30:1288-1295. © 2012 by American Society of Clinical Oncology

INTRODUCTION

Activation of the KRAS/BRAF/MEK/ERK cascade is
believed to occur frequently in colorectal (CRC)
cancer on the basis of the observed 40% incidence of
KRAS mutations and 10% to 15% incidence of
BRAF mutations.1-4 KRAS and BRAF mutations oc-
cur in a mutually exclusive pattern in CRC, which
has long been interpreted as a sign of functional
redundancy. However, these mutations occur in dif-
ferent histopathologic subtypes of CRC,5,6 and we
recently showed7 that the prognosis of patients with
KRAS and BRAF mutant metastatic CRC is quite
different, with a clearly worse prognosis for BRAF-
mutant disease. It has been suggested this could be
due to higher levels of mitogen-activated protein

kinase activation in BRAF-mutant (BRAFm) colon
cancer.8,9 Unlike the majority of KRAS-mutant
(KRASm) CRCs, BRAFm metastatic CRCs do not
respond to any current chemotherapy, and the out-
come of patients with BRAFm CRC is similar to that
of untreated patients.

Our main objective was to better unders-
tand the underlying biology of BRAFm CRCs as
captured by gene expression. We developed a
BRAFm gene signature that allowed an accurate
identification of BRAFm samples, and which,
when applied to BRAF wild-type samples, identi-
fied additional colon cancer (CC) samples that
manifested a similar gene expression pattern. Al-
though a substantial amount of work has been
dedicated to the development of BRAFm gene
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expression signatures in melanoma,10-12 to the best of our knowledge,
there is no such published work in the CC context. Taking advantage
of a large series of tumors with gene expression and mutation data
from the PETACC-3 (Pan-European Trails in Alimentary Tract
Cancers) clinical trial,13 we studied the genes differentially ex-
pressed between c.1799T�A (p.V600E) BRAFm and double-wild-
type (WT2) tumors, defined as non-BRAF mutant, non-KRAS
mutant. We purposely excluded the KRASm tumors from this com-
parison because it was unclear whether KRASm carcinomas had over-
lapping biology with BRAFm. Next, we built a classifier able to
recognize with high sensitivity BRAFm CCs in our own and external
data sets.

When the BRAF classifier was applied to the whole population, it
identified a BRAF wild-type subpopulation, with similar gene expres-
sion and prognostic characteristics. Approximately 62% of these
BRAFm-like tumors were KRASm (30% of all KRASm were BRAFm-
like),withtherestbeingWT2(13%ofallWT2). Inourdata, theBRAFm-
like population represented 18% of CCs. This intriguing finding
suggests a common biology between these tumors, not predicted by
the mutation status. The results obtained show that our current clas-
sifications of tumors as KRAS- or BRAF-mutant or mitogen-activated
protein kinase–active versus nonactive are inadequate to capture the
whole underlying biology and clinical behavior.

MATERIALS AND METHODS

Tumor Samples and Data Preparation

Within the PETACC-3 clinical trial,13 formalin-fixed paraffin-
embedded tissue blocks were collected after cancer diagnosis and indepen-
dently of future research plans, and DNA was extracted from 1,404
microdissected tissue sections. The analysis of KRAS exon 2 and BRAF
exon 15 was performed by allele-specific real-time polymerase chain reac-
tion.7 The mutation status has been confirmed for all samples by a second
analysis, using Sequenom.14 RNA of sufficient quantity and quality was ex-
tracted from 895 samples, and gene expressions were measured on the AL-
MAC Colorectal Cancer DSA platform (Craigavon, Northern Ireland)—a
customized Affymetrix chip with 61,528 probe sets mapping to 15,920 unique
Entrez Gene IDs—in two phases (phase 1: n � 322, phase 2: n � 573). In total,
688 unique samples passed the final quality control (phase 1: n � 265 [82.3%],
phase 2: n � 423 [73.8%]) and were used in subsequent analysis (Data Sup-
plement). Of this series of CCs, 257 (37.4%) were KRAS mutated, whereas
BRAF mutation was detected in 47 (6.8%) of the cases (Data Supplement).

The stage III subset included all samples for which profile data could be
obtained and is thus representative of the clinical population of the trial. The
stage II subset included all patients with relapse for whom profile data could be
obtained and is thus also representative of this group, whereas from the
nonrelapsing patients, a randomly selected population was profiled.

Three additional independent data sets15-17 were used for validation of
the signature, whereas a fourth data set,18 with available survival information,
was used for validating the prognostic value of the signature.

Statistical Analysis

PETACC-3 gene expression data were retrospectively analyzed to derive
the BRAF gene signature discriminating between c.1799T�A (p.V600E)
BRAFm and double-wild-type (WT2; BRAF and KRAS wild-type) tumors.
Samples with missing mutation information (n � 39) were discarded from the
gene signature development, but were included later in the survival analysis.

Gene expression data were normalized using RMA (Robust Microchip
Average)19 and summarized at the gene level by choosing the probe set with the
highest standard deviation as a representative of each gene, in each data
set individually.

Differentially expressed genes were obtained by fitting multivariate linear
models (using LIMMA20 package) to probe set–level data to fully exploit the

potential of the platform. To account for known association between micro-
satellite instability-high (MSI-H), BRAFm, and right-sided tumors,7 the linear
model for the whole population included factors for BRAF mutation, MSI
status, and tumor site (all binary variables). For the microsatellite stable (MSS)
subpopulation, the model included only the BRAF mutation status and tumor
site. The false discovery rate was controlled by Benjamini-Hochberg proce-
dure21 and required to be at most 1%, whereas the minimum absolute log-fold
change was 0.585 (� log2 1.5). As the MSI-H subpopulation was small and
consisted only of right-sided samples, the differentially expressed genes were
derived by comparing BRAFm and WT2 only in the right colon, with a false
discovery rate less than 25% and no constraint on the fold change.

For signature generation, an adapted version of the top scoring pairs
algorithm22 (multiple top scoring pairs [mTSP]; Data Supplement) was used,
resulting in gene pairs deemed as the most informative in the process of
classifier construction. The final classification model consisted of two groups
of genes (G1 and G2), and the prediction was made comparing the averages of
these groups: If, for a given sample, the average of G1 was smaller than the
average of G2, then the sample was predicted to be BRAFm, otherwise WT2.

We also defined a BRAF score (BS) as the difference between the average
expression of G2 genes and the average expression of G1 genes (from the
mTSP model) and used it to analyze the stratification for different threshold
values (a threshold of 0 leading to the original decision rule). An alternative
threshold for the BRAF score was obtained as the value that maximized
Matthews correlation coefficient23 on the PETACC-3 data set.

The performance of the classifier was estimated by repeated (10 times)
stratified five-fold cross-validation, following the MAQC-II guidelines,24 and
measured in terms of sensitivity, specificity, and error rate. The final BRAF
classifier was built from all BRAFm and WT2 samples in the PETACC-3 data
set and then applied to the full PETACC-3 data set (including KRASm) and
independent validation sets for the analysis of stratification of the population
(Data Supplement). Because the stage II subgroup of PETACC-3 is smaller and
not fully representative, the analysis of the prognostic value of the signature is
focused on stage III subgroup. However, results for both stages are given
(Data Supplement).

The association between predicted class and survival outcomes was
tested using Cox proportional hazard models (log-likelihood test) and log-
rank test for dichotomous variables. Three survival outcomes have been con-
sidered: overall survival, relapse-free survival and survival after relapse. Fisher’s
exact test was used for testing differences in proportions in contingency tables.

RESULTS

BRAFm: Characteristic Genes and Classifier

In the PETACC-3 data set, we identified 314 differentially ex-
pressed probe sets between BRAFm and WT2 (see Materials and
Methods for details), mapping to 223 unique EntrezGene IDs. Top 50
differentially expressed probe sets are given in Table 1, with the full
table given in the Data Supplement. We also derived lists of differen-
tially expressed genes for the MSI-H and MSS tumors separately
(Data Supplement).

Using the technique of mTSP, a 32-gene pair BRAFm signature
(Table 2) was obtained by training on the c.1799T�A (p.V600E)
BRAFm and WT2 samples, considering all genes, whether or not they
were previously identified to be differentially expressed. Its perfor-
mance was estimated at a sensitivity of 95.8% and a specificity of
86.5% (Table 3). Fifty of the 64 genes of the signature were among the
223 differentially expressed genes (Data Supplement).

BRAFm-Like Tumors

To make the distinction between the true and classifier-predicted
mutation status, we prefix the predictions by “pred-”: pred-BRAFm
denotes the samples predicted to be BRAFm, whereas pred-BRAFwt
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denotes those predicted to be BRAF wild type. The pred-BRAFm
samples consist of true BRAF mutants and the subset of WT2 and
KRASm samples that are positive for the signature. These tumors
share a common gene expression pattern, as can be seen in Appendix
Figure A1 (online only). We call the subset of BRAF wild-type samples

that are positive for the signature BRAFm-like to distinguish them
from the true BRAFm.

Having identified a population of BRAFm-like samples, we pro-
ceeded to its characterization: In the population stratification analysis
of PETACC-3, approximately 30% (76 of 257) of KRASm and 13%

Table 1. Top 50 Differentially Expressed Probe Sets Between c.1799T�A (p.V600E) BRAFm and WT2

Probe Set ID Gene Symbol Entrez GeneID LFC Official Full Name

ADXCRPD.7995.C1_x_at AQP5 362 �2.91 Aquaporin 5
ADXCRIH.384.C1_s_at REG4 83998 �2.80 Regenerating islet-derived family, member 4
ADXCRAG_BC014461_x_at CDX2 1045 2.02 Caudal type homeobox 2
ADXCRAG_BC014461_at CDX2 1045 1.97 Caudal type homeobox 2
ADXCRPD.10572.C1_at HSF5 124535 1.70 Heat shock transcription factor family member 5
ADXCRAG_AK024491_s_at SOX8 30812 �1.95 SRY (sex determining region Y)-box 8
ADXCRSS.Hs#S2988180_at HSF5 124535 2.02 Heat shock transcription factor family member 5
ADXCRPD.7687.C1_at TM4SF4 7104 �1.70 Transmembrane 4 L six family member 4
ADXCRAG_M14335_s_at F5 2153 �1.18 Coagulation factor V (proaccelerin, labile factor)
ADXCRAG_AJ250717_s_at CTSE 1510 �2.62 Cathepsin E
ADXCRAG_AJ132099_s_at VNN1 8876 �0.93 Vanin 1
ADXCRAD_NM_025113_s_at C13orf18 80183 1.77 Chromosome 13 open reading frame 18
ADXCRAG_NM_182510_s_at LOC146336 146336 �1.33 Hypothetical LOC146336
ADXCRAG_BC028581_s_at PIWIL1 9271 �0.72 Piwi-like 1 (Drosophila)
ADXCRAD_BX094012_s_at SOX13 9580 �0.72 SRY (sex determining region Y)-box 13
ADXCRPDRC.4289.C1_at RNF43 54894 1.38 Ring finger protein 43
ADXCRPD.10016.C1_at SATB2 23314 1.82 SATB homeobox 2
ADXCRPDRC.8321.C1_s_at TFCP2L1 29842 1.26 Transcription factor CP2-like 1
ADXCRIH.1549.C1_at ELOVL5 60481 0.94 ELOVL family member 5, elongation of long chain fatty acids (FEN1/

Elo2, SUR4/Elo3-like, yeast)
ADXCRAG_BC028581_x_at PIWIL1 9271 �1.72 Piwi-like 1 (Drosophila)
ADXCRIH.1305.C1_s_at LYZ 4069 �1.61 Lysozyme
ADXCRSS.Hs#S1405714_at RNF43 54894 1.27 Ring finger protein 43
ADXCRSS.Hs#S3740849_at HSF5 124535 1.21 Heat shock transcription factor family member 5
ADXCRSS.Hs#S3012761_at HSF5 124535 1.20 Heat shock transcription factor family member 5
ADXCRAD_BM825250_s_at TM4SF4 7104 �0.99 Transmembrane 4 L six family member 4
ADXCRPD.7300.C1_s_at LOC388199 388199 �1.28 Proline rich 25
ADXCRIH.4080.C1_s_at SPINK1 6690 2.09 Serine peptidase inhibitor, Kazal type 1
ADXCRAD_NM_006113_s_at VAV3 10451 1.38 Vav 3 guanine nucleotide exchange factor
ADXCRIH.546.C1_at GGH 8836 1.49 �-glutamyl hydrolase (conjugase, folylpolygammaglutamyl hydrolase)
ADXCRAD_AJ709424_s_at ABLIM3 22885 �0.65 Actin binding LIM protein family, member 3
ADXCRPDRC.1943.C1_at AXIN2 8313 1.32 Axin 2
ADXCRAD_BG470190_s_at CDX2 1045 0.77 Caudal type homeobox 2
ADXCRAG_XM_371238_at TRNP1 388610 �1.03 TMF1-regulated nuclear protein 1
ADXCRAD_BU664688_s_at SLC14A1 6563 �0.82 Solute carrier family 14 (urea transporter), member 1 (Kidd blood group)
ADXCRPD.12823.C1_s_at SYT13 57586 �0.77 Synaptotagmin XIII
ADXCRAD_CK823169_at ANXA10 11199 �0.80 Annexin A10
ADXCRPD.8346.C1_at HSF5 124535 1.34 Heat shock transcription factor family member 5
ADXCRPD.15182.C1_at MIR142 406934 0.95 MicroRNA 142
ADXCRIH.31.C9_at LYZ 4069 �1.61 Lysozyme
ADXCRAD_BP299698_s_at VNN1 8876 �0.96 Vanin 1
ADXCRPD.14261.C1_at ANO1 55107 �1.12 Anoctamin 1, calcium activated chloride channel
ADXCRAG_NM_002526_at NT5E 4907 �1.27 5�-nucleotidase, ecto (CD73)
ADXCRAD_CN404528_s_at DCBLD2 131566 �0.76 Discoidin, CUB and LCCL domain containing 2
ADXCRAD_BM852899_at DUSP4 1846 �0.98 Dual specificity phosphatase 4
ADXCRAD_BP376354_at AXIN2 8313 1.27 Axin 2
ADXCRAG_U04313_s_at SERPINB5 5268 �0.89 Serpin peptidase inhibitor, clade B (ovalbumin), member 5
ADXCRIH.482.C1_at KLK6 5653 �0.76 Kallikrein-related peptidase 6
ADXCRAD_BM718216_s_at TRNP1 388610 �1.16 TMF1-regulated nuclear protein 1
ADXCRAG_XM_031357_s_at KIAA0802 23255 �0.82 KIAA0802
ADXCRPD.1115.C1_s_at MLPH 79083 �1.32 Melanophilin

NOTE. Positive LFC indicates higher expression in WT2.
Abbreviations: LFC, log fold change; WT2, double wild type.
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(46 of 345) of WT2 samples were BRAFm-like. The BRAFm-like
samples were significantly enriched in right-sided tumors in compar-
ison with non–BRAF-like overall and also separately for KRASm (51%
were right-sided) and WT2 (63% were right-sided). There was no
association with a particular KRAS mutation subtype. Approximately
29% of the BRAFm-like samples were MSI-H (whereas 41% of the
BRAFm were MSI-H). On the other hand, 50% of the MSI-H samples
were BRAFm-like, with an additional 27% being BRAFm (Data Supple-
ment). Separate hierarchical clustering of the KRASm and WT2 sub-
populations, based on the genes from the signature, showed a split
betweenBRAFm-likeandtherestof thesamples(DataSupplement).The
identified BRAFm-like subpopulation was further described in terms of
clinicopathologic features (Data Supplement), survival rates (Table 4 and
Data Supplement), and differentially expressed genes between BRAFm-

like and BRAFm samples (Data Supplement). The two groups of patients
were similar with respect to their clinical and pathologic parameters, with
theonlyexceptionsbeingage(BRAFm-likecomprisemorepatientsolder
than 60 years) and tumor site (56% of BRAFm-like were right-sided,
whereas 77% of BRAFm are right-sided; Data Supplement).

Prognostic Value of the Classifier

The prognostic value of the BRAF signature was assessed in
the combined stage II and III population and in the stage III only
subpopulation for three end points— overall survival (OS),
relapse-free survival (RFS), and survival after relapse (SAR)—
within the whole population, WT2 only, and KRASm only sub-
populations, respectively. To account for the known prognostic
effect of the MSI status (mainly for RFS) and its association with
the BRAF mutation, the survival analysis was also performed
within the MSS population only. The small number of MSI-H
samples prevented a similar analysis of the signature predictions
within MSI-H. In whole population and in MSS, the BRAFm and
BRAFm-like patients have shorter survival times (OS and SAR), as
can be seen in Figure 1 and the Data Supplement for different
stratifications. The BRAFm-likeness showed the strongest prog-
nostic effect for SAR, for both KRASm and WT2 (in all and MSS-
only samples; see Figs 1F and 1H). The corresponding hazard ratios
and their 95% CIs as well as the corresponding log-rank test P
values for each of these comparisons are summarized in Table 4.

No statistically significant difference in survival was found be-
tween the BRAFm and BRAFm-like subpopulations, even though a
tendency was observed for the patients with a BRAFm-like tumor to
have a slightly better prognosis than those with a BRAFm tumor.

To identify potential drivers of the prognostic effect, we assessed
the prognostic value of each of the 64 genes in the signature by fitting
univariate Cox regression models in the whole PETACC-3 population
and in the subset of BRAF wild-type samples (KRASm and WT2).
Most of these genes were found to be significantly associated with the
SAR end point, and, for 25 of them, the association was found also in
the BRAF wild-type subgroup. These results reveal multiple interest-
ing genes for future studies (Data Supplement).

External Validation

The BRAF signature was validated on three external data
sets: Koinuma,15 Kim,16 and an internal series of patients with
cetuximab-treated stage IV disease with gene expression data from
primary tumors.17 When genes from the signature were not repre-
sented on a platform, only the complete pairs of genes were con-
sidered. The aggregated observed sensitivity was 96.0% (24 of 25
BRAFm correctly identified) and the specificity was 86.24% (94 of
109 WT2 and KRASm correctly predicted; Table 3). This con-
firmed the highly sensitive recognition of tumors with a BRAFm
and their distinction from majority non-BRAFm tumors, whereas
approximately 14% of the latter were also wrongly classified as
BRAFm. The reported specificity refers to KRASm and WT2 sam-
ples that should have been labeled as BRAF wild type by the
classifier. The existence of a BRAFm-like group of patients is thus
confirmed in these data sets.

The prognostic value of the BRAF signature has been validated in
all and in the stage II and III only samples from the Moffitt data set18

for OS and SAR (RFS being only marginally significant in stage II and
III). No information on BRAF or KRAS mutational status was available,

Table 2. 32 Pairs of Genes Defining the BRAF Signature

Pair Gene 1 (G1) Gene 2 (G2) Pair Gene 1 (G1) Gene 2 (G2)

1 C13orf18 CTSE 17 VAV3 OSBP2
2 DDC AQP5 18 CFTR KLK10
3 PPP1R14D REG4 19 PHYH DUSP4
4 HSF5 RSBN1L 20 PLCB4 HOXD3
5 SATB2 RASSF6 21 ZNF141 C11orf9
6 TNNC2 CRIP1 22 PPP1R14C CD55
7 GGH PPPDE2 23 FLJ32063 TRNP1
8 SPINK1 PLK2 24 APCDD1 FSCN1
9 PTPRO TM4SF4 25 ACOX1 KIAA0802

10 ZSWIM1 MLPH 26 C10orf99 PLLP
11 RNF43 RBM8A 27 MIR142 IRX3
12 CELP SOX8 28 ARID3A SLC25A37
13 CBFA2T2 PIWIL1 29 C20orf111 PIK3AP1
14 PTPRD LOC388199 30 AMACR TPK1
15 CDX2 S100A16 31 AIFM3 ZIC2
16 TSPAN6 RBBP8 32 CTTNBP2 SERPINB5

NOTE. A sample is predicted to be BRAF mutant if the average expression of
the genes in the Gene 1 (G1) columns is lower than the average expression of
genes in Gene 2 (G2) columns.

Table 3. Performance Metrics for the BRAF Signature

Data Set Sensitivity Specificity Error Rate

PETACC-313

% 95.78 86.52 12.41
Standard deviation 4.04 0.18 0.14

Kim,16 n � 20
% 100.00 54.55 25.00
No. 9/9 6/11 5/20

Koinuma,15 n � 20
% 100.00 72.73 15.00
No. 9/9 8/11 3/20

Cetuximab,17 n � 94
% 85.71 91.95 8.51
No. 6/7 80/87 8/94

Aggregated, on validation sets, n � 134
% 96.00 86.24 11.94
No. 24/25 94/109 16/134

NOTE. PETACC-3: cross-validation estimated performance. For the other
data sets, the values indicate the observed performance.

Abbreviation: PETACC-3, Pan-European Trials in Alimentary Tract Cancers.
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making it impossible to draw any conclusions on the prognostic value of
the signature within the KRASm or WT2 subpopulations. The signature
was confirmed to be prognostic for SAR and progression-free survival
(PFS) in the cetuximab17 data set as well (OS information was not avail-
able for this data set). The survival analysis results and the corresponding
Kaplan-Meier curves are given in Table 4 and in the Data Supplement.

DISCUSSION

Our results show that for c.1799T�A (p.V600E) BRAFm tumors, a char-
acteristic gene expression signature of high sensitivity can be identified,
andthissignatureextendstoapopulationofBRAFwild-typesubgroupof
colon carcinomas (BRAFm-like) sharing similar clinicopathologic and
gene expression features of potential prognostic importance. The BRAF
mutation status has been previously shown to have prognostic value in
CRC,7,25-27bothinMSSandMSI-Htumors,andthisfeatureisalsoshared
byoursignatureinthecaseofMSStumors.Becauseofthelimitednumber
of MSI-H tumors, we could not assess its prognostic value in those sam-
ples.TheBRAFm-liketumors,eitherKRASmordoublewildtype, showa

similar poor prognostic in all and MSS-only samples. This effect was also
independent of tumor stage.

Globally, the group of BRAFm-like tumors discovered studying the
gene expression data shows clinicopathologic features more similar to the
BRAFm tumors (Data Supplement) than to pred-BRAFwt. As previously
described,13,28 BRAFm tumors are found with higher frequencies in right
(proximal) colon, are enriched for the MSI-H phenotype, and are of
higher grade. In our study, the frequencies of high-grade were 30% in
BRAFm, 20% in BRAFm-like, and 5% in pred-BRAFwt; of MSI-H, 30%,
30%, and 3%, respectively; of right-side, 75%, 55%, and 30%, respec-
tively.Themucinoustumorsaremost frequentlyBRAFm-like(45%)and
are less often BRAFm (30% v only 10% in pred-BRAFwt). The exception
is age, for which the frequency of young patients is highest in BRAFm-like
(55%) and lowest in BRAFm (35%).

From a biologic perspective, this finding supports the notion that
the poor outcome of tumors with BRAFm is shared with some non–
BRAF-mutated tumors, suggesting that they have common biology
that drives poor survival after relapse. For the genes in the signature,
the c.1799T�A (p.V600E) BRAFm tumors display a homogeneous

Table 4. Survival Analyses Results

Data Set

OS RFS SAR

P HR 95% CI P HR 95% CI P HR 95% CI

PETACC-3, all
pred-BRAFm/pred-BRAFwt .0005 1.67 1.25 to 2.25 .2447 1.17 0.90 to 1.53 < .001 2.85 2.06 to 3.95

BRAFm/BRAFwt .0021 2.01 1.28 to 3.17 .1602 1.37 0.88 to 2.12 < .001 3.68 2.20 to 6.16

Within KRASm: BRAFm-like/pred-BRAFwt .5196 1.16 0.74 to 1.83 .4724 1.17 0.76 to 1.78 .0021 2.13 1.30 to 3.48

Within WT2: BRAFm-like/pred-BRAFwt .1312 1.58 0.87 to 2.87 .4866 1.20 0.72 to 2.01 .0011 2.72 1.46 to 5.06

PETACC-3, stage III
pred-BRAFm/pred-BRAFwt < .0001 1.93 1.41 to 1.79 .0455 1.34 1.00 to 1.79 < .0001 3.04 2.15 to 4.29

BRAFm/BRAFwt .0024 2.14 1.29 to 3.55 .1685 1.41 0.86 to 2.32 < .0001 4.53 2.54 to 8.07

Within KRASm: BRAFm-like/pred-BRAFwt .1916 1.37 0.85 to 2.21 .8203 1.05 0.68 to 1.64 .0038 2.09 1.26 to 3.46

Within WT2: BRAFm-like/pred-BRAFwt .0365 1.90 1.03 to 3.50 .2154 1.40 0.82 to 2.40 .0012 2.75 1.45 to 5.19

PETACC-3, MSS
pred-BRAFm/pred-BRAFwt < .0001 2.19 1.57 to 3.07 .0159 1.46 1.07 to 1.99 < .0001 3.16 2.17 to 4.59

BRAFm/BRAFwt < .0001 2.91 1.74 to 4.88 .0228 1.79 1.08 to 2.98 < .0001 4.67 2.57 to 8.45

Within KRASm: BRAFm-like/pred-BRAFwt .0511 1.59 0.99 to 2.53 .4690 1.17 0.76 to 1.82 .0043 2.07 1.24 to 3.43

Within WT2: BRAFm-like/pred-BRAFwt .0642 1.98 0.95 to 4.16 .3464 1.37 0.71 to 2.63 .0001 4.24 1.89 to 9.47

PETACC-3, MSS/stage III
pred-BRAFm/pred-BRAFwt < .0001 2.27 1.58 to 3.25 .0105 1.54 1.10 to 2.15 < .0001 2.97 2.01 to 4.40

BRAFm/BRAFwt .0024 2.43 1.35 to 4.40 .1149 1.59 0.89 to 2.86 < .0001 3.88 1.99 to 7.56

Within KRASm: BRAFm-like/pred-BRAFwt .0216 1.77 1.08 to 2.89 .1765 1.37 0.87 to 2.16 .0089 1.98 1.18 to 3.34

Within WT2: BRAFm-like/pred-BRAFwt .0220 2.35 1.11 to 4.98 .2789 1.46 0.73 to 2.93 < .0001 4.67 2.05 to 10.63

Moffitt18

pred-BRAFm/pred-BRAFwt .0376 1.67 1.02 to 2.73 .0956 1.77 0.90 to 3.50 .0014 3.78 1.58 to 9.04

pred-BRAFm/pred-BRAFwt (stages II,III) .0003 3.22 1.66 to 6.26 .0498 2.02 0.99 to 4.15 .0017 3.97 1.58 to 9.99

pred-BRAFm/pred-BRAFwt (stage III) .0002 4.26 1.87 to 9.69 .0204 2.79 1.13 to 6.87 .0028 4.95 1.58 to 15.44

Cetuximab,17 MSS

OS PFS SAR

P HR 95% CI P HR 95% CI P HR 95% CI

pred-BRAFm/pred-BRAFwt < .0001 4.49 2.40 to 8.38 < .0001 4.58 2.45 to 8.56

BRAFm/BRAFwt .0018 3.24 1.46 to 7.19 < .0001 5.72 2.49 to 13.12

Within BRAFwt: BRAFm-like/pred-BRAFwt .0017 3.45 1.56 to 7.63 < .0001 3.26 1.47 to 7.22

NOTE. Highly significant results (P � .01) are set in bold. For the Cetuximab data set, only two end points could be considered: SAR and PFS. This data set contained
also only stage IV MSS patients. When the predictions are considered within KRASm or WT2 subpopulations, those samples positive for the signature are called
BRAFm-like (see the Results section). The comparison is given in the first column, with the reference category in italic font.

Abbreviations: BRAFm, true BRAF mutant; BRAFwt, true BRAF wild type; HR, hazard ratio; MSS, microsatellite stable; OS, overall survival; PETACC-3,
Pan-European Trails in Alimentary Tract Cancers; PFS, progression-free survival; pred-BRAFm, classifier-predicted BRAF mutant; pred-BRAFwt, classifier-predicted
BRAF wild type; SAR, survival after relapse.
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gene expression pattern, which is also found in some KRASm and
WT2 samples (approximately 30% and 13% in our data, respectively;
Appendix Fig A1). It is interesting to note that BRAF mutations have
been strongly associated with the serrated adenoma pathway,29,30 and
thus the clear differences in gene expression between BRAFm and
other colon tumors may be related to a different adenoma-carcinoma
progression sequence. The existence of several subgroups of CCs,
defined by their DNA methylation and mutation status, was first
discovered in a population-based study31 and was then subsequently
confirmed.32,33 A recent study34 similarly presented evidence validat-
ing the existence of a cluster that included all BRAFm samples and a
fraction of KRASm (18% of all KRASm) and WT2 samples and that
was enriched for CIMP-positive, MLH1 hypermethylated, and right-
sided tumors. For the moment, we can only speculate about the relation
between our BRAFm-like concept and this cluster. In any case, it also
supports the idea that c.1799T�A (p.V600E) BRAFm tumors form a
homogeneous group with respect to the genes in the signature and that a
sizeable set of other tumors show similar characteristics. The underlying

driver biology of this BRAFm-like group remains unknown, although
it is clearly associated with clinicopathologic features, such as MSI-H,
right-sidedness, and mucinous histology.

The identification of a BRAFm-like subpopulation of CC that
includes KRASm and WT2 samples and that manifests a coherent
clinical behavior suggests that a new definition of CC subgroups is
needed. To the best of our knowledge, this is the first reported split
based on gene expression data of the KRASm tumors (see also Data
Supplement), which were considered until now as a compact group,
based solely on their mutation status.

The genes associated with the BRAF c.1799T�A (p.V600E) mu-
tation in CC and in melanoma are dissimilar, indicating tissue-specific
biology that needs to be understood and targeted differently. It is
therefore not surprising that BRAF-specific inhibitors, such as
PLX4032 or GSK2118436, although very successful in BRAFm mela-
noma, have failed in BRAFm colorectal cancer treatment.35,36

In summary, our results show that for c.1799T�A (p.V600E)
BRAFm tumors, a high-sensitivity gene expression signature can be
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Fig 1. Kaplan-Meier curves for different stratifications of the stage III subpopulation and different end points. Columns correspond to overall survival and survival after
relapse end points, respectively. Panels A-D correspond to stratifications into samples predicted to be BRAF mutant (pred-BRAFm)/predicted to be BRAF wild type
(pred-BRAFwt; A, B) and BRAF mutant (BRAFm)/BRAF mutant like (BRAFm-like)/pred-BRAFwt (C, D) in the whole stage III subpopulation. Panels E-H correspond to
stratifications BRAFm-like/pred-BRAFwt within KRAS mutant (E, F) and double wild type (WT2; G, H) subpopulations, in microsatellite stable. For the cases when only
two populations are compared, the log-rank test P values and the hazard ratios (HRs; with 95% CIs) are given.
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derived and that this signature identifies also a subgroup of BRAFm-
like tumors sharing similar clinicopathologic features of potential
prognostic importance. They also indicate histologic and prognostic
heterogeneity within the KRASm and thus challenge the current as-
sumption that these tumors can all be considered alike. This stratifi-
cation may be of interest in randomized clinical trials and in drug
development studies and can easily be obtained by applying the pro-
posed classifier.
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Fig 1. (continued).
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prognostic value of BRAF and KRAS mutations in
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Abstract

Background: The mutation status of the BRAF and KRAS genes has been proposed as prognostic biomarker in
colorectal cancer. Of them, only the BRAF V600E mutation has been validated independently as prognostic for
overall survival and survival after relapse, while the prognostic value of KRAS mutation is still unclear. We
investigated the prognostic value of BRAF and KRAS mutations in various contexts defined by stratifications of the
patient population.

Methods: We retrospectively analyzed a cohort of patients with stage II and III colorectal cancer from the PETACC-3
clinical trial (N = 1,423), by assessing the prognostic value of the BRAF and KRAS mutations in subpopulations
defined by all possible combinations of the following clinico-pathological variables: T stage, N stage, tumor site,
tumor grade and microsatellite instability status. In each such subpopulation, the prognostic value was assessed by
log rank test for three endpoints: overall survival, relapse-free survival, and survival after relapse. The significance
level was set to 0.01 for Bonferroni-adjusted p-values, and a second threshold for a trend towards statistical
significance was set at 0.05 for unadjusted p-values. The significance of the interactions was tested by Wald test,
with significance level of 0.05.

Results: In stage II-III colorectal cancer, BRAF mutation was confirmed a marker of poor survival only in
subpopulations involving microsatellite stable and left-sided tumors, with higher effects than in the whole
population. There was no evidence for prognostic value in microsatellite instable or right-sided tumor groups. We
found that BRAF was also prognostic for relapse-free survival in some subpopulations. We found no evidence that
KRAS mutations had prognostic value, although a trend was observed in some stratifications. We also show
evidence of heterogeneity in survival of patients with BRAF V600E mutation.

Conclusions: The BRAF mutation represents an additional risk factor only in some subpopulations of colorectal
cancers, in others having limited prognostic value. However, in the subpopulations where it is prognostic, it
represents a marker of much higher risk than previously considered. KRAS mutation status does not seem to
represent a strong prognostic variable.

Keywords: Colorectal cancer, BRAF V600E mutation, KRAS mutations, Survival analysis, Stratified analysis
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Background
Our current models of colorectal cancer (CRC) are domi-
nated by the idea of a sequential tumor progression from
adenoma to carcinoma, in which the accumulation of gen-
etic events in key genes defines alternative oncogenic
paths with impact on tumor characteristics. These genetic
events include the mutational activation of oncogenes like
BRAF and KRAS, disruption of WNT signaling, allelic im-
balance on chromosome 18q and mutation of TP53 tumor
suppressor gene [1-4]. Since the mutations of BRAF and
KRAS genes, which lead to the activation of MEK/ERK
pathway, are seen as important events in the tumor pro-
gression and based on their relatively high incidence (7-
15% for BRAF mutations and 35-40% for KRAS mutations
[5-8]), they have been proposed as prognostic biomarkers
for CRC. Of them, only BRAF V600E mutation has been
consistently validated, while the prognostic value of KRAS
mutation remains debatable. The BRAF has been shown
to be prognostic for overall survival (OS) and survival after
relapse (SAR) in general CRC population by us and others
[9-13] as well as in microsatellite-stable (MSS) population
[12,14], while having no prognostic value for relapse-free
survival (RFS). In these studies, the hazard ratios (HR) for
BRAF mutation varied between 1.4 and 2.1 for OS and 2.3
to 3.6 for SAR. In the case of KRAS mutation, the pub-
lished results are contradictory, with prognostic value, in
the positive studies, found only for relapse-free survival
[9,11,15], while other studies, including our own [13], did
not find any evidence of prognostic value for KRAS muta-
tion. Also, a recent meta-analytical review found no evi-
dence supporting the prognostic value of KRAS mutation
[16]. A detailed review is given in [17].
The question remains whether the prognostic value of

the BRAF and KRAS mutations is uniform across different
patient groups defined by clinical parameters or if there
are interactions that would influence their utility. Taking
advantage of a large series of stage II-III CRC tumors with
mutation data from the PETACC-3 clinical trial [18], we
systematically investigate the prognostic value of the
BRAF and KRAS mutations in all possible stratifications –
contexts – defined by a set of clinical parameters found to
be important in survival prognosis in a previous analysis
[19]. The main question our study tries to answer is
whether the mutations of BRAF and KRAS genes are indi-
cators of different prognosis within otherwise uniform
(with respect to the clinical parameters considered) sub-
populations of patients with CRC. A secondary question
we address, for the main findings, is whether the observed
prognostic values are statistically significant also in multi-
variate models, in the respective subpopulations.

Methods
We retrospectively analyzed the PETACC-3 clinical trial
[18] data set (N = 1,423), of patients with stage II and III

CRC, by generating the subpopulations defined by all
possible combinations of levels of the following five vari-
ables: MSI status (MSI-H and MSS levels), tumor site (left
and right), T stage (T1,2, T3, and T4), N stage (N0, N1
and N2) and tumor grade (G1,2 and G3,4). In total, there
were 393 possible subpopulations (see Additional file 1 for
an exhaustive listing), of which only those with more than
N = 20 samples were further considered for testing the
prognostic value of the BRAF and KRAS mutations. The
full description of the data set is given in [19].
In each subpopulation, the prognostic importance of the

BRAF and KRAS mutations was assessed using log-rank
test comparing the survival of BRAF-/KRAS-mutant
population to the BRAF- and KRAS- wild type (double
wild type – WT2) population, for overall survival (OS),
relapse-free survival (RFS) and survival after relapse (SAR)
endpoints. Data was summarized with hazard ratios (HR),
their 95% confidence intervals (CI), P-values and adjusted
P-values (Bonferonni correction, denoted hereinafter
by P*). For a result to be considered statistically signifi-
cant we required that P* ≤ 0.01 and that at least 10
patients were in each of the two groups compared. If
only P ≤ 0.05, the result was reported as a trend towards
significance. The significance of the interactions was tested
by Wald test in the presence of both main effects, with
significance level of 0.05 (no adjustment for multiple test-
ing in this case). All tests were two-sided.
All computations were carried out in R version 2.15.2

(http://www.r-project.org) and survival analysis was performed
using R survival package version 2.37-2.

Results and discussion
In the global population, the BRAF mutation is prognostic
for poorer overall survival and survival after relapse, while
KRAS mutation is not prognostic for any of the three end-
points (Table 1). In stratified analyses and after correction
for multiple testing, BRAF mutation status remained a
significant prognostic marker in various subpopulations.
On the contrary, KRAS mutation status never reached the
level of significance required after P-value adjustment
(P* ≤ 0.01 and at least 10 patients in both of the groups
compared). However, in several stratifications, KRAS
mutation showed a trend towards significance (P ≤ 0.05).
The full table of results with all possible stratifications is
given as Additional file 1.

BRAF mutation
The BRAF mutation was prognostic for overall survival in
MSS and/or left-sided tumors subpopulations (Figure 1).
In the MSS tumors, BRAF was indicative of worse overall
survival (P* < 0.0001; HR = 2.82; 95% CI = 1.85 to 4.30), as
well as in MSS/left tumors (P* < 0.0001; HR = 6.41; 95%
CI = 3.57 to 11.52) and all left-sided tumors (P* < 0.0001;
HR = 5.18; 95% CI = 3.00 to 8.94) (Figure 1A,B). At the
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same time, BRAF mutation was not prognostic in any
stratification involving only right-sided tumors (Figure 1C)
and/or MSI-H tumors. In a multivariate model, including
up to second degree interactions between MSI status,
BRAF mutation and tumor site, adjusted for grade, T stage
and N stage, the only significant interaction was between
BRAF mutation and tumor site (P = 0.0041). The inter-
action between BRAF mutation status and tumor site was
also significant within MSS tumors (P = 0.0033), but not
within MSI-H tumors. The interaction between BRAF
mutation status and MSI status was not significant in
either left or right-sided tumors. These results show that
BRAF mutation represents an additional risk factor only
within MSS/left tumors, with no statistically significant
effect in right or MSI-H tumors, the general prognostic
value of BRAF mutation being driven by its effect in this
subpopulation. As a consequence, the corresponding HR
should be re-interpreted: a BRAF mutation does not
double the risk of death for all patients carrying this

mutation (HR = 1.92 in global population), but represents
a six-fold increase of the risk in the case of patients with
MSS/left tumors (HR = 6.41) – in comparison with the
double wild type MSS/left tumors. At the same time,
BRAF mutation does not significantly influence the risk of
death (in comparison with WT2) in MSI-H and/or right-
sided tumors. The MSS/left side BRAF-mutant population
emerges as the worst surviving group of patients in our
data set: for example, the 3-year overall survival rate is
0.35 (95% CI = 0.20 to 0.66) in comparison to 0.89
(95% CI = 0.85 to 0.93) for KRAS-mutant and 0.91
(95% CI = 0.88 to 0.93) for WT2, respectively (Table 2).
The observation could not be extended to MSS/right-
sided tumors (Table 2).
Interestingly, BRAF mutation was also prognostic for

shorter relapse-free survival in left-sided tumors (Figure 2):
all left-sided tumors (P* = 0.0002; HR = 3.31; 95% CI = 1.98
to 5.55) and MSS/left tumors (P* = 0.0005; HR = 3.57;
95% CI = 2.02 to 6.31) (Figure 2, see also Table 2). This

Table 1 Univariate analysis of the prognostic factors in the whole CRC population

OS RFS SAR

Factor Comparison P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI)

MSI MSI-H vs MSS 0.0002 0.45 (0.30,0.69) < 0.0001 0.48 (0.34,0.68) 0.9643 0.99 (0.65,1.52)

Site Left vs Right 0.3143 0.89 (0.72,1.11) 0.2123 1.13 (0.93,1.36) <0.0001 0.59 (0.47, 0.73)

Grade G3,4 vs G1,2 0.0018 1.63 (1.29,2.23) 0.0012 1.56 (1.19,2.04) 0.0387 1.38 (1.01,1.88)

T stage T3 vs T1,2 0.0634 1.76 (0.96,3.22) 0.0629 1.58 (0.97,2.58) 0.1399 1.57 (0.86,2.88)

T4 vs T1,2 0.0002 3.06 (1.63,5.74) < 0.0001 2.69 (1.61,4.48) 0.0680 1.78 (0.95,3.35)

N stage N1 vs N0 < 0.0001 1.91 (1.38,2.65) < 0.0001 1.78 (1.36, 2.32) 0.9809 0.98 (0.71,1.35)

N2 vs N0 < 0.0001 4.51 (3.28,6.21) < 0.0001 4.06 (3.11,5.29) 0.1498 1.24 (0.90,1.71)

BRAF BRAF mut vs WT2 0.0004 1.92 (1.33,2.78) 0.0832 1.35 (0.96,1.89) < 0.0001 2.56 (1.75,3.70)

BRAF mut vs BRAF wt 0.0009 1.78 (1.26,2.53) 0.1174 1.30 (0.94,1.81) < 0.0001 2.48 (1.74,3.53)

KRAS KRAS mut vs WT2 0.1461 1.20 (0.93,1.54) 0.4410 1.09 (0.88,1.33) 0.1755 1.18 (0.93,1.52)

KRAS mut vs KRAS wt 0.4826 1.09 (0.86,1.37) 0.7245 1.04 (0.85,1.27) 0.7222 1.04 (0.82,1.32)

Figure 1 Overall survival: prognostic value of BRAF and KRAS mutations within MSS and by tumor site. A: all MSS tumors; B: MSS left-
sided tumors; C: MSS right-sided tumors. The light gray survival curve represents the whole subpopulation survival (A: all MSS, B: MSS left-sided,
C: MSS right-sided tumors).
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is a novel observation, since BRAF mutation was not
generally considered prognostic for relapse. In other
MSS-subpopulations involving left-sided tumors BRAF
mutation is also prognostic (see Additional file 1).
Again, the BRAF mutation was not prognostic in any
subpopulation involving MSI-H and/or right-sided tu-
mors. In a multivariate model, involving up to second
degree interactions between MSI status, BRAF mutation
and tumor site, adjusted for grade, T stage and N stage,
the only significant interaction was between BRAF
mutation and tumor site (P = 0.047). The interaction
between BRAF mutation status and tumor site was also
significant within MSS tumors (P = 0.043), but not within
MSI-H tumors (where the small number of BRAF mutants
in the left colon limits the statistical power). Hence, the

prognostic value of the BRAF mutation is confined to the
MSS/left-sided tumors.
For the survival after relapse (SAR), BRAF mutation rep-

resents an additional risk factor in more stratifications,
most of them involving MSS and/or left-sided tumors.
BRAF mutation shows also a trend to be prognostic in
MSS/right-sided tumors as well, even though the p-value
was no longer significant after multiple testing correction.
The BRAF mutation was indicative of poor survival
after relapse in all MSS tumors (P* < 0.0001; HR = 3.43;
95% CI = 2.19 to 5.36); MSS/left tumors (P* = 0.0002;
HR = 3.89; 95% CI = 2.11 to 7.20) and showed a trend in
MSS/right (P = 0.0111; HR = 2.27; 95% CI = 1.17 to 4.38)
(Figure 3). The test for interaction between BRAF muta-
tion status and tumor site was not significant, hence we
conclude that BRAF mutation is prognostic for SAR in
all MSS patients.
The differences in prognostic value of the BRAF mu-

tation status in various subpopulations suggest a certain
degree of heterogeneity in the survival of patients har-
boring this mutation. Indeed, within the BRAF mutant
population, the MSS tumors had worse outcome for
overall survival (P = 0.0021; HR = 3.45; 95% CI = 1.49 to
7.69)) and relapse-free survival (P = 0.0085; HR = 2.63;
95% CI = 1.25 to 5.56), this observation being in line
with the fact that MSI-H has a protective prognostic effect
in CRC. At the same time, the left BRAF-mutant tumors
had a worse prognosis than the right BRAF-mutant
tumors, for overall survival (within all BRAF-mutants:
P = 0.0003; HR = 3.20; 95% CI = 1.64 to 6.23; within MSS/
BRAF-mutants: P = 0.0059; HR = 2.84; 95% CI = 1.31 to
6.15; while within MSI-H/BRAF-mutants it could not be
assessed) and for relapse-free survival (within all BRAF-
mutants: P = 0.0002; HR = 3.24; 95% CI = 1.71 to 6.16;
within MSS/BRAF-mutants: P = 0.0062; HR = 2.82; 95%

Table 2 Three-year overall and relapse-free survival rates,
and one-year survival after relapse rates in MSS/left and
MSS/right populations, stratified by mutation status

MSS/left MSS/right

Population Survival rate 95% CI Survival rate 95% CI

OS: 3-year survival rates

WT2 0.91 0.88-0.93 0.83 0.77-0.89

KRAS mut 0.89 0.85-0.93 0.80 0.74-0.86

BRAF mut 0.37 0.20-0.66 0.73 0.60-0.89

RFS: 3-year survival rates

WT2 0.75 0.71-0.80 0.75 0.68-0.82

KRAS mut 0.68 0.62-0.74 0.73 0.66-0.80

BRAF mut 0.32 0.16-0.61 0.68 0.54-0.84

SAR: 1-year survival rates

WT2 0.81 0.74-0.88 0.65 0.52-0.82

KRAS mut 0.80 0.71-0.89 0.75 0.53-0.80

BRAF mut 0.17 0.05-0.60 0.36 0.17-0.79

Figure 2 Relapse-free survival: prognostic value of BRAF and KRAS in left-sided tumors. A: all left-sided tumors; B: MSS left-sided tumors.
The light gray survival curve represents the whole subpopulation survival (A: all left tumors; B: MSS left).
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CI = 1.30 to 6.12; while within MSI-H/BRAF-mutants it
could not be assessed). However, there was no statistically
significant difference in survival after relapse among BRAF
mutants, all having an equally poor survival.

KRAS mutation
KRAS mutation did not reach the significance level
required to be considered prognostic for any of the three
endpoints, since the adjusted p-values were all larger than
0.01. However, in some cases, it showed a trend towards
significance (P ≤ 0.05).
In overall survival, KRAS mutation had a trend to be-

come significant in several stratifications of tumors with
early stage lymph node invasion (N1). In all these, KRAS
mutation was a marker of worse outcome (see Additional
file 1). While not being a significant prognostic factor (as
required by us) for relapse-free survival, KRAS mutation

showed a trend to become prognostic. In contrast with
BRAF, KRAS mutation seemed to be prognostic for RFS
mostly in the right colon. The most intriguing observation
was in MSI-H/right colon subpopulation (N = 102, KRAS
mutants: 39), where KRAS mutation seemed to identify
a low risk group (P = 0.0349; HR = 0.29; 95% CI = 0.08
to 0.99) (Figure 4). KRAS mutation was not prognostic
for SAR. Also, no significant interaction between KRAS
mutation, MSI status and tumor site was observed, for
any of the three endpoints.
Since several studies have suggested that KRAS muta-

tions at codon 12 may have a different prognostic value
than codon 13 mutations [20], we have tested for differ-
ences in survival between the two groups of mutations,
in all the same stratifications. No statistically significant
difference was observed, but the sample size of our data
might be too limited to detect such differences.

Figure 3 Survival after relapse: prognostic value of BRAF and KRAS mutations in MSS tumors by site. A: all MSS tumors; B: MSS left-sided
tumors; C: MSS right-sided tumors. The light gray survival curve represents the whole subpopulation survival (A: all MSS, B: MSS left-sided, C: MSS
right-sided tumors).

Figure 4 Relapse-free survival: prognostic value of BRAF and KRAS in MSI-H tumors by site. A: all MSI-H tumors; B: MSI-H left-sided
tumors; C: MSI-H right-sided tumors. The light gray survival curve represents the whole subpopulation survival (A: all MSI-H, B: MSI-H left-sided,
C: MSI-H right-sided tumors).
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Conclusions
In our analyses, we have compared the survival of BRAF/
KRAS-mutated population with that of the double-wild
type population, while controlling for several other param-
eters (tumor site, T and N stage, grade and MSI status).
Our analyses confirm the prognostic value of BRAF

mutation status, in various stratifications. As a novelty,
we observe a strong prognostic value for relapse-free
survival of the BRAF mutation status in the MSS/left-
colon tumors.
The interpretation of BRAF mutation as additional

risk factor has to be made in the context of MSI status
and tumor location. Indeed, our results show that BRAF
represents a risk factor in the left colon and/or MSS
tumors. In the data analyzed, we found no sufficient
statistical evidence supporting a worse outcome associ-
ated with BRAF mutation in MSI-H tumors. As a conse-
quence, the published hazard ratios for BRAF mutation
for general population have to be reconsidered. The tumor
staging (T or N stage, tumor grade) had a lesser impact on
the prognostic value of the BRAF mutation status, while
the tumor background (site and microsatellite (in)stability)
significantly influenced the prognostic.
For the KRAS mutation, we could not confirm nor com-

pletely disprove its prognostic value. It was prognostic in
several stratifications, in some showing a protective effect,
while in others representing a risk factor. This is probably
an effect of the heterogeneity of KRAS mutant population
[21,22] and may explain in part the contradictory results
published so far. With the strict requirements for statis-
tical significance imposed, KRAS mutation did not appear
to have prognostic value in any of the stratifications. The
trend towards significance suggests, however, a potential
utility as prognostic marker for RFS mostly in right colon.
In conclusion, the utility of the BRAF and KRAS as

prognostic biomarkers depends on the MSI status and
tumor location. We hypothesize that this interaction
may extend to other biomarkers and prognostic gene
signatures as well. At the same time, this observation
has clear implications in clinical trial design and needs
to be accounted for.
We make public the full table with all stratifications to

support similar analyses in other data sets.

Additional file

Additional file 1: Full survival analysis results. In each possible
stratification three endpoints were tested - overall survival, relapse-free
survival and survival after relapse - and the sample size of the analysis
along with the resulting p-values and hazard ratios are given.
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Abstract
The recognition that colorectal cancer (CRC) is a heterogeneous disease in terms of clinical behaviour and
response to therapy translates into an urgent need for robust molecular disease subclassifiers that can explain this
heterogeneity beyond current parameters (MSI, KRAS, BRAF). Attempts to fill this gap are emerging. The Cancer
Genome Atlas (TGCA) reported two main CRC groups, based on the incidence and spectrum of mutated genes,
and another paper reported an EMT expression signature defined subgroup. We performed a prior free analysis of
CRC heterogeneity on 1113 CRC gene expression profiles and confronted our findings to established molecular
determinants and clinical, histopathological and survival data. Unsupervised clustering based on gene modules
allowed us to distinguish at least five different gene expression CRC subtypes, which we call surface crypt-like,
lower crypt-like, CIMP-H-like, mesenchymal and mixed. A gene set enrichment analysis combined with literature
search of gene module members identified distinct biological motifs in different subtypes. The subtypes, which
were not derived based on outcome, nonetheless showed differences in prognosis. Known gene copy number
variations and mutations in key cancer-associated genes differed between subtypes, but the subtypes provided
molecular information beyond that contained in these variables. Morphological features significantly differed
between subtypes. The objective existence of the subtypes and their clinical and molecular characteristics were
validated in an independent set of 720 CRC expression profiles. Our subtypes provide a novel perspective on
the heterogeneity of CRC. The proposed subtypes should be further explored retrospectively on existing clinical
trial datasets and, when sufficiently robust, be prospectively assessed for clinical relevance in terms of prognosis
and treatment response predictive capacity. Original microarray data were uploaded to the ArrayExpress database
(http://www.ebi.ac.uk/arrayexpress/) under Accession Nos E-MTAB-990 and E-MTAB-1026.
 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society
of Great Britain and Ireland.
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Introduction

Current classifications of sporadic colorectal cancer
take into consideration stage, histological type and
grade [1]. Colorectal cancer (CRC) is a highly het-
erogeneous disease, with clinicopathologically simi-
lar tumours differing strikingly in treatment response
and patient survival. These differences are only partly
explained by current concepts regarding the molecular
events leading to CRC. In recent years, microsatellite

instability (MSI) emerged as an important classifier
with significant prognostic impact and potential for
patient stratification for therapy [2,3]. Some molecu-
lar markers, as well as the mutation status of BRAF
or KRAS genes (predictive for anti-EGFR [4]), are in
use for treatment decisions and patient stratification.
However, patient groups defined by these molecular
markers still differ remarkably in behaviour and ther-
apy response [5,6]. Several approaches to further sub-
type CRC have been proposed, based on combinations

 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
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of clinical, histopathological, gene expression, CNV,
epigenetic and single gene parameters [7–13]. Each of
these different modalities provides its own perspective
on the same underlying biological reality. The CpG
island methylator phenotype (CIMP) status is emerging
as important molecular determinant of CRC hetero-
geneity [11]. The cancer genome atlas (TCGA) analysis
identified a hypermutant group not entirely captured
by MSI status [13]. Several studies have addressed
CRC subtyping using genome-wide gene expression
profiling of relatively large patient cohorts [12,14].
One study used unsupervised clustering of stage II and
III CRCs to identify three stage-independent subtypes,
with BRAF mutation and MSI status dominating one
of the subtypes [14]. A study of stage I–IV CRC sam-
ples segregated CRC into two prognostic subtypes with
epithelial–mesenchymal transition (EMT) as a main
determinant [12]. Another study on 88 stage I–IV sam-
ples identified four subtypes, one correlated with MSI,
BRAF mutation and mucinous histology, two with stro-
mal component and one with high nuclear β-catenin
expression [15].

We recently reported CRC expressing a BRAF -
mutated signature [6], which strongly overlaps with
the methylation-based group of Hinoue [11], and a
MSI-like gene expression group that captures the
hypermutant tumours of TCGA [13], indicating the
potential for identification of robust biological sub-
groups. We now describe CRC subtypes based upon
unsupervised clustering of genome-wide expression
patterns. We characterized these subtypes in terms
of biological motifs, common clinical variables,
association with known CRC molecular markers
and morphological patterns. A key element in our
approach was the use of a system of unsupervised gene
modules—groups of genes with correlated expression.
They are more resistant to noise and have a higher
chance of having at least a few members represented
on various platforms. In addition, as each gene module
is represented by its median expression, the modules
with fewer genes contribute equally to the subtype
definition. We and others have successfully used sim-
ilar strategies previously [16–18]. We validated the
existence of the subtypes and their respective clinical
and molecular marker characteristics in an independent
dataset. Ultimately, it will be mandatory to integrate
the various sources of information on CRC hetero-
geneity into an integrative, robust and reproducible
subclassifier that can become a tool for clinical use.

Materials and methods

A detailed description of all the datasets and analysis
procedures is given in Supplementary methods and
results (see Supplementary material).

Data acquisition and processing
We have built two non-overlapping data collec-
tions: a discovery collection, comprising four publicly

available (425 samples) and two previously unpub-
lished datasets (688 samples with 10 year follow-up in
a clinical trial setting and 64 normal samples) with
known stage status, and a validation collection of
eight publicly available datasets (720 CRC samples)
(see Supplementary material, Supplementary methods
and results). Observations derived from the analysis
of 64 normal samples were further validated on five
publicly available datasets, with both carcinoma and
normal samples available in one batch (totalling 205
normal/adenoma/carcinoma samples). Copy number
data was available for 154 of the PETACC3, as in [19].
Our analysis included a total of 2102 samples.

The discovery collection contained the previously
unpublished 688 CRC formalin-fixed, paraffin-
embedded (FFPE) samples of PETACC3 [6] and
64 FFPE normal colon tissue samples from Centre
Hospitalier Universitaire Vaudois’s Biobank, which
were uploaded to ArrayExpress (http://www.ebi.ac.uk/
arrayexpress/), under Accession Nos E-MTAB-990
and E-MTAB-1026, respectively. Gene expression
data were processed by standard tools to obtain
normalized, probeset-level expression data. For each
EntrezID in the datasets, the probeset with the
highest variability was selected as representative and
the number of EntrezIDs entering the analysis was
reduced to 3025 by applying non-specific filtering.
For PETACC3 and normal colon samples, patients
signed an informed consent form in which the use of
tissue specimens was included, and all marker study
proposals were subjected to the approval of the trial
steering committee.

Subtype definition and validation
For model development (gene modules and subtype
definition, classifier training, identification of subtype-
specific genes) only the 1113 CRC samples of the
discovery set were used, no sample in the validation
collection being used for any model tuning. Hierarchi-
cal clustering (complete linkage, Pearson correlation
similarity measure) and dynamic cut tree [20] were
used to produce gene modules (groups of genes with
correlated expression), from which non-robust modules
(see Supplementary material, Supplementary methods
and results) and a gender-related module were dis-
carded. Each expression profile was then reduced to
a vector of meta-genes by taking the median of the
values of genes in each gene module. The meta-genes
were then further grouped into clusters using hierarchi-
cal clustering.

The subtypes were defined in terms of core sam-
ples —those samples from the discovery collection that
were assigned to clusters by hierarchical clustering,
using a consensus distance [21] followed by prun-
ing of the dendrogram (see Supplementary material,
Supplementary methods and results). The clusters to
which the core samples were assigned were called

 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2013; 231: 63–76
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org.uk www.thejournalofpathology.com
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Gene expression heterogeneity in colorectal cancer 65

subtypes . The rest of the samples from the discov-
ery collection, not assigned to subtypes by this pro-
cedure, were called non-core samples . This approach
allowed the reduction of noise in subtype-defining sam-
ples, and thus a higher consistency of the resulting
subtypes defining the ground truth for downstream
analyses. The stability of the obtained clusters was
assessed under different perturbations of the processing
pipeline (different parameters and clustering methods)
to ensure that the results were not simple artefacts
(see Supplementary material, Supplementary methods
and results). A multiclass linear discriminant (LDA)
[22] was trained on core samples with meta-genes as
variables to assign new samples to one of the sub-
types. Minimal gene sets characteristic to each subtype
were identified using ElasticNet [23] on gene-level
data.

In order to validate the existence of subtypes (and
their independence on data selection) and the mod-
elling choices in subtype discovery, we applied the
same subtyping procedure (including parameters) to the
validation collection. The clusters identified in the val-
idation collection were put in correspondence with the
subtypes in the training set by LDA predictions and
correlations of subtype-specific moderated t statistic
[24] values, corresponding to the gene-wise compar-
ison of the respective subtype with the other subtypes
(one-versus-all comparison). A simple classifier appli-
cation would have led the validation samples to be
classified as one of the subtypes, but it would have not
informed us of possible over-fitting of the data in the
discovery procedure.

Subtype characterization
If not specified differently, all the reported p values
were adjusted for multiple hypothesis testing, using
the Benjamini–Hochberg procedure. Significance level
was set at 0.1. Pathway analysis for each set of
gene modules was carried out using the Database
for Annotation, Visualization and Integrated Discov-
ery (DAVID) [25]. Gene set enrichment analysis of
gene signatures was performed using the mygsea2
tool, in each subtype and normal samples, on aver-
age expression-ordered median-centred lists of genes.
Differential expression analysis was performed using
limma [24] and sign test using BSDA [26]. The
Cox proportional hazards model was used to anal-
yse the prognostic value of interquartile range (IQR)-
standardized values of meta-genes, for overall survival
(OS), relapse-free survival (RFS) and survival after
relapse (SAR), stratified by dataset. The Wald test was
used to assess the global significance of the models.
Pairwise differences in survival were assessed using the
log-rank test. For subtype comparison, the survival was
truncated at 7 years. Subtype enrichment for clinical or
molecular markers was assessed by the Fisher test to
the baseline, defined as the proportion of the marker in
the whole dataset. Morphological pattern differences
were assessed pairwise by Fisher test.

Histology
The identified subtypes were characterized histologi-
cally in terms of six different architectural patterns:
complex tubular; solid/trabecular; mucinous; papillary;
desmoplastic; and serrated (Figure 4A), which were
called dominant or secondary depending on their pres-
ence in the histology slides (for details on immunohis-
tochemistry, see Supplementary material, Supplemen-
tary methods and results).

Results

Gene modules and subtype definition
We identified 54 gene modules, reproducible across
all datasets in the discovery collection, comprising
658 genes from an initial list of 3025 identified
as the most variable. The assignment of genes to
gene modules and gene module clusters is listed in
Table S1 (see Supplementary material); meta-gene
expression profiles for the discovery set are shown in
Figure 1A; and between meta-gene correlations in
Figure S1C (see Supplementary material). Based on
gene modules, we identified five major subtypes:
surface crypt-like (A), lower crypt-like (B), CIMP-H-
like (C), mesenchymal (D) and mixed (E), totalling 765
samples (69% of discovery data; see Supplementary
material, Supplementary methods and results).

Subtype reproducibility in an independent
validation set
In the validation set of 720 CRC samples we identified
a set of subtypes comprising 602 samples (83.6%
of the validation set) and associated them with our
discovery subtypes using the subtype classifier (see
Supplementary material, Table S2) and correlations
of subtype-specific patterns based on moderated t
statistic (see Supplementary material, Table S3). All
five major subtypes reappeared in the validation set,
confirming the robustness of our approach. Figure S2
(see Supplementary material) presents gene expression
profiles of both discovery and validation sets. Two
notable differences were observed: (i) subtype B in the
validation set was split into two subgroups (B1, B2),
as observed in the discovery set too, but only at lower
pruning height; (ii) another cluster passed the minimal
size criteria, corresponding to the small subtype (F)
which, in the discovery set, was not considered for
further characterization because of small sample size.
Validation of other subtype characteristics (to the extent
of available information) is described in each of the
respective sections.

Subtypes are characterized by distinct biological
components
We set out to assign biological labels to gene modules
that define the subtypes (Table 1; see also Supple-
mentary material, Table S1). Of the 54 meta-genes,

 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2013; 231: 63–76
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org.uk www.thejournalofpathology.com

 10969896, 2013, 1, D
ow

nloaded from
 https://pathsocjournals.onlinelibrary.w

iley.com
/doi/10.1002/path.4212 by C

ochrane C
zech R

epublic, W
iley O

nline L
ibrary on [07/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



66 E Budinska et al

Figure 1. Meta-gene expression pattern in subtypes, connected with prognostic effect of subtypes and meta-genes, in the discovery set.
(A) Two heat maps clustering normal (left) and CRC (right) samples (columns) and meta-genes (rows). Colours represent decreased (blue)
or increased (red) meta-gene expression relative to their medians. Normal samples were clustered independently on meta-genes centred
to CRC meta-gene medians. For comparative purposes, ordering of meta-genes in normal samples is imposed to correspond to that of CRC
samples. White horizontal lines denote eight unsupervised clusters of meta-genes, each assigned a colour bar on the left; meta-genes not
belonging to a cluster have no colour bar. Names of the meta-genes corresponding to gene modules with gene–gene correlations in normal
samples comparable to those in cancer samples are marked red (see Supplementary material, Figure S1D). (B) Effect of inter-quartile range
(IQR) standardized expression of meta-genes on RFS, OS and SAR. Points represent estimated hazard ratio (HR), bars represent 95% CI.
Bold lines represent effects significant at 5% without adjustment for multiple hypothesis testing; red lines represent effects significant
at FDR < 10%; details are provided in Table S6 (see Supplementary material). (C) Kaplan–Meier plots for RFS, OS and SAR, with HR for
significant pairwise comparisons (p values adjusted for FDR). Numbers below x axes represent number of patients at risk at selected time
points.

41 could be further grouped into eight gene module
clusters; 13 meta-genes remained ungrouped, each pos-
sibly representing a distinct biological motif. Pathway
analysis characterized five of eight gene module clus-
ters by the following biological motifs: chromosome

20q (cluster 2), proliferation (cluster 3), EMT/stroma
(cluster 5) and immune response (clusters 7 and 8).
Literature searching identified biological motifs asso-
ciated with other gene modules. We labelled cluster 1
as GDC (genes differentially expressed in CRC), as

 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2013; 231: 63–76
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org.uk www.thejournalofpathology.com
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Gene expression heterogeneity in colorectal cancer 67

Table 1. Biological identification of gene modules

Cluster name
Number of

genes

Pathway analysis result
(number of overlapping

genes, p value) OR description
based on literature search Selected genes

1. GDC 27 Genes involved in differentiation of colon
crypt and/or whose expression was
reported to be affected in colorectal cancer
and/or with prognostic effect in CRC

Intestinal differentiation genes: CDX2[45], IHH[46],
VAV3[47], ASCL2[35], PLAGL2[48]

Genes reported altered in colorectal cancer with
prognostic effect: PITX2[49], DDC [50], PRLR[51],
SPINK1[52]

Other genes connected to CRC:
GGH –connected to CIMP+ phenotype [53]
NR1I2–connected to chemoresistance [54]

2. Chromosome 20q
genes

33 Chromosome 20 (26 genes, 9.2E-34) Other, non-20q genes: TP53RK , ANO9, NEU1, CLDN3,
PRSS8

3. Proliferation 83 Cell cycle (36 genes, 3.0E-33)
Mitosis (26 genes, 1.4E-29)
Chromosome (26 genes, 2.5E-17)
DNA metabolic process (20 genes, 4.9E-10)
Lipid synthesis (4 genes, 5.0E-2)

Mitotic checkpoint kinases: BUB1, BUB1B
Cyclins: CCNA2, CCNB2 Centromere proteins: CENPA,

CENPE , CENPN
Kinesins: KIF11, KIF23, KIF4A
Topoisomerase II (TOP2A)
Cell division cycle 2 CDC2

4. Colon crypt markers
(secretory cells)

16 AGR2[55], AGR3, MUC2, SPINK4[56], RETNLB[57],
REG4[58]

5. EMT/stroma 310 Extracellular region part (90 genes) 2.7E-36
Cell adhesion (57 genes) 1.2E-17
Extracellular matrix (44 genes) 5.3E-30
Collagen (16 genes) 1.2E-15
EGF-like domain (26 genes) 1.6E-12
Cell motion (33 genes) 7.2E-8
Blood vessel development (25 genes) 1.1E-8
Growth factor binding (6 genes) 6.0E-5
Frizzled related (5 genes) 6.7E-3
Cell junction organization (7 genes) 1.8E-2
WNT receptor signalling pathway (8 genes)

1.4E-1

Inhibitors of β-catenin-dependent canonical WNT:
SFRP1, SFRP2, SFRP4, DKK3, FZD1,7 , PRICKLE1, NXN

Mesenchymal markers: N-cadherin, OB cadherin, SPARC ,
DDR2

EMT inducers(TFs): SNAI2, ZEB1, ZEB2, TWIST1, CDH11
ECM remodelling and invasion: MMP14, VIM ECM

proteins: fibronectin 1, collagens
Angiogenesis: PLAT , PLAU, NRP1, NRP2, THBS1, THBS2,

THBS4
TGFs, their receptors and binding proteins: IGF1, IGFBP5,

IGFBP7 ,TGFB, LTBP1, LTBP2, PDGFRA, PDGFRB

6. Unidentified 14 DUSP1, EGR2, SERPINE1
7 and 8. Immune

response
103 Immune response (42 genes) 2.0E-28

Positive regulation of immune system process
(16 genes) 4.0E-9

Antigen processing and presentation via MHC
class II (6 genes) 7.5E-5

Defence response (31 genes) 3.3E-17
Chemokine signalling pathway (9 genes)

2.2E-3
Lymphocyte activation (11 genes) 2.1E-5
Regulation of programmed cell death

(14 genes) 2.1E-2

Cytokines: CCL3, CXCL5, CXCL9,CXCL10, CXCL11, SPP1,
LTB

MHC class II: HLA-DMB, HLA-DPA1, HLA-DRA, CD74
MHC class I: HLA-F , TAP1, TAP2
Anti-apoptotic: BCL2A1, CD74, BIRC3, IFI6, TNFAIP3,

TNFAIP3
Apoptotic: STAT1, XAF1
Interferon-induced proteins: IFI30, IFI16, IFI44, IFI16,

IFIH1, IFIT3

Cluster-unassigned meta-genes with colon crypt cell markers (enterocytes/top of the crypt)
Meta-gene 105 6 Top of the crypt genes FAM55A, FAM55D, MUC12 and CEACAM7[59],

SLC26A2[59], SLC26A3[59]
Meta-gene 144 5 Enterocytes, goblet cells markers LOC644844, NGEF , HEPH, KRT20[59], MUC20[59]
Cluster-unassigned meta-genes associated with chromosomal location 0
Meta-gene 81 7 Chromosome X (7 genes) 1.1E-8 CXorf15, EIF1AX , HDHD1A, MED14, PNPLA4, SCML1,

SMC1A
Meta-gene 97 6 Chromosome 20p (5 genes) 5.0E-11 CDC25B, CSNK2A1, MRPS26, PTPRA, RP5-1022P6.2,

SNRPB
Meta-gene 84 7 Chromosome 8 (7 genes) 5.4E-9 AGPAT5, FDFT1, GTF2E2, LONRF1, MTUS1, VPS37A,

ZNF395
Other cluster-unassigned meta-genes
Meta-gene 141 5 EREG AK3L1, ARID3A, EREG, LDLRAD3, ZBTB10
Meta-gene 112 6 Lipid synthesis (4 genes) 5.0E-2 DHCR7 , FASN, FGFBP1, HMGCS1, IDI1, PCSK9
Meta-gene 95 6 Homeobox genes HOXA10, HOXA11, HOXA13, HOXA5, HOXA7 , HOXA9
Meta-gene 124 5 Metallothioneins MT1E , MT1F , MT1G, MT1M, MT1X
Meta-gene 131 5 Disulphide bonds (5 genes) 1.7E-02 CXCL5, IL6, MMP1, MMP3, PTGS2
Meta-gene 143 5 Unidentified DUSP5, ERRFI1, KLF6, MXD1, PLAUR
Meta-gene 80 7 Regulation of RNA metabolic process

(6 genes) 4.9E-2
ATF3, C8orf4, FOS, JUNB, NR4A1, SIK1, ZFP36

Meta-gene 71 8 Gut development (3 genes) 3.5E-2 CCL11, CH25H, EDNRB, F2RL2, FOXF1, FOXF2, PCDH18,
WNT5A

 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2013; 231: 63–76
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org.uk www.thejournalofpathology.com
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Table 2. Subtype-specific minimal gene set as identified by Elastic net
Minimal gene sets specifying a subtype

Subtype
Up-regulated from
population mean

Down-regulated from
population mean

A. Surface crypt-like ADTRP , B3GNT7 , CLCA1, MUC2, NR3C2, PADI2, RETNLB, STYK1 CHI3L1, FNDC1, TIMP3, SULF1
B. Lower crypt-like CCDC113, CDHR1, FARP1, GPSM2, GRM8, HNF4A, IHH, KCNK5,

KIAA0226L, MYRIP , PLAGL2, PRR15, QPRT , RNF43, RPS6KA3,
SLC5A6, TP53RK , TSPAN6, VAV3, YAE1D1

ALOX5, BASP1, CREB3L1, CXCR4,
EPB41L3, FSCN1, GFPT2, GPX8,
ITPRIP , KCNMA1, KCTD12,MT1E ,
RARRES3, RNASE1, SGK1, SOCS3

C. CIMP-H-like ANP32E , EGLN3, IDO1, PLK2, RAB27B, RARRES3, RPL22L1, TFAP2A ATP9A, C10orf99, CXCL14, KIAA0226L
D. Mesenchymal ANK2, BOC , C7 , CRYAB, DCHS1, DDR2, GEM, PRICKLE1, TAGLN HOOK1, RBM47
E. Mixed CEACAM6, CXCL5, HSD11B1, IL1B, IL6, MRPS31, PI15, RAP2A, UQCC AGR3, RAB27B, REG4

it consisted of a number of genes significantly associ-
ated with CRC. The analysis of pairwise intra-gene
module correlations in normal samples of both dis-
covery and validation set identified as cancer-specific
gene modules of chromosome 20q, several immune
response, EMT/stroma and GDC gene modules, home-
obox genes and gut development (see Supplementary
material, Figure S1D). The relationship between sub-
types and meta-genes is illustrated by the heat map
(Figure 1A), in which the major molecular motifs
and their role in subtype definition stand out. Table
S4 (see Supplementary material) contains median sub-
type values per meta-gene and the results of differ-
ential meta-gene expression testing between subtypes.
Subtypes are not determined by individual biologi-
cal components but each of them contributes to the
molecular identity of the subtypes. The EMT/stroma
cluster stands out in subtypes A + B (low expression)
and D + E (high expression), while subtype C notably
contained a high expression of immunity-associated
cluster. High expression of meta-genes representing
upper colon crypt cells in subtypes A and B, cor-
related with serrated and papillary (A) and complex
tubular (B) morphological patterns (see below). Given
the enterocyte-like morphology and retained polarity
of the neoplastic cells in these patterns, they are con-
sidered as well differentiated. Subtype C is associated
with the mucinous phenotype. Interestingly, subtypes
A and C show high expression of metallothioneins,
subtypes C and E show high expression of the home-
obox gene module, while subtypes E and B strongly
express a gene module containing the EREG gene
(Table 1). The high expression of chromosome 20q
cluster in subtype B was correlated with a significantly
higher copy number gain/amplification of all of 20q in
this subtype (see Supplementary material, Figure S8).
The low expression of lipid synthesis genes is striking
for subtype D and low expression of the gut devel-
opment gene module for subtype C. A refined picture
of differences is given by a quantitative comparison
of (meta-)gene expression between subtype pairs (see
Supplementary material, Tables S4 and S5, Figure S4).
For each subtype we also identified a minimum set
of characteristic genes (Table 2; for more details, see
Supplementary material, Supplementary methods and
results).

Normal colon mucosa in the context of subtypes
When applied to the 64 normal samples, the LDA clas-
sifier assigned them all to subtype A, with posterior
probability > 0.99, supporting the observation that A is
well differentiated and closest to normal colonic epithe-
lium in terms of gene expression pattern. For valida-
tion, we analysed five public datasets comprising 205
profiles of normal/adenoma/carcinoma samples. Most
of the normal and adenoma samples were classified by
LDA as subtype A (74.5% of 51 and 69.0% of 71,
respectively) or subtype B (28.2% and 21.6%, respec-
tively), confirming subtype A as the most normal-like.
The 80 carcinoma samples were distributed over all
subtypes (26.2% A, 30.0% B, 11.3% C, 18.7% D and
13.8% E).

Subtypes and patient survival
We assessed whether subtypes differ in survival, as a
general read-out of biological significance, and then
tested the association of each meta-gene with progno-
sis, using the complete discovery set of 1113 patients
(Figure 1B-C see also Supplementary material, Table
S6). Kaplan–Meier curves for RFS, OS, SAR, haz-
ard ratios (HRs) and p values of pairwise differences
between subtypes are shown in Figure 1C. The results
indicate that subtypes C and D are associated with poor
OS. For subtype D, this is primarily due to early relapse
correlated with high expression of EMT genes and low
expression of proliferation-associated genes. For sub-
type C it is the result of short SAR, correlated with
low expression of GDC, top colon crypt, EREG and
Chr 20q genes and high expression of meta-gene 126
(see Supplementary material, Table S1). For subtype E
the trend towards poorer OS and RFS was not statisti-
cally significant, although borderline significant poorer
SAR was found relative to subtype B. Subtypes A and
B had better prognosis than D for all three endpoints,
although for OS in subtype A this was not significant.

The analysis of clinical and molecular markers
(below) showed that subtype C is enriched for MSI
tumours and BRAF mutant tumours, the latter present
also in subtype D. The literature indicates that MSI
is associated with better RFS, while BRAF mutation
is an indicator of worse SAR [27]. To analyse how
these two contradictory components affect survival in

 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2013; 231: 63–76
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org.uk www.thejournalofpathology.com
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Table 3. Result of additive multivariate Cox proportional hazards model, with subtype, BRAF mutation, MSI and stagea

Variable RFS HR p OS HR p SAR HR p

A 0.906 0.760 1.381 0.390 1.726 0.180
C 0.940 0.850 1.560 0.220 3.675 0.0022∗

D 1.688 0.0055∗ 2.161 0.0011∗ 1.906 0.014∗

E 1.506 0.210 2.201 0.035∗ 2.046 0.075
BRAFm 1.633 0.085 2.472 0.0034∗ 3.361 0.00072∗

MSI 0.478 0.044∗ 0.275 0.004∗ 0.356 0.036∗

Stage 3 0.770 0.190 0.943 0.820 1.780 0.062∗

aBaseline is subtype B, MSS, BRAF wt and Stage 2.
∗Variables significant in the model.
Hazard ratios (HR) for relapse-free survival (RFS), overall survival (OS) and survival after relapse (SAR).

subtypes, we built a multivariate Cox proportional
hazard model with subtype, stage, BRAF and MSI
(Table 3; see also Supplementary material, Table S6).
Subtype C remained significantly associated with poor
SAR, even after the adjustment for BRAF , MSI and
stage, but not with RFS. Subtypes B and D remained
significantly prognostic for RFS, OS and SAR. No
equivalent survival data were available for the datasets
in the validation series, hence these observations could
not be validated.

Colorectal stem cell and Wnt signatures within
subtypes
We investigated the association of subtypes with
Wnt [28–32], putative colon cancer stem cell (CSC)
[33–35] signatures, and two signatures specific for
upper and lower colon crypt compartments [36], using
gene set enrichment analysis (Figure 2; see also Sup-
plementary material, Table S7). Subtypes B and E
highly expressed canonical Wnt signalling target sig-
natures. Subtypes A and D and also normal samples,
however, showed low expression of these signatures.
This was in concordance with the differences in β-
catenin nuclear immunoreactivity at the invasion front
(IF; see Supplementary material, Figure S9 and Sup-
plementary methods and results). Subtypes B and E
showed the highest percentages, while subtypes A and
D showed significantly lower percentages of the β-
catenin-positive nuclei. Subtype C exhibited almost no
β-catenin nuclear immunoreactivity at the IF. We anal-
ysed CSC signatures derived from low colon crypt
compartment cells that had been identified either by a
Wnt reporter construct TOP GFP or by high surface
expression of EphB2 . Subtypes D and E expressed
both TOP GFP and EphB2 -derived CSC signatures,
while subtype B mainly expressed only the TOP GFP
signature (Figure 2).

Subtypes complement clinical and molecular
markers
An important goal of this study was to assess how
our molecular subtypes complement known clinical
variables and molecular markers. We found that MSI,
BRAF mutation status, site, mucinous histology and
expression of p53 were significantly associated with
various subtypes (Figure 3), but not tumour stage,

age, gender, SMAD4 or PIK3CA mutations (see Sup-
plementary material, Figure S5A). Subtype D was
not significantly enriched for any of the tested vari-
ables except for the BRAF mutated signature and
possibly represents a mixture of tumours that have
the EMT/stroma signature in common. KRAS mutants
occurred in all subtypes (see Supplementary mate-
rial, Figure S5C), supporting the emerging notion that
KRAS -mutated CRC are substantially heterogeneous
[5,6,37], the oncogenic role of KRAS varying per spe-
cific mutation and the molecular background of the
tumour in which it occurs [38]. Subtype C expressed
the BRAF mutant signature we identified earlier [6]
(87.0%), a CIMP-H signature ([11], Figure 2), and
its characteristics (enrichment for MSI, right side and
mucinous histology) corresponded with those of the
previously reported CIMP-H phenotype [9,11,39,40]
and hypermutated tumours [13]. Regarding the lat-
ter, subtype C had a similar low frequency of copy
number variations (see Supplementary material, Figure
S7). The distribution of MSI status, stage, age, gen-
der, grade and site over the subtypes in the validation
set followed the same patterns established in the dis-
covery set [cf Figures 3 and S5B (see Supplementary
material)]. A classification tree, trained with a combi-
nation of available clinical and molecular markers, did
not identify our subtypes (see Supplementary material,
Figure S5D), indicating that gene expression patterns
reveal a layer of heterogeneity that goes beyond con-
ventional CRC classification approaches.

Histological characteristics of subtypes
To study whether or not our molecular subtypes
are associated with histological patterns, we exam-
ined haematoxylin and eosin (H&E)-stained paraffin
sections of a randomly selected subset of each subtype
(23, 31, 31, 29 and 19 cases for subtypes A, B, C, D and
E, respectively). In attempting to match histological
morphotypes to molecular subtypes, architectural pat-
terns were used, as illustrated in Figure 4A, rather than
the recognized WHO classification of CRCs [1]. Not
surprisingly, given intratumour heterogeneity, none of
the tumours had a single pattern. However, the preva-
lent patterns showed appreciable differences between
the subgroups (Figure 4B, C; see also Supplementary
material, Figure S6). In subtype A, the serrated pattern
was most frequent, followed by the papillary pattern; in

 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2013; 231: 63–76
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org.uk www.thejournalofpathology.com
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70 E Budinska et al

Figure 2. Subtypes and biological motifs. Subtype-specific fingerprints of biological motifs, represented either as mean values of gene set
enrichment scores of gene sets from corresponding gene modules (EMT/stroma, immune, secretory cells, proliferation, GDC, chromosome
20q, top of the crypt—meta105 and meta144) or composed gene set enrichment scores of particular signatures (canonical Wnt targets,
CSC-TopGFP, CSC-EphB2, colon crypt bottom and CIMP-H). The gene set enrichment scores represent whether the genes from the gene set
show statistically significant enrichment between the down-regulated (negative scores, light blue area) or up regulated (positive scores)
genes of a given subtype; details of score calculation can be found in the Supplementary material (Supplementary methods and results
and Table S7.).

Figure 3. Clinical and mutational characterization of subtypes. Columns represent variables and rows subtypes. Horizontal bar plots
represent proportions of the corresponding variable in each of the subtypes and non-core samples. Non-core samples were tested as one
group to ensure that they did not share a common characteristic that would set them apart. Numbers in brackets adjacent to subtype
name represent overall number of samples in the subtype. Under the title of each variable we denote the percentage representing baseline
proportion in the population, with available information, and N denotes the number of patients for which the information on the respective
feature was available. Bars in red represent significant enrichment and bars in blue significant depletion of a feature in the subtype in
comparison to baseline, at the 5% significance level. Adjacent to each bar is the percentage of samples in the subtype with the specific
feature and in brackets the overall number of samples in the subtype with the information available. We can read that, for instance,
subtype C, comprising 154 samples, is enriched for microsatellite-unstable (MSI) tumours, where 60.4% of 91 samples with available
information are MSI.

 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2013; 231: 63–76
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org.uk www.thejournalofpathology.com
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Gene expression heterogeneity in colorectal cancer 71

Figure 4. Morphological CRC patterns. (A) morphological CRC patterns scored in subtypes. (B, C) Distribution of dominant (B) and secondary
(C) histological patterns in subtypes. Columns represent subtypes and widths are proportional to subtype frequency (numbers of samples
in each subtype); rows represent dominant (B) or secondary (C) patterns and heights are proportional to pattern frequency. Boxes show
adjusted p values of pairwise statistical testing of morphological pattern distribution between subtypes.

subtypes B and E, complex tubular dominated; in sub-
type C the solid pattern dominated, with mucinous as
the second; most striking was the presence of a strong
stromal reaction in subtype D.

Discussion

Our approach, using gene modules on a large panel of
samples, allowed us to identify five main CRC gene
expression subtypes (Table 4). It is relevant to note
that subtyping can be performed on FFPE tissues, an
important prerequisite for wide clinical applications.
An example is the hypermutated group identified in
the TCGA study by whole exome sequencing [13], but
according to our data also by gene expression profiling
on routinely processed tissues (CIMP-H-like subtype).

The combination of gene expression, clinical, muta-
tional, survival and morphological data contributes new
insight into the heterogeneity of CRC. While the vali-
dation confirmed the robustness of our findings across
different platforms (ALMAC versus Affymetrix), sam-
ple preparation methods (FFPE versus fresh-frozen)
and dataset collections, larger datasets are necessary
to assess and characterize the relevance of lower fre-
quency subtypes (eg F, or further segregation of B
into B1 and B2). Our data indicate that several major
biological processes are key determinants of a com-
plex subtype structure of CRC. Therefore our sub-
types defined by gene expression do not substitute
but complement groups defined by current clinico-
pathological variables and molecular markers. Notably,
morphological subclassification of CRC has clearly
reached its limits, given the often striking intratumour

 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2013; 231: 63–76
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org.uk www.thejournalofpathology.com
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heterogeneity, which made us use a (primary and
secondary) architectural pattern approach rather than
the canonized histological subtypes (WHO). Profiling
of microdissected patterns within a single tumour might
reveal molecular mechanisms responsible for these
morphotypes. This additional heterogeneity within the
subtypes may reflect tumour polyclonality, similar to
breast cancer [41]. Ultimately, aggregating clinical,
pathological and further detailed molecular character-
istics (including CNV, miRNA and methylation) will
contribute to a more detailed perception of CRC hetero-
geneity and it is likely that more subtypes will emerge.
This, however, would need more detailed molecular
annotation of larger clinically well documented CRCs.

A striking association was found between the stro-
mal subtype D and the EMT signature. The previously
discovered EMT [12] also emerged from our analy-
sis as the largest cluster of meta-genes associated with
poor RFS (subtype D). Our histological assessment
suggests that the EMT signature is the reflection of
a strong mesenchymal stromal reaction, and this his-
tological characteristic deserves to be tested for its
capacity to predict resistance to therapy, in view of its
strong association with poor survival. Studies requiring
high tumour cell content as sample inclusion criteria
(eg [13]) could miss this poor prognosis subtype. Iden-
tification of this subtype in cell lines or xenograft mod-
els is less straightforward and would benefit from the
analysis of gene expression patterns between microdis-
sected tumour and stromal cells.

EMT, however important, only partly explains
CRC heterogeneity, as even subtypes with similar
expression of EMT-associated genes (A–C or D–E)
differ in survival, mutational, clinical and gene expres-
sion characteristics. Additional biological components,
such as differentiation, immune response, proliferation,
chromosome 20q or cluster of genes deregulated in
CRCs, are important co-determinants that underpin a
need for further subdivision of CRCs. The findings
from the analysis of CSC and WNT signatures support
the recently suggested hypothesis that the colon stem
cell signature under the condition of silenced canon-
ical WNT targets is associated with higher risk of
recurrence (subtype D) [33]. This is consistent with
subtype D showing a significantly lower percentage
of β-catenin-positive nuclei than subtype B, with its
Wnt-associated gene expression and better survival.

MSI tumours represent a subclass in most unsu-
pervised analyses and can be recognized at the gene
expression level [42]. The more recent gene expression
studies [14,15] suggest that MSI and BRAF share dis-
tinct gene expression patterns. Subtype C was enriched
for both MSI and BRAF mutants and had one of the
best outcomes for RFS, but the worse outcome in SAR,
in concordance with previously reported results [43].
Subtype C retained its poor SAR prognostic value, even
in the population of MSS and BRAF wild-type patients.
Our data suggest that subtype C represents tumours
with a common biology and a gene expression pattern

 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2013; 231: 63–76
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org.uk www.thejournalofpathology.com
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that might best characterize a group of tumours resis-
tant to chemotherapy, once metastatic. In this sense,
our work not only agrees with the current known mark-
ers (BRAF mutation status and MSI) but clearly adds
new insight, putting together these previously unre-
lated clusters into one biologically meaningful group.
This observation is in line with recently published
work [6].

Our observations show that gene expression profil-
ing contributes substantially to our insight into CRC
heterogeneity in confirming and complementing data
from sequencing, CNV and promoter methylation
analysis. Our subtypes can be further functionally
interrogated for driving oncogenes/events by in vitro
functional screens. High-risk subtypes D and C might
contribute to therapeutic decision making in either
adjuvant or metastatic settings. Retrospective analysis
of clinical trial series may identify drug sensitivity
associated with particular subtypes, and might open
new treatment optimization strategies to be tested in
clinical trials with stratified cohorts, similar to the
I-SPY2 trial for breast cancer [44].

In conclusion, our unsupervised approach using
gene modules resulted in the identification of dis-
tinct molecularly defined CRC subtypes, which adds
a new layer of complexity to CRC heterogeneity and
opens new opportunities for understanding the dis-
ease. The challenge is now to assimilate conventional
and these new molecular approaches into a compre-
hensive consensus classification, which might then be
used in further clinical studies for patient stratification
and experimental studies to further elucidate mecha-
nisms involved in the development and progression
of CRC.

Acknowledgements

We thank all the clinicians who enrolled patients and
participated in the PETACC-3 trial (see Appendix
at: http://jco.ascopubs.org/content/27/19/3117.long), in
particular the coordinators D Cunningham, R Labi-
anca and E Van Cutsem. We thank F Schütz, T Sen-
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Figure S8. Result of hypothesis testing of median log-scale copy number estimates of chromosome 20 of subtype B versus all other subtypes
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Table S1. Detailed description of gene module members and detailed results of meta-gene expression tests pairwise between subtypes and of
subtypes to meta-gene medians

Table S2. Multiclass linear discriminant (LDA) subtype assignment of samples from validation set
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ABSTRACT
Effective treatment options for advanced colorectal cancer (CRC) are
limited, survival rates are poor and this disease continues to be a
leading cause of cancer-related deaths worldwide. Despite being a
highly heterogeneous disease, a large subset of individuals with
sporadic CRC typically harbor relatively few established ‘driver’
lesions. Here, we describe a collection of genetically engineered
mouse models (GEMMs) of sporadic CRC that combine lesions
frequently altered in human patients, including well-characterized
tumor suppressors and activators of MAPK signaling. Primary tumors
from these models were profiled, and individual GEMM tumors
segregated into groups based on their genotypes. Unique allelic and
genotypic expression signatures were generated from these GEMMs
and applied to clinically annotated human CRC patient samples. We
provide evidence that a Kras signature derived from these GEMMs
is capable of distinguishing human tumors harboring KRAS mutation,
and tracks with poor prognosis in two independent human patient
cohorts. Furthermore, the analysis of a panel of human CRC cell
lines suggests that high expression of the GEMM Kras signature
correlates with sensitivity to targeted pathway inhibitors. Together,
these findings implicate GEMMs as powerful preclinical tools with the
capacity to recapitulate relevant human disease biology, and support
the use of genetic signatures generated in these models to facilitate
future drug discovery and validation efforts.

KEY WORDS: KRAS, BRAF, MAPK, Colorectal cancer, GEMM,
Genomic signatures

INTRODUCTION
Human sporadic colorectal cancer (CRC) is a complex
heterogeneous disease, and this contributes to the low success rate
of its clinical trials and lack of robust therapeutics (Betensky et al.,

RESEARCH ARTICLE

1Oncology Research Unit, Pfizer Global Research and Development, San Diego,
CA 92121, USA. 2Institute of  Biostatistics and Analyses, Faculty of  Medicine,
Masaryk University, 625 00 Brno, Czech Republic. 3Bioinformatics Core Facility,
SIB Swiss Institute of  Bioinformatics, 1015 Lausanne, Switzerland. 4Division of
Gastroenterology, Tufts Medical Center, Boston, MA 02111, USA. 5The Beatson
Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK.
6University Hospital Gasthuisberg, Katholieke Universiteit Leuven, 3000 Leuven,
Belgium. 7Pfizer Biotherapeutics Clinical Research, Cambridge, 02140 MA, USA.
*These authors contributed equally to this work

‡Author for correspondence (esmartin.phd@gmail.com)

This is an Open Access article distributed under the terms of  the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted
use, distribution and reproduction in any medium provided that the original work is properly
attributed.

Received 3 September 2013; Accepted 15 April 2014 

2002; de Bono and Ashworth, 2010). Efforts have been made to
understand and account for the heterogeneity of several human
cancers, including CRC, with a focus on segmenting cancer
populations based on core genetic ‘driver’ lesions (Greenman et al.,
2007). In addition, several studies have identified genomic
signatures within large CRC datasets that predict clinical outcome
(Roth et al., 2010; Dry et al., 2010; Popovici et al., 2012; Budinska
et al., 2013; De Sousa E Melo et al., 2013; Sadanandam et al.,
2013).

To further understand and experimentally interrogate the biology
underlying genetically defined disease segments of interest, and to
facilitate discovery of relevant treatment paradigms, stochastic
preclinical disease models harboring homologous somatic alterations
are crucial. To this end, several studies have utilized genetically
engineered model organisms, including Drosophila (Vidal and
Cagan, 2006; Rudrapatna et al., 2012) and mice (Jonkers and Berns,
2002; Tuveson and Jacks, 2002), to recreate hallmark characteristics
of human cancers. Drosophila cancer models have shed light on
numerous biological underpinnings of cancer, including tumor
suppressors, invasion and metastasis (Rudrapatna et al., 2012),
providing substrate for further validation in mammalian models.
Genetically engineered mouse models (GEMMs) have been utilized
as the mammalian cancer model system of choice for decades
(Tuveson and Hanahan, 2011; Politi and Pao, 2011). Although
GEMMs have traditionally incorporated germline alterations in
disease-prevalent genes, models using conditionally controlled,
somatically acquired alleles allow a more accurate stochastic
modeling of the sporadic nature of human tumorigenesis (Heyer et
al., 2010). To address this, GEMMs have been further developed to
leverage restricted exposure of Cre recombinase to initiate latent
alleles exclusively in tissues of interest, closely mimicking the onset
of spontaneous lesions in humans (Johnson et al., 2001; Roper and
Hung, 2012; DuPage et al., 2009; Frese and Tuveson, 2007).

To provide maximal experimental utility and enable the
translation of preclinical mouse modeling experiments into human
disease, GEMMs of human CRC must be driven by homologous
allelic series, and exhibit similar clinical presentations to the human
disease, including disease histopathology and appearance of
metastatic lesions (Heyer et al., 2010; Roper and Hung, 2012).
Recently, primary tumors from GEMMs of pancreatic, colorectal
and non-small-cell lung cancers harboring genetic lesions that are
present in human cancers were shown to be histologically and
pathologically similar to their respective human counterparts
(DuPage et al., 2009; Hung et al., 2010; Martin et al., 2013). In
some cases, GEMMs have closely emulated the response seen in
humans to both standard of care and targeted therapies (Arnold et
al., 2005); furthermore, the mechanisms of acquired resistance to
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such agents have often closely resembled those seen in the clinic
(Engelman et al., 2008; Jorissen et al., 2009; Van Cutsem et al.,
2009; Hegde et al., 2013). Thus, GEMMs are useful preclinical
models for modeling human cancer biology and identifying potential
therapeutic targets.

To further our understanding of the molecular etiology underlying
common genotypic subsets of human CRC, and to assess the extent
to which they recapitulate human disease in animal models, we
amassed a collection of GEMMs that combine colon-specific
mutations, including somatic alterations in Apc (ApcCKO), Tp53
(Tp53flox/flox), Kras (KrasLSL-G12D) and Braf (BrafV600E), genes that are
among the most frequently mutated in human sporadic CRC (Cancer
Genome Atlas Network, 2012). Primary tumor material from this
collection was subjected to gene expression profiling to assess core
similarities and differences among these models, and to generate

unique signatures based on genotype. These signatures were then
evaluated in human CRC tissue with annotated clinical data to assess
the ability of these GEMMs to recapitulate the core transcriptional
biology of their human CRC counterparts. Overlapping gene
expression modules shared between GEMM and human signatures
represent potential points of therapeutic interrogation and provide key
substrate for follow-up validation and drug discovery efforts.

RESULTS
Development and profiling of genetically relevant CRC
GEMMs
Adult GEMMs harboring combinations of latent, inactive alleles of
the four most common somatic lesions observed in human CRC
(Cancer Genome Atlas Network, 2012) (APC, TP53, KRAS and
BRAF) were subjected to surgically restricted delivery of AdCre to
the distal colon; mice were then followed longitudinally for tumor
progression via endoscopy, and tumor material was harvested as
previously described (Hung et al., 2010; Martin et al., 2013). The
conditional Apc and Tp53 alleles harbor loxP sites (floxed), which,
upon exposure to AdCre, result in excision of critical exons,
resulting in loss-of-function proteins, as previously described
(Kuraguchi et al., 2006; Kirsch et al., 2007). The conditional Kras
and Braf alleles harbor floxed transcriptional stop elements upstream
of mutant forms of exon 1 (KrasG12D) (Hung et al., 2010) or exon 15
(BrafV600E) (Coffee et al., 2013). A list of primary tumors with allelic
combinations is provided (supplementary material Table S1).
Tumors and normal colonic tissue from wild-type littermate controls
were subjected to whole-genome expression profiling. Subsequently,
principal component analysis (PCA) and unsupervised hierarchical
clustering on the top 500 most variable genes was performed.
Individual CRC GEMMs clustered by genotype, both in the PCA
(Fig. 1A, genotype representing the first two principal components)
and hierarchical clustering (Fig. 1B). These results demonstrate that
the genotypes of these models represent the primary differentiating
feature, and suggest that each genotype likely possesses unique
underlying biological characteristics.

Allele-specific GEMM signatures
To further assess the underlying differences among our CRC
models, we identified gene signatures (lists of differentially
expressed genes) characteristic of each mutant allele (Apc, Tp53,
Kras, Braf) within the GEMM collection using a multivariable
analysis (see Materials and Methods). It is important to note that all
GEMMs contain Apc lesions; therefore, all results for Braf, Kras
and Tp53 alleles should be interpreted with this regard. A Venn
diagram (Fig. 2A) and heatmaps of supervised hierarchical
clustering on the signature-specific genes (Fig. 2B-E) demonstrate
that these gene lists partially overlap, suggesting common biological
characteristics, including redundant signaling and pathway
activation. To determine whether the unique or intersecting gene
lists associated with each mutant allele displayed enrichment in
known biological processes or curated gene signatures, we cross-
referenced each to the molecular signatures database [MSigDB
(www.broadinstitute.org/gsea/msigdb/)]. Indeed, common gene sets
enriched among upregulated Kras and Braf genes included several
annotated MAPK pathway sets, consistent with the established roles
of mutant Kras and Braf in activating this pathway (supplementary
material Table S2). Gene sets enriched among shared upregulated
Apc and Tp53 genes included several cell cycle gene sets as well as
DNA synthesis, replication and repair, consistent with their
established roles as tumor suppressors and thus with the
deregulation of these functions in our models (supplementary

RESEARCH ARTICLE Disease Models & Mechanisms (2014) doi:10.1242/dmm.013904

TRANSLATIONAL IMPACT
Clinical issue
Colorectal cancer (CRC) is the third leading cause of cancer mortality in
the United States, and ~80% of all cases are sporadic in nature,
involving the acquisition of tumorigenic somatic alterations. Treatment
options for CRC are limited, and the survival rates associated with
advanced-stage disease are low. The highly heterogeneous nature of
this disease is thought to contribute to the lack of success of novel
therapeutics in the clinic. Thus, preclinical models that recapitulate the
core biology of the human disease are needed for the identification of
new therapeutic strategies. Despite the heterogeneity associated with
sporadic CRC, the vast majority of cases display alterations in a limited
number of tumor suppressors and oncogenes. Here, the authors
amassed a unique collection of genetically engineered mouse models
(GEMMs) harboring conditional alleles that mimic acquired somatic
alterations observed in human sporadic CRC, including loss of the tumor
suppressors APC and TP53 and gain of oncogenic BRAF and KRAS. To
gain an understanding of the utility of these models, gene signatures
were derived and used to stratify genomically heterogeneous clinically
annotated patient samples, as well as human cell lines treated with
targeted inhibitors.

Results
Primary tumors were isolated from GEMMs harboring common CRC
‘driver’ mutations, and these tumors were subjected to gene expression
profiling to generate genotype-specific signatures. GEMM-derived
signatures were applied to two independent human clinical CRC
datasets for which genomic profiling and survival data were available.
The GEMM Kras signature score was enriched in individuals with a
mutation in KRAS, and associated with shorter overall survival (OS),
relapse-free survival (RFS) and survival after relapse (SAR).
Interestingly, the signature further segregated the KRAS mutant CRC
patient population into two clinically distinct groups, consistent with
emerging evidence of heterogeneity in this population in both gene
expression and survival. Finally, the signature was predictive of response
to MEK inhibitors, which are widely used as cancer drugs, in human
CRC cell lines.

Implications and future directions
Together, these results demonstrate that gene signatures derived from
genetically and contextually relevant GEMMs are capable of further
resolving genomically heterogeneous populations of human CRC and
identifying patients with characteristics of aggressive disease. The
correlation of the GEMM Kras signature with response to targeted
inhibition of a clinically relevant pathway in a collection of human CRC
cell lines highlights its potential utility in predicting therapeutic response.
Future studies will focus on the application of this signature to other
therapeutic modalities of interest, and on further understanding the
contribution of key nodes or targets present within the signature itself.
On a wider scale, this study demonstrates the usefulness of GEMMs
expressing conditional alleles for exploring genetic heterogeneity in
human malignancies. 
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material Table S3). Gene sets enriched among unique genes for each
allele were also assessed. Gene sets found to be enriched in Kras-
specific genes included metabolism, signaling downstream of
receptors, and adhesion (supplementary material Table S4),
functions previously ascribed to mutant KRAS (Racker et al., 1985;
Pollock et al., 2005; Rajalingam et al., 2007; Levine and Puzio-
Kuter, 2010). Interestingly, gene sets enriched among unique Braf
genes also include metabolism, consistent with previously
established links between oncogenic BRAF and metabolic
deregulation (Yun et al., 2009); however, additional gene sets
included immune response signaling, consistent with additional roles
for oncogenic BRAF (Sumimoto et al., 2006) (supplementary
material Table S5). Gene sets found to be enriched in Apc-specific
genes included development (supplementary material Table S6),

consistent with the role of aberrant APC in WNT–β-catenin
signaling and development (Clevers, 2006), as well as several gene
sets associated with small-molecule transport, a role to our
knowledge not fully characterized for aberrant APC. Gene sets
enriched in Tp53-specific genes included ubiquitylation and
proteolysis pathways (supplementary material Table S7), consistent
with the central role of these pathways in regulating endogenous
TP53 (Lee and Gu, 2010). Taken together, these findings indicate
that lesions in our GEMM alleles of interest result in gene signatures
characteristic of known or putative biological roles for each allele.

Generation and validation of GEMM allelic signatures
We defined GEMM allele-specific scores as a difference of average
gene expression between the top 100 up- and top 100 downregulated
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Fig. 1. GEMM primary tumors segregate by
genotype. (A) Principal component analysis (PCA)
on GEMM primary tumor samples and normal colon
tissue. wt, normal colon from wild-type untreated
mice. The following designations describe the alleles
present in CRC GEMMs: A, Apc; AB, Apc, Braf; ABP,
Apc, Braf, Tp53; AK, Apc, Kras; AKP, Apc, Kras,
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expressed genes from samples as described in A.
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genes from the corresponding signature. The score for each
individual GEMM allelic signature (Kras, Braf, Apc, Tp53;
supplementary material Tables S8-S11, respectively) was computed
in each of the models (A: Apc; AK: Apc, Kras; AKP: Apc, Kras,
Tp53; AB: Apc, Braf; ABP: Apc, Braf, Tp53; AP: Apc, Tp53; WT,
wild type; supplementary material Table S1). As expected, the
models containing a given mutation had the highest score for that
allelic signature in the discovery set (Fig. 3A-D). For instance, the
GEMM Apc signature score was high in all GEMM models, because
all models contain this mutation (Fig. 3A), whereas the GEMM
Tp53 signature was high in models containing Tp53, including AP,

ABP and AKP, but low in A, AB and AK (Fig. 3B). In the case of
the GEMM Kras signature, the score was high in models containing
Kras, including AK and AKP (Fig. 3C). The highest Braf score was
found in models containing Braf, including AB and ABP (Fig. 3D).
Interestingly, the GEMM Kras score was also high in models with
Braf and Apc mutation (AB), but not in those containing Braf, Apc
and Tp53 mutation (ABP) (Fig. 3C), suggesting that the addition of
Tp53 to the Apc, Braf mutant background might result in less
reliance on MAPK-driven signaling. Similar trends were seen in
other genotypes, with Tp53 mutation leading to a systematically
lower signature score compared with their counterparts without the

RESEARCH ARTICLE Disease Models & Mechanisms (2014) doi:10.1242/dmm.013904

A

CB

D

Venn: multivariable genes p<0.05

E

clustering based on top Apc genes clustering based on top Tp53 genes

clustering based on top Kras genes clustering based on top Braf genes

Apc

Tp53 Kras

Braf

4268

2209 466

2580

709

335

447

159

327

498

13

2105

73

0

5397

1925 678

2240

366

168

435

348

220

946

31

380

91

0

up
down

-7.82 -3.91 0 3.96 7.92
-3.87 -1.94 0 4.13 8.25

-7.65 -3.83 0 4.13 8.26 -8.96 -4.48 0 4.13 8.26
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mutation (Apc signature in AP versus A, Fig. 3A; Kras signature in
AKP versus AK, Fig. 3C; ABP versus AB, Fig. 3D). A potential
explanation for these observations could include the increased
presence of genomic instability, a well-known consequence of
aberrant Tp53.

We next applied the signature to an independent GEMM CRC
sample set consisting of acute activation of shared alleles, including
Apc, Tp53 and Kras. Consistent with the findings in our discovery
cohort, our GEMM allelic signatures scored highest in GEMMs
derived from an independent cohort that contained the
corresponding mutant allele (supplementary material Fig. S1A-C),
further validating their predictive utility.

Overlap of allele-specific GEMM Kras and Braf signatures
with clinically annotated CRC datasets
To assess the extent to which our GEMMs recapitulate the genetic and
biological features of human CRC, and to assess the utility of this
collection for preclinical studies, we compared their genomic
signatures to those of clinically annotated human CRC datasets. To
this end, we utilized the Pan-European Trials in Alimentary Tract
Colon Cancers (PETACC-3), a large Phase III randomized trial in
which 688 patients with stage II or III CRC were characterized by
genomic and mutational analysis, including KRAS and BRAF.
Because the mutant Kras allele in the GEMM cohort (KrasLSL-G12D)
is a gain-of-function mutation, for the purpose of comparison we
considered all KRAS gain-of-function mutations in the PETACC-3
dataset, with the caveat that different types of KRAS mutations
potentially have unique biological characteristics (Kirk, 2011). As
indicated in Fig. 4A, the average GEMM Kras signature score was
significantly higher in patients with the KRAS mutant than those with
wild-type KRAS. Given the variability in the GEMM Kras signature

score among individuals with wild-type KRAS and the fact that our
Kras signature scored high in our Braf-containing models, possibly
picking up on common MAPK pathway mechanisms, these patients
were further annotated based on BRAF mutation or similarity to a
published BRAF-like signature (Popovici et al., 2012). Interestingly,
of the KRAS wild-type patients, both BRAF mutant (Fig. 4A, red
circles) as well as those with a high BRAF-like signature score
(Fig. 4A, green circles) tended to display a higher signature score,
supporting our hypothesis that, in addition to distinguishing KRAS
mutant patients, the GEMM Kras signature also captures those with
high MAPK pathway activity. Together, these data indicate that the
GEMM signature is enriched in patients with KRAS mutation, as well
as BRAF mutation or a high degree of similarity to a BRAF-like
signature, the latter of which is potentially indicative of a common
biology shared among KRAS and BRAF mutant patients.

To determine whether our GEMM Kras signature is representative
of human KRAS mutant CRC tumors, we compared it to a human
KRAS signature derived in the multivariable model with KRAS and
BRAF mutation as covariates in PETACC-3 patients. Consistent with
the GEMM, the PETACC-3 KRAS signature score was higher among
KRAS mutant patients than KRAS wild-type patients, whereas, again,
BRAF mutant and BRAF-like patients tended to score highest among
the KRAS wild-type population (Fig. 4B). The GEMM and PETACC-
3 KRAS signature scores showed a high degree of correlation both
among GEMMs (Fig. 4C, R2=0.74) and among patients (Fig. 4D,
R2=0.32). These findings suggest that the Kras signature derived from
a relatively homogeneous background such as the GEMM might be
capable of capturing common and disease-relevant biology present in
human KRAS patients.

Interestingly, our GEMM Braf signature score did not correlate
with the human BRAF signature score of Popovici et al. (Popovici
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et al., 2012), nor was it able to predict BRAF mutant tumors in the
PETACC-3 data. Also, the recent BRAF signature derived from
human samples did not predict correctly Braf mutant status in our
GEMMs (data not shown). This, together with the results of the Braf
signature pathway analysis pointing to proliferation, shows that our
Apc-based Braf models are potentially less representative of the
human BRAF mutant population. This is consistent with the low
frequency of concomitant BRAF and APC lesions observed in
human cases (Cancer Genome Atlas Network, 2012).

Clinical characteristics of patient samples based on GEMM
Kras signature score
We assessed differences in available clinical variables among all
individuals in the PETACC-3 cohort. Patient populations were defined
based on each GEMM signature score into allele-like and non-allele-
like groups (threshold 0 on inter-quartile range normalized scores).
GEMM Kras-like tumors exhibited a statistically significant
enrichment for various characteristics, including mucinous histology,
KRAS mutant, BRAF mutant, right-side, stage 3, and similarity to a
BRAF-like population shown previously to be associated with poor
prognosis (Popovici et al., 2012) (supplementary material Table S12),
implicating the ability of the GEMM Kras signature at distinguishing
aspects of advanced disease.

GEMM Kras signature is associated with poor outcome
To determine whether the GEMMs are representative of advanced
disease, we examined survival differences among annotated patients
in PETACC-3. Differences in overall survival (OS), relapse-free

survival (RFS) and survival after relapse (SAR) were compared. To
validate our findings, we performed a similar assessment on an
independent publicly available sample cohort (GEO GSE14333)
(Jorissen et al., 2009), consisting of 115 stage II/III human CRC
samples with gene expression profiling and survival data. Of the
four core GEMM signatures generated (Apc, Tp53, Braf, Kras), the
Kras signature score produced the highest hazard ratios for OS and
SAR in the PETACC-3 dataset, and among the highest hazard ratios
for OS, RFS and SAR in the GSE14333 dataset (Table 1),
suggesting that it is most indicative of advanced disease. OS, RFS
and SAR based on GEMM Kras signature was plotted for the
PETACC-3 dataset (Fig. 5A-C) and for the GSE1433 dataset
(Fig. 5D-F). Additional Kaplan-Meier plots for GEMM Braf, Apc
and Tp53 signatures in PETACC-3 as well as GSE144333 can be
found in supplementary material Figs S2 and S3, respectively.
Because the GEMM Kras signature was associated with some
prognostic clinical variables (e.g. stage), we also fitted a
multivariable survival model with GEMM Kras-like signature,
BRAF mutant, KRAS mutant, mucinous status, grade and MSI,
within stage-3 patients of the PETACC-3 dataset (stage 2 patients
were enriched for relapsed patients, so were not representative of the
population). The GEMM Kras signature remained significant for
both OS and RFS (supplementary material Table S13). Together,
these findings suggest that our GEMM Kras signature could offer
insight into survival characteristics in two independent large human
CRC patient cohorts.

Given that KRAS mutant CRC patients have been shown to be
heterogeneous (Budinska et al., 2013; Sadanandam et al., 2013) and
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given the ability of the GEMM Kras signature to distinguish patients
with poor prognosis, we sought to determine whether this signature
could further delineate clinical features, specifically in a KRAS
mutant patient population. Although not statistically significant, a
trend toward worse prognosis was observed for KRAS mutant
patients with high GEMM Kras signature score for OS, RFS and
SAR (Fig. 6A-C, P=0.480, P=0.398 and P=0.341, respectively).

Together, these data indicate that the GEMM Kras signature can
distinguish a subpopulation of patients with poor prognosis, perhaps
owing to its ability to further distill a heterogeneous patient
population to the core underlying biology beyond simply the status

of a given driver lesion, much like the recent BRAF signature
(Popovici et al., 2012) with which it is correlated.

GEMM Kras signature is predictive of sensitivity to targeted
inhibitors
To determine the utility of the GEMM Kras signature as a
preclinical model selection tool, we assessed its ability to predict
response to targeted inhibitors in a panel of cell lines. Given the
clinical potential in applying MEK inhibitors to treat various tumor
types, including CRC, we sought to determine whether the GEMM
signature was predictive of response to these inhibitors as
determined by a publicly available study of drug sensitivity 
across a comprehensive collection of cancer cell lines
(http://www.cancerrxgene.org), with a focus on CRC. A high
GEMM Kras signature score was associated with increased
sensitivity of CRC cell lines to two independent MEK inhibitors
used in the study, PD-0325901 and AZD6244 (Fig. 7A,B,
respectively). To independently validate these findings, we selected
representative cell lines with relatively high and low GEMM Kras
signature scores (high: LS-1034, LS-513; low: Colo-320, SW948),
and assessed cell viability following a full-dose response of these
MEK inhibitors. The cell lines with higher GEMM Kras signatures
displayed relatively greater sensitivity than those lines with lower
GEMM Kras signatures to the MEK inhibitors PD-0325901 and
AZD6244 (Fig. 7C,D, respectively). This supports our hypothesis
that the GEMM Kras signature is associated with an increased
dependency on MAPK signaling, and therefore an enhanced
sensitivity to pathway inhibition via selective targeting of MEK.
This is consistent with the known ‘driver’ phenotype of mutant
KRAS and the increased dependency on the MAPK pathway
observed in several KRAS mutant cell lines. Interestingly, the
GEMM Kras signature score added predictive utility beyond simply
KRAS mutation status of the cell lines: a signature score positively
correlated with sensitivity to MEK inhibition, even within a set of
KRAS mutant cell lines. Taken together, these findings provide
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Table 1. Survival characteristics associated with each GEMM
signature

PETACC-3 GSE14333

Parameter HR P-value HR P-value

Kras-like vs non Kras-like
OS 1.64 0.00077 2.72 0.00656
RFS 1.46 0.00251 3.25 0.00132
SAR 1.49 0.01204 4.28 0.01616

Braf-like vs non Braf-like
OS 1.58 0.00142 0.88 0.71205
RFS 1.72 0.00001 1.54 0.22355
SAR 0.9 0.48413 0.94 0.89929

Tp53-like vs non Tp53-like
OS 0.64 0.00144 0.93 0.84505
RFS 0.59 0.00001 0.31 0.00128
SAR 1.1 0.55328 1.08 0.88514

Apc-like vs non Apc-like
OS 0.73 0.02836 2.72 0.01102
RFS 0.75 0.01871 1.45 0.28122
SAR 0.94 0.68965 1.71 0.30573

GEMM Apc, Tp53, Kras and Braf signatures were applied to the PETACC-3
and GSE14333 datasets as described in Fig. 5, and OS, RFS and SAR were
compared for each respective signature. Shown are P-values and hazard
ratios (HR) for each parameter.
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motivation for using the GEMM Kras signature for predicting
response to targeted inhibitors of the MAPK pathway, including
those targeting MEK.

DISCUSSION
The identification of core ‘driver’ lesions among tumor indications
provides a means for segmenting patients and, in some cases,
selecting treatment regimens. Despite advances in patient

stratification and treatment selection, there are still sizeable
segments of human disease with limited effective treatment options.
One such segment is defined by the presence of KRAS mutations,
constituting roughly 30-40% of sporadic CRC (Jorissen et al., 2009;
Cancer Genome Atlas Network, 2012). Further compounding this
problem is the lack of informative preclinical models in which to
conduct rapid drug discovery efforts.

Next-generation GEMMs have gained prominence as preclinical
cancer models (DuPage et al., 2009; Heyer et al., 2010; Politi and
Pao, 2011). Specific advantages of these models include the ability
to selectively activate latent alleles of interest, effectively modeling
the stochastic gain of activating mutations and/or loss of tumor
suppressors commonly observed in sporadic human cancers. Our
GEMM collection contains combinations of genes frequently
mutated or lost in human CRC, including Apc, Tp53, Braf and Kras,
thereby allowing us to model a broad spectrum of human disease.
Adding to the utility of these models, primary tumors are used as
substrate to generate tumor-derived cell lines that maintain much of
the biology of the original tumors, and retain key alleles of interest
(Martin et al., 2013). Further, these cell lines serve as a platform for
in vitro and in vivo interrogation because they are amenable to
growth in subcutaneous space, in sites common for metastasis such
as the liver, and in the native colonic environment of syngeneic,
immunocompetent recipients (Martin et al., 2013). As in any
GEMM, there are also clear drawbacks to these models, such as the
limited number of defined genetic lesions and tumor heterogeneity
relative to their human counterparts, in large part due to the inherent
nature of an inbred model. In addition, owing to their historically
short lifetime as preclinical models, their translational value of has
yet to be fully realized. Thus, it is important to understand the role
of these models as a complementary tool in a larger comprehensive
preclinical drug discovery program.

In the current study, we investigated the genomic characteristics
of primary tumors from our collection of CRC GEMMs containing
genetic lesions that are present in a large portion of human disease
cases. The genomic profiles of these tumors properly segregated
based on their core genotypes, with each genotype containing
unique distinguishing signatures. Our Braf models were exclusively
generated along with loss of Apc, a condition likely not indicative
of human CRC progression as indicated by a recent assessment of
human CRC mutational data (Cancer Genome Atlas Network, 2012)
and also reflected in our GEMM Braf signature failing to classify
BRAF mutant clinical samples.

The GEMM Kras signature was effectively validated within an
independent collection of GEMMs, as it properly distinguished Kras
mutant models from non-mutant. A more detailed analysis of the
GEMM Kras signature revealed that it was enriched in human CRC
patients with advanced disease and poor prognosis. The signature was
also able to further stratify the KRAS mutant segment of a large
clinical cohort, suggesting that a comprehensive signature can provide
additional power in further segregating a patient population of interest,
beyond simply the status of a given driver lesion, and indicating that
there are likely additional underlying characteristics that account for
severity of disease beyond the mutation status of KRAS. Finally, the
signature provided additional utility in predicting sensitivity to
targeted MEK inhibition across a panel of CRC cell lines, because
those lines with a high signature score tended to display increased
sensitivity to two independent MEK inhibitors, suggesting a utility in
predicting pathway dependence. The correlation was maintained even
within a set of cell lines that harbor KRAS mutation: KRAS mutant cell
lines with relatively higher signature scores displayed increased
sensitivity compared with mutant lines with lower signature scores.
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Fig. 6. GEMM Kras similarity score assigned within the PETACC-3
KRAS mutant population is associated with poor prognosis. (A-C) The
PETACC-3 KRAS mutant population was treated separately and a similarity
score was assigned to each KRAS mutant patient, based on similarity to the
GEMM Kras signature. Kaplan-Meier curves demonstrating that the GEMM
Kras signature is predictive of poor overall survival (OS, A), relapse-free
survival (RFS, B), and survival after relapse (SAR, C) within the PETACC-3
KRAS mutant population. Survival times were cut at 84 months.
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This approach could potentially be used to identify additional pathway
dependencies and corresponding therapeutic sensitivities. Taken
together, this study highlights instances in which signatures generated
from the GEMMs are applicable to recapitulating biological
characteristics of human disease, including prognosis and response to
targeted therapeutics. Although several limitations preclude the use of
GEMMs as a stand-alone discovery model, the features described
herein provide further insight into the power of these GEMMs of
sporadic CRC as a companion preclinical discovery model in a
comprehensive drug discovery effort.

MATERIALS AND METHODS
This research protocol was approved by our attending veterinarian, and by
the Pfizer Institutional Animal Care and Use Committee (IACUC).

CRC GEMMs
The generation and genotyping of Apc (ApcCKO), Tp53 (Tp53flox/flox), Kras
(KrasLSL-G12D) and Braf (BrafV600E) genetically engineered mice has been
previously described (Hung et al., 2010).

CRC GEMM tumor samples and gene expression data
Murine primary tumor samples from GEMMs treated with AdCre, and
normal colon tissue from untreated wild-type mice were collected. Wild-type
mouse colon tissue used for RNA extraction and microarray analysis was
enriched for epithelial cells. Briefly, colons were opened lengthwise, cut into
3-5 mm fragments, and washed in HBSS-glucose. Fragments were then
resuspended in 20 ml HBSS-glucose-dispase-collagenase solution, placed
into a conical tube and agitated on a shaking platform for 25 minutes at
25°C. The digested tissue was further disaggregated by hand pipetting and
vigorous shaking for 3 minutes and inspected under an inverted microscope.
Subsequently, enzymes were neutralized with 50 ml DMEM-sorbitol and
crypt cell suspensions were separated from intestinal fragments and passed
through a 70-μm cell strainer. The epithelial-enriched fraction was briefly
centrifuged and used for RNA extraction and microarray analysis. RNA was
isolated and processed for hybridization on Mouse Affymetrix GeneChip

430 2.0 arrays (Affymetrix, Santa Clara, CA) as previously described
(Martin et al., 2013). All gene expression data can be found at the Gene
Expression Omnibus (www.ncbi.nlm.nih.gov/geo/) under accession number
GSE50794. Our training set consisted of Affymetrix Mouse 430 2.0 gene
expression profiles of 33 primary tumors representing the following
genotypes: Apc (7), Apc/Kras (6), Apc/Kras/Tp53 (8), Apc/Tp53 (3),
Apc/Braf (4), Apc/Braf/Tp53 (5) and nine normal colon tissue samples.

The validation set consisted of Affymetrix Mouse 430 2.0 gene expression
profiles of 15 primary tumors of genotypes: Apc (3), Apc/Kras (6),
Apc/Tp53(6) and three normal colon tissues.

Clinical and cell line data
803 stage II or III human CRC gene expression profiles from both the
PETACC-3 trial [688 formalin-fixed paraffin-embedded samples profiled on
ALMAC CRC DSA platform (Almac, Craigavon, UK) (Budinska et al.,
2013)] and Moffit samples [115 fresh frozen samples profiled on Affymetrix
HG U133+ 2.0 platform (Jorissen et al., 2009)] with available clinical and
survival data were used to test whether our GEMM models are
representative of human disease. The PETACC-3 data are available from the
Array Express database under the accession number E-MTAB-990; the
Moffit data are available from the GEO database under accession number
GSE14333. Cell line gene expression profiles with drug sensitivity
(http://www.cancerrxgene.org) (Garnett et al., 2012) profiled on Affymetrix
HG U133A platform (Affymetrix, Santa Clara, CA) were downloaded from
the Array Express database under the accession number E-MTAB-783.

Microarray data normalization and data filtering
All Affymetrix gene expression data were normalized and summarized using
the function three step of affyPLM R package (www.bioconductor.org) with
default settings, background correction, quantile normalization and median
polish probe summarization. ALMAC gene expression profiles from the
PETACC-3 trial were processed as previously described (Popovici et al.,
2011; Popovici et al., 2012). In each dataset, one probeset with the highest
variability was selected as a representative of each EntrezGene ID. The
variability for each probeset was estimated by robust linear regression (rlm
function in R package MASS) as the robust scale estimate (RSE). This
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Fig. 7. GEMM Kras signature predicts sensitivity to
targeted MEK inhibition. The top 100 most significant
GEMM Kras signature genes were used to segregate cell
lines based on similarity to these genes (x-axis, GEMM
Kras signature score; increasing value indicates
increasing signature score), and compare this to the
relative sensitivity to targeted MEK inhibitors reported in
the Sanger dataset (www.cancerrxgene.org) [y-axis, ln
(IC50); increasing value indicates decreasing sensitivity to
the inhibitor], including PD-0325901 (A) and AZD6244 (B).
KRAS mutant cell lines are in red, BRAF mutant cell lines
are in green, KRAS/BRAF wild-type cell lines are in black.
The associated Pearson correlations and R2 values
relating Kras signature score to inhibitor sensitivity are
shown above each graph. (C,D) Independent confirmation
of sensitivity to MEK inhibitors. Representative cell lines
with relatively high (LS-1034, LS-513) and low (Colo-320,
SW948) GEMM Kras signature scores were
experimentally tested as an independent assessment of
sensitivity to MEK inhibitors PD-0325901 (C) and
AZD6244 (D). KRAS mutant cell line names are in red,
KRAS/BRAF wild-type cell line names are in black.
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resulted in the following number of EntrezGene IDs: 21,758 in GEMM
datasets, 14,926 in PETACC-3 dataset, 20,752 in GSE 14333 dataset and
11,237 in the cell line dataset. For all analyses with clinical data, an
overlapping set of 13,265 EntrezGene IDs between the two clinical datasets
(from ALMAC and Affymetrix platforms) was used. For signature
development, mouse EntrezGene IDs were matched to their human
homologs, reducing the number of EntrezGene IDs to 15,888 and intersected
with 13,265 EntrezGene IDs of clinical datasets, leading to a final subset of
11,745 EntrezGene IDs.

Statistical analysis, clustering and classifier development
A multivariable linear additive model was built on a GEMM training set of
15,888 EntrezGene IDs to estimate mutation-allele-specific (Apc, Kras, Braf,
Tp53) effects, with WT in all alleles as baseline. The genes that were assigned
a statistically significant effect in a given mutation made up the mutation-
specific gene list. Unsupervised hierarchical clustering with average linkage
and Pearson correlation as a measure of similarity was used to cluster sets of
the top 500 most variable EntrezGene IDs and then the top 500 most variable
allele-specific genes and samples. For classifier construction, the final subset
of 11,745 human homolog EntrezGene IDs was used.

The top 100 up- and downregulated genes from multivariable analysis
specific for a given allele were used to define the allele-specific score,
defined as a difference of average gene expression between up- and
downregulated genes of the allele. The rule score >0 served as classifier
defining allele-like group, except for the KRAS mutant subpopulation, where
the median of the KRAS-like score was taken as threshold. Prior to
application of the classifier and consequent survival analysis, the genes in
the datasets were median-centered and normalized by inter-quartile range.

MSigDB analysis
Gene lists associated with each mutant allele (Kras, Braf, Apc, Tp53)
generated from the multivariable analysis above (P<0.01 regulated for each
allele) were uploaded to the MSigDB analysis tool [Broad Institute
(http://www.broadinstitute.org/gsea/msigdb/index.jsp)]. Enrichment in
MSigDB gene sets from all major canonical pathway collections were
assessed and ranked by P-value. The top 10-20 MSigDB gene sets with the
most significant enrichment for each allelic gene list were identified.

Comparison of GEMM Kras signature score and cell line
sensitivity
GEMM Kras signature score classifier was applied to normalized,
EntrezGene ID summarized cell line dataset (http://www.cancerrxgene.org).
For this purpose, 66 upregulated and 74 downregulated EntrezGene IDs
from the original GEMM Kras classifier that were found on the Affymetrix
HG U133A platform were used to calculate the GEMM Kras score for each
CRC cell line in this dataset. This score was then plotted with the
corresponding IC50 values of drug response to the MEK inhibitors PD-
0325901 and AZD6244 for each cell line, as reported in this dataset, and a
linear model was fitted.

Independent confirmation of cell line sensitivity to MEK
inhibitors
An independent validation of sensitivity to MEK inhibitors PD-0325901 and
AZD6244 based on GEMM Kras signature score was performed by
selecting representative cell lines with relatively high GEMM Kras signature
scores (LS-1034, LS-513) and low signature scores (Colo320, SW948).
Briefly, cell lines were seeded at 1000 cells/well in 96-well culture plates in
growth medium with 10% FBS. Cells were incubated overnight and treated
with DMSO (0.1% final) or serial diluted compound for 4 days. Cell
viability was assessed adding Cell Titer Glo reagent (CTG, Promega,
Madison, WI) and plates were incubated at room temperature for
30 minutes. Luminescence signals were read and IC50 values were calculated
by plotting luminescence intensity to drug concentration in nonlinear curves
using GraphPad Prism (GraphPad, La Jolla, CA).

Survival analysis
Outcome variables were overall survival (OS), relapse-free survival (RFS)
and survival after relapse (SAR). Survival probabilities were estimated using

the Kaplan-Meier method, and Cox proportional hazards model and Wald
test were used to assess association of GEMM Kras signature with outcome
variables. Cox proportional hazards model was used also for multivariable
model. Survival times were cut at 84 months.

Gene expression data
All gene expression data can be found at the Gene Expression Omnibus
(www.ncbi.nlm.nih.gov/geo/) under accession number GSE50794.
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Response to anticancer therapies varies 
owing to the substantial molecular 
heterogeneity of human tumours and to 
poorly defined mechanisms of drug efficacy 
and resistance1. Immortalized cancer cell 
lines, either cultured in vitro or grown as 
xenografts, cannot interrogate the complexity 
of human tumours and only provide 
determinate insights into human disease, as 
they are limited in number and diversity, and 
have been cultured on plastic over decades2. 
This disconnection in scale and biological 
accuracy contributes considerably to attrition 
in drug development3–5.

effectively recapitulate the intra-tumour 
and inter-tumour heterogeneity that 
typifies human cancer6–9.

Exhaustive information on the key 
characteristics and the practical applications 
of PDXs can be found in recent reviews10–13. 
In this Opinion article, we discuss basic 
methodological concepts, as well as challenges 
and opportunities in developing ‘next-
generation’ models to improve the reach of 
PDXs as preclinical tools for in vivo studies 
(TABLE 1). We also elaborate on the merits of 
PDXs for exploring the intrinsic heterogeneity 
and subclonal genetic evolution of individual 
tumours, and discuss how this may influence 
therapeutic resistance. Finally, we examine 
the utility of PDXs in navigating complex 
variables in clinical decision-making, such 
as the discovery of predictive and prognostic 
biomarkers, and the categorization of 
genotype–drug response correlations in 
high-throughput formats. Being primarily 
co‑authored by leading members of the 
EurOPDX Consortium (see Further 
information), we provide a perspective on 
the value of PDX models as an important 
resource for the international cancer research 
community towards the realization of a 
precision medicine paradigm (BOX 1; TABLE 2).

Modelling cancer phenotypes
Interrogating intra-tumour heterogeneity 
and evolutionary dynamics. Cancer 
is increasingly being recognized as an 
ecosystem of cells that constantly evolves 
following Darwinian laws. Owing to cancer 
cell intrinsic mutability, an incipient tumour 
clone gives rise to a progeny of genetically 
heterogeneous subclones, some of which 
will thrive while others shrink, depending 
on their ability to cope with environmental 
selection pressures14. This is of particular 
relevance for cancer treatment, as most 
patients will eventually succumb to the 
disease owing to the appearance of resistant 
tumour subclones. Despite the considerable 
clinical impact of tumour heterogeneity15, 
little is known about how it affects response 
to cancer therapy and how it may change 
during treatment at both the genomic and 
the phenotypic levels16–20. These issues 
highlight the need for preclinical models that 
capture the heterogeneous nature of human 
cancers and their ongoing evolution.

Surgically derived clinical tumour 
samples that are implanted in mice 
(known as patient-derived xenografts 
(PDXs)) are expected to better inform 
therapeutic development strategies. As 
intact tissue — in which the tumour 
architecture and the relative proportion 
of cancer cells and stromal cells are both 
maintained — is directly implanted 
into recipient animals, the alignment 
with human disease is enhanced. More 
importantly, PDXs retain the idiosyncratic 
characteristics of different tumours 
from different patients; hence, they can 
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Annette T. Byrne, Denis G. Alférez, Frédéric Amant, Daniela Annibali, 
Joaquín Arribas, Andrew V. Biankin, Alejandra Bruna, Eva Budinská, 
Carlos Caldas, David K. Chang, Robert B. Clarke, Hans Clevers, George Coukos, 
Virginie Dangles-Marie, S. Gail Eckhardt, Eva Gonzalez-Suarez, Els Hermans, 
Manuel Hidalgo, Monika A. Jarzabek, Steven de Jong, Jos Jonkers, 
Kristel Kemper, Luisa Lanfrancone, Gunhild Mari Mælandsmo,  
Elisabetta Marangoni, Jean-Christophe Marine, Enzo Medico, Jens Henrik Norum, 
Héctor G. Palmer, Daniel S. Peeper, Pier Giuseppe Pelicci, Alejandro Piris-Gimenez, 
Sergio Roman-Roman, Oscar M. Rueda, Joan Seoane, Violeta Serra,  
Laura Soucek, Dominique Vanhecke, Alberto Villanueva, Emilie Vinolo, 
Andrea Bertotti and Livio Trusolino

Abstract | Patient-derived xenografts (PDXs) have emerged as an important 
platform to elucidate new treatments and biomarkers in oncology. PDX models are 
used to address clinically relevant questions, including the contribution of tumour 
heterogeneity to therapeutic responsiveness, the patterns of cancer evolutionary 
dynamics during tumour progression and under drug pressure, and the 
mechanisms of resistance to treatment. The ability of PDX models to predict 
clinical outcomes is being improved through mouse humanization strategies and 
the implementation of co‑clinical trials, within which patients and PDXs 
reciprocally inform therapeutic decisions. This Opinion article discusses aspects 
of PDX modelling that are relevant to these questions and highlights the merits of 
shared PDX resources to advance cancer medicine from the perspective 
of EurOPDX, an international initiative devoted to PDX-based research.
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Table 1 | Modelling cancer phenotypes with PDX models

PDX model Open clinical question Advantages Challenges

Primary tumour 
specimens 
implanted s.c.

•	Interrogation of primary or acquired 
resistance mechanisms

•	Discovery of prognostic and predictive 
biomarkers

•	Drug response
•	Identification of targetable molecular 

alterations
•	Characterization of intra-tumour 

clonal evolution

•	Intact primary tumour tissue that maintains 
tumour architecture

•	Captures clonal diversity
•	Easy to measure tumour responses
•	Intravital tumour imaging

•	Lack of proper anatomical niche
•	Not all grades of tumour engraft 

s.c. Generally, higher grade, 
more aggressive tumours 
engraft more easily

Primary tumour 
specimens 
implanted 
orthotopically 
(PDOX)

•	Mechanisms of metastasis
•	Study site-specific dependence of 

therapy
•	Monitoring the effects of adjuvant 

therapy on occult metastasis
•	Stromal contribution to response

•	Intact primary tumour tissue that maintains 
primary tumour architecture

•	Local growth of primary tumour in proper 
anatomical context

•	Spontaneous distant metastases from primary 
tumour

•	Presence of primary and metastatic tumour niche
•	Recapitulates the entire metastatic process from 

the appropriate anatomical site
•	Ability to mimic clinical scenarios, for example, 

surgical removal of primary tumour or adjuvant 
therapy

•	Access to imaging technologies 
to visualize tumour in 
longitudinal studies

•	Microsurgical skills
•	Large collections and 

high-throughput screens 
difficult to implement

Metastatic 
tumour 
specimens 
implanted s.c.

•	Interrogation of primary or acquired 
resistance mechanisms

•	Discovery of prognostic and predictive 
biomarkers

•	Drug response
•	Identification of targetable molecular 

alterations
•	Characterization of intra-tumour 

clonal evolution

Intact metastatic tumour tissue that maintains 
tumour architecture

Lack of tumour metastatic niche

Metastatic 
tumour 
specimens 
implanted 
orthotopically 
at the 
metastatic site

•	Mechanisms of metastasis
•	Drug resistance
•	Genetic and cellular mechanisms of 

tumour growth
•	Drug response in the setting of 

metastatic disease
•	Stromal contribution to response

Intact metastatic tumour tissue that maintains 
tumour architecture

•	Access to imaging technologies 
to visualize tumour in 
longitudinal studies

•	Microsurgical skills
•	Large collections and 

high-throughput screens 
difficult to implement

PDX models of 
MRD

•	Drug resistance
•	Discovery of prognostic and predictive 

biomarkers
•	Biological and pharmacological studies
•	Identification of targetable molecular 

alterations

•	Studies can help us to understand the molecular 
bases of and optimize therapies for MRD

•	Higher tumour take rate when compared with 
untreated cancers

•	Enables the study of clonal evolution and cancer 
stem cell behaviour

PDXs are never therapy naive

Clinical 
trial-associated 
xenografts 
(CTAXs)

•	Discovery of prognostic and predictive 
biomarkers

•	Drug resistance
•	Drug response
•	Identification of targetable molecular 

alterations
•	Mechanisms of metastasis

•	Possibility of establishing xenografts at different 
clinical stages during patient tumour progression

•	Permits the parallel testing of novel drug 
combinations

•	Limited quantity and quality of 
tissue

•	Limited number of successfully 
generated PDXs

•	A PDX derived from a single 
biopsy sample may not 
represent the patient’s tumour

CTC-derived 
PDX models

•	Molecular tumour heterogeneity
•	Discovery of prognostic and predictive 

biomarkers
•	Study of the genetic evolution of the 

tumour
•	Identification of targetable molecular 

alterations

•	Minimally invasive sampling
•	Ability to monitor cancer burden and drug 

susceptibility in metastatic and late-stage 
settings

•	Recapitulates donor patient’s response to 
treatment

•	Facilitates investigation of the biology of 
otherwise inaccessible tumour specimens

•	Low concentration in peripheral 
blood of patients with different 
solid tumours

•	Access to technologies to 
isolate all CTCs (both epithelial 
and mesenchymal)

•	Technically challenging

Humanized 
PDX models

Investigation of immune therapeutics Recapitulates human immune system in mice •	Requires lengthy mouse 
humanization procedures

•	Hurdles to achieve complete 
human immune system 
reconstitution

•	See Supplementary information 
S1 (table) for further details

CTC, circulating tumour cell; MRD, minimal residual disease; PDX, patient-derived xenograft; PDOX, patient-derived orthotopic xenograft; s.c., subcutaneously.
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For example, breast cancer is a 
constellation of at least 10 different genomic 
subtypes, each with distinct drivers and 
variable intra-tumour heterogeneity15,21,22. 
Recent evidence has suggested that each 
breast cancer comprises multiple tumour 
cell populations with distinct evolutionary 
trajectories that are likely to be affected by 
treatment pressure23–25. Genomic evolution 
between primary and recurrent tumours 

transcriptomic, epigenomic and histological 
levels, as well as in terms of shared signalling 
pathways8,30–32. Notably, the majority 
of tumour subclones that change upon 
engraftment do not include known breast 
cancer oncogenic drivers29. This suggests 
that, although engraftment pressure is 
observed, it is evolutionarily neutral, as it 
does not affect intra-tumour heterogeneity 
when considering the clonal representation 
of relevant genes. These features probably 
underpin the successful use of breast cancer 
PDXs to predict clinical drug responses9 and 
mechanisms of acquired resistance33,34.

As discussed below, an advantage of 
PDX models is that they can be generated 
with a limited amount of material; for 
example, using fine-needle biopsies 
(TABLE 1). However, these methods may be 
confounding when the studied tumour 
type is particularly heterogeneous (such as 
melanoma). For example, within one tumour 
or metastasis, multiple melanoma subclones 
can exist, each harbouring different genetic 
and/or epigenetic alterations35–37. Simply 
taking a single biopsy sample can result 
in a PDX that does not represent the 
heterogeneity of the patient’s tumour35,38. 
Notably, regional genetic variability can 
be exacerbated by PDX serial propagation, 
producing divergent responses in tumour 
measurements within a single cohort of 
treated mice32,39. Methods to overcome 
this limitation include good, standardized 
preclinical designs (those with adequate 
statistical power and proper randomization), 
as well as the mixing of heterogeneous 
tumour masses before implantation, such 
as through the use of single-cell suspension 
injections or rough tumour homogenates24.

The direct derivation of PDXs from 
circulating tumour cells (CTCs) may 
represent another tool to further interrogate 
tumour heterogeneity. The numbers of 
cancer cells shed by tumours into the 
bloodstream may be exceedingly low, 
and the biological and clinical relevance 
of CTCs in sustaining malignant disease 
has been questioned40. However, as CTCs 
are shed by tumours on a stochastic 
rather than a deterministic basis41, they 
are expected to better recapitulate the 
distribution of different subclonal tumour 
populations (TABLE 1).

Intra-tumoural heterogeneity may also be 
non-genetic and intrinsic to the hierarchical 
organization of some tumours, in which a 
small subpopulation of cancer stem cells 
(CSCs) may be responsible for long-term 
tumorigenicity42–45. CSCs are thought to 
be chemoresistant and the main cause of 

also occurs24–28. Such intra-tumour and 
inter-tumour variability affects therapeutic 
responses, and hence needs to be considered 
in the preclinical and clinical settings. 
Although some engraftment-associated 
selection has been documented24,29, PDX 
models of breast cancer seemingly preserve 
most of the genomic clonal architecture of 
the original patient sample and also seem 
to resemble patient counterparts at the 

Box 1 | The EurOPDX Consortium and other related initiatives

EurOPDX (see Further information; established in 2013) is a collaborative network of 16 European 
academic institutions with expertise in basic, preclinical, translational and clinical oncology. 
Participating laboratories are affiliated with comprehensive cancer centres within which 
preclinical experimentation is closely associated with clinical activities. This allows for the efficient 
sharing of patient specimens — together with fully annotated clinical information — and facilitates 
the collection of tumours with unique characteristics (for example, rare types, exceptional 
responders and therapy-refractory cases). Currently sustained by membership fees organized by a 
consortium agreement, EurOPDX aims to obtain competitive infrastructural funding to further 
implement collaborative research projects and to formalize external access procedures to models. 
The consortium agreement also sets forth general rules for confidentiality and intellectual 
property issues to regulate activities among EurOPDX members (co‑ownership of results) and 
between EurOPDX and potential partners, including other patient-derived xenograft (PDX) 
consortia and industry.

Main objectives
•	To create a uniquely extensive collection of characterized PDX models. The collection consists 

of more than 1,500 subcutaneous and orthotopic models from more than 30 different 
pathologies (see TABLE 2). The models and their molecular annotation are currently being made 
publicly available through the cBioPortal, and are accessible for collaboration upon signature of a 
material transfer agreement. Systematic derivation of primary cultures and organoids for in vitro 
studies is planned.

•	To provide a platform for population-scale studies to discover low-prevalence genetic alterations 
with clinically actionable potential; to explore mechanisms of therapeutic resistance in 
molecularly defined tumour subtypes; and to develop predictive biomarkers for personalized 
cancer treatment.

•	To harmonize working practices. This entails several aspects: first, standardization of biobanking 
procedures, including systematic assessment of genetic identity by single nucleotide 
polymorphism (SNP) DNA fingerprinting. Second, the implementation of common rules for PDX 
expansion and archiving; discussions are ongoing to limit PDX propagation to a maximum of five 
passages, but exceptions will be considered for tumour types known to deteriorate after 
freezing–thawing steps and for models characterized by very indolent growth, for which 
expansions up to five passages would take exceedingly long. Third, optimization of 
inter-laboratory reproducibility through proof‑of‑concept studies by which models from the 
same source are tested independently. And finally, the definition of a set of minimal information 
to be linked to each PDX.

Other major PDX initiatives
•	US National Cancer Institute (NCI) repository of patient-derived models (see Further 

information).

•	US Pediatric Preclinical Testing Consortium (PPTC; see Further information), a US National 
Cancer Institute (NCI)-centralized and NCI-funded collection for in vivo testing of paediatric 
anticancer drug candidates.

•	Children’s Oncology Group (COG) cell culture and xenograft repository (see Further 
information), a COG-based resource that provides validated cell lines and PDXs from paediatric 
cancers.

•	Public Repository of Xenografts (PRoXe; see Further information), an open-source repository of 
leukaemia and lymphoma PDXs165. Many of the models are being licensed to the Jackson 
Laboratories for industry-scale purposes, including distribution on a fee-for-service basis.

•	Novartis Institutes for Biomedical Research PDX Encyclopedia (NIBR PDXE), an industry-led 
initiative that includes approximately 1,000 models9. Clinical, pathological and PDX-level data 
from this collection are currently being incorporated into PRoXe165.
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recurrence and distant metastasis46–48. Much 
of the supporting evidence originates from 
PDX models that were directly derived  
from various clinical samples, including 
CTCs, ascites fluid and pleural effusion cells, 
and surgical biopsy samples49–53. PDX models 
have provided evidence of CSC colonization 

CSCs recapitulate the full characteristics of 
stem cells (that is, they are undifferentiated 
cells with limitless replicative potential, 
which partly self-perpetuate to maintain 
a tumorigenic reservoir and which partly 
differentiate to give rise to a diverse progeny 
of non-tumorigenic cells) or simply identify 

in metastatic sites and have also highlighted 
the role and importance of the surrounding 
tumour stroma, a niche that is known to 
influence CSC behaviour by cell‑to‑cell 
contacts and through the secretion of 
pro-tumorigenic ligands and cytokines8,51,54. 
An ongoing debate exists as to whether 

Table 2 | Facts and figures about the EurOPDX collection*

Tumour type 
or organ

Subtype Primary tumour 
or metastasis

Total number 
of established 
models

Average engraftment rate: treatment 
naive and adjuvant samples (%)

Engraftment rates: neoadjuvant 
samples (if relevant) (%)

Subcutaneous Orthotopic Subcutaneous Orthotopic

CRC All subtypes 
included

Primary 291 52–75 80 NA NA

Liver metastasis 444 73–91 90 84 NA

Pancreas 
(PDAC)

All subtypes 
included

Primary 211 54–71 70 NA NA

Liver metastasis 24 60–100 90 NA NA

Breast ER+ 
(including 
ER+HER2+)

Primary 24 4–7 7 20 NA

Metastasis 20 25–49 33–47 NA NA

TNBC Primary 78 30–34 60–86 72 86

Metastasis 26 60 50–66 NA NA

HER2+ only Primary 16 26 NA 13 NA

Metastasis 5 NA 33 NA NA

Skin 
melanoma

All subtypes 
included

Primary 8 67–90 29 NA NA

Metastasis 
(cutaneous, liver 
and lung)

161 72–90 83–85 NA NA

Ovary All subtypes 
included

Primary 123 40–85‡ 68 62‡ NA

Metastasis 19 47–85‡ 80 NA NA

Gastric All subtypes 
included

Primary 87 41–50 70 34 NA

Endometrial All subtypes 
included

Primary 67 43–55 74 NA NA

Metastasis 10 10–60§ 95 NA NA

Lung NSCLC Primary and 
metastasis

59 50–70 (primary) 52 NA NA

SCLC Primary and 
metastasis

12 50 75 Not applicable Not applicable

HNSCC All subtypes 
included

Primary 50 45 65 NA NA

Metastasis 13 83 NA NA NA

Glioblastoma All subtypes 
included

Primary 52 Not applicable 95–100 Not applicable NA

Uveal 
melanoma

All subtypes 
included

Primary 12 32 NA Not applicable Not applicable

Liver metastasis 14 65 NA Not applicable Not applicable

Testicular All subtypes 
included

Primary and 
metastasis 
(lymph node, 
lung and brain)

18 NA 35 NA NA

Uterine 
sarcoma

High grade Primary 3 75 NA Not applicable Not applicable

Metastasis 9 100 NA Not applicable Not applicable

Renal All subtypes 
included

Primary 8 30 NA NA NA

CRC, colorectal cancer; ER, oestrogen receptor; HNSCC; head and neck squamous cell carcinoma; NA, not available; NSCLC, non-small-cell lung cancer; PDAC, 
pancreatic ductal adenocarcinoma; SCLC, small-cell lung cancer; TNBC, triple-negative breast cancer. *The data presented represent the range of implantation 
rates obtained across EurOPDX partner laboratories as of October 2016. ‡Highest take rates obtained with the high-grade serous ovarian cancer subtype. §Take 
rates of 10–15% for abdominal, pelvic lymph node and peritoneal metastases, 60% for vaginal metastases.

P E R S P E C T I V E S

NATURE REVIEWS | CANCER	  VOLUME 17 | APRIL 2017 | 257

©
 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.



a more robust or proliferative population 
of ‘tumour-initiating’ cells selected by 
engraftment. To address this quandary, it 
will be important to compare the results of 
side‑by‑side fate-mapping experiments and 
transplantation assays to analyse whether the 
cells endowed with tumorigenic potential 
after transplantation also exhibit other 
typical stem-like properties, such as the 
ability to self-renew, asymmetric cell division 
and differentiation potential55.

PDX models of treatment-resistant disease. 
There are primarily two ways in which PDX 
models can be used to interrogate primary 
and acquired resistance. One strategy is to 
derive models from patients’ samples before 
the initiation of therapy and again at the 
time of treatment resistance. Alternatively, 
models can be developed from pretreatment 
tumour samples, and resistance can be 
recapitulated in the PDX upon iterative 
cycles of exposure to the drug, as previously 
observed in genetically engineered mouse 
(GEM) models56. Using cycles of drug 
exposure in pretreatment PDX models, 
paired analysis of PDX models of cisplatin-
sensitive and cisplatin-resistant testicular 
germ cell cancer (TGCC) proposed potential 
alternatives for the treatment of cisplatin-
refractory TGCC, including anti-angiogenic 
therapy57 and the blockade of the 
platelet-derived growth factor receptor-β 
(PDGFRβ)–AKT pathway58.

PDX models have also proved useful 
in identifying mechanisms of resistance to 
targeted therapies in oestrogen receptor 
(ER)-positive breast cancer. The analysis of 
four hormone-resistant PDX tumours, which 
were obtained from two ER‑positive breast 
cancer PDX models by continuous treatment 
with tamoxifen or by oophorectomy-
mediated hormone depletion, revealed that 
hormone resistance was associated with 
various forms of deregulated ER‑mediated 
gene transcription33. Taking a similar 
approach, PDX models of ER‑positive breast 
cancer have been used to investigate jagged 1 
(JAG1)–NOTCH4 signalling as a means for 
attenuating sensitivity to hormonal therapy59 
and to identify mechanisms of acquired 
resistance to cyclin-dependent kinase 4 
(CDK4) and CDK6 blockade60.

Patients with advanced cancer who 
acquire resistance to several lines of 
treatment mostly present with multiple 
metastatic lesions that are not amenable 
to resection, and may harbour different 
resistance pathways. Generating PDX models 
that recapitulate such complex scenarios 
of therapy-resistant metastatic tumours 

models to test drug combinations that aim 
to overcome acquired resistance, generating 
information that could be transferred back 
to the donor patient for therapeutic decisions 
(see below). However, this opportunity might 
be hindered by limitations such as the low 
engraftment success rates for some tumour 
types and the disconnection between the time 
needed for PDX expansion and treatment 
(which can be long, especially for tumours 
with indolent growth in mice) and the 
rapidity of disease progression in patients.

Finally, PDXs that are established from 
tumours resistant to conventional therapies 
delivered in the neoadjuvant setting are of 
special interest (TABLE 1). In triple-negative 
breast cancer, the establishment and 
molecular profiling of PDXs from residual 
cancer cells that persist after neoadjuvant 
treatment (minimal residual disease (MRD)) 
may lead to the identification of targetable 
molecular alterations in the chemotherapy-
resistant component of the tumour, which 
may mirror micro-metastases that are 
destined to clinically recur 68. Despite often 
being limited in size due to prior exposure 
to cytotoxic therapy, triple-negative breast 
tumours from patients treated in the 
neoadjuvant setting engraft much more 
efficiently than do treatment-naive tumours 
(72% and 34%, respectively) (TABLE 2). Given 
the high engraftment efficiency and rapid 
growth of PDXs from drug-tolerant MRD 
tissues, at least in the case of breast cancer, 
these models represent an unprecedented 
opportunity to identify genomic alterations 
and associated targeted therapies before 
tumour recurrence in patients.

Next-generation PDX models
Humanized PDX models to evaluate cancer 
immunotherapies. The importance of the 
immune system in tumour progression 
and treatment highlights the need for 
PDX models to facilitate the preclinical 
assessment of cancer immune therapies69. 
However, to avoid immune rejection of 
xenotransplants by the host, PDX models are 
primarily generated by transplanting tumour 
fragments into immunodeficient mice. 
The absence of many components of the 
immune system in these mice, and the loss 
of endogenous human immune cells upon 
propagation of the human tumour tissue 
over multiple passages70,71, limit the utility 
of such models to explore the role of the 
immune system in tumour progression and 
to test novel immune-based therapies72.

Humanized mice (also known as human 
haemato-lymphoid chimeric mice and 
human immune system (HIS) models) 

has become feasible for several tumours 
(TABLE 1). For example, the analysis of 
biopsy specimens and corresponding PDXs 
from different drug-resistant metastases 
in patients with melanoma who had been 
treated with a BRAF inhibitor resulted in 
the identification of multiple resistance 
mechanisms both within individual lesions 
and among separate samples from the same 
patient35,38. The resistance mechanisms 
identified in PDXs were also found in the 
original patient samples35, and clinically 
resistant tumours were also treatment-
refractory when grown as PDXs38. These 
studies provide proof of principle for the 
heterogeneous nature of acquired resistance 
in individual patients with melanoma 
and further attest to the ability of PDX 
models to predict clinical outcomes. 
Similar results have been observed in 
lung adenocarcinomas61.

Although PDXs generally retain 
drug-sensitivity profiles that are similar 
to those of the corresponding patient 
tumour30,38,62,63, PDX models derived from 
treatment-resistant tumours can become 
sensitive again upon xenografting, owing to 
the effect of the so‑called ‘drug holiday’ in 
which treatment is discontinued after tumour 
implantation to facilitate engraftment. Some 
resistance mechanisms are thus reversible 
in the absence of drug, as shown for 
melanoma64,65 and lung adenocarcinoma66. 
This suggests that treatment-resistant 
PDXs should be exposed to continuous 
treatment immediately after implantation, 
although this is a cost- and labour-intensive 
approach. However, uninterrupted therapy 
might also result in the further selection of 
a subpopulation of tumour cells, resulting 
in a loss of intra-tumour heterogeneity 
and genetic variation in the PDX tumours 
compared with the original tumours.

In response to the need for more 
sophisticated models, several groups  
(for example, see REF. 67) have developed 
protocols and networks to generate clinical 
trial-associated xenografts (CTAXs) (TABLE 1). 
These advanced PDX models are currently 
being derived from image-guided biopsy 
samples taken at different time points during 
disease progression and following new lines 
of treatment in the context of clinical trials. 
Such models will be extremely valuable in 
evaluating how the molecular evolution 
of advanced tumours is associated with 
innate or acquired drug resistance, and 
will be important for studying the tumour 
heterogeneity and clonal selection that 
results from drug treatment. In principle, 
CTAXs may also serve as personalized cancer 
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are immunocompromised mice in which 
selected immune components have been 
introduced to generate a competent human 
immune system with different degrees  
of immune reconstitution. One methodology 
for the generation of humanized mice 
involves the transplantation of total 
peripheral blood from healthy human donors 
or patients (peripheral blood lymphocyte 

used for cost-effective short-term testing of 
novel immune therapeutics and for assessing 
short-term adverse effects.

Alternatively, HIS mice can be generated 
through the transplantation of CD34‑positive 
human haematopoietic stem cells (HSCs) 
or precursor cells isolated from umbilical 
cord blood, bone marrow and peripheral 
blood, either alone or in combination with 
additional human immune tissues (bone 
ossicles or human thymic tissue)76 into 
immunodeficient mice (FIG. 1). Compared 
with PBL- and TIL-derived models, 
transplantation with HSCs results in a more 
complete haematopoietic reconstitution, as 
HSCs give rise to various lineages of human 
blood cells throughout the life of the animal. 
Methods for transplantation depend on 
the source of HSCs, the co‑transplantation 
of immune tissues, the mouse strain and 
the age of the recipient mice75–78. In order 
to avoid the immune reactions caused 
by human leukocyte antigen (HLA) 
mismatch, the ideal source of HSCs is the 
same patient from whom the PDX has 
been established. However, isolating HSCs 
from cancer patients may prove daunting: 
on the one hand, bone marrow biopsies 
are difficult in debilitated individuals; on 
the other hand, growth factor-stimulated 
bone marrow mobilization for HSC 
collection from peripheral blood might 
foster tumour progression79. Moreover, 
even when applicable, the low yield of HSCs 
obtainable from cancer patients severely 
limits the number of mice than can be 
humanized. An attractive alternative is 
the in vitro expansion of HSCs80, although 
this procedure could introduce biological 
perturbations that affect stemness and 
differentiation potential.

Whereas various strains of 
immunodeficient mice are used to 
transplant solid tumour tissue, not all of 
these strains are suitable for generating 
HIS models. The survival of human 
immune cells is highly dependent on 
the compatibility of the ‘do‑not-eat‑me’ 
signals (CD47–signal-regulatory protein-α 
(SIRPα)) on phagocytes in the host81. The 
most commonly used mice to generate 
compatible HIS models are those derived 
from the non-obese-diabetic (NOD)-severe 
combined immune deficiency (SCID)-
interleukin‑2 receptor common γ‑chain 
(IL2‑Rγ)-deficient (NSG; also known as 
NOD.Cg‑Prkdcscid Il2rgtm1Wjll/SzJ) strain 
and the NOD/Sci-SCID/IL‑2Rγ strain 
(NOG; also known as NOD‑Cg‑Prkdcscid 
Il2rgtm1Sug/JicTac). Substantial efforts are 
thus being made to develop novel GEM 

(PBL) models) or, in particular applications, 
the infusion of tumour-infiltrating 
lymphocytes (TILs) (FIG. 1). Although these 
procedures are known to cause severe graft-
versus-host disease (GvHD) beginning 
2–5 weeks after injection73,74, seriously 
limiting the useful investigative time window 
of these models and the translational value of 
these studies75, PBL and TIL mice can be 
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Figure 1 | Strategies to generate humanized PDXs. Sources of immune cells include tumour-
infiltrating lymphocytes (TILs), peripheral blood mononuclear cells (PBMCs) and CD34‑positive 
haematopoietic stem cells (HSCs); HSCs may be purified from mobilized adult peripheral blood, bone 
marrow or umbilical cord blood. Engrafted TILs or PBMCs generate mainly circulating human leuko-
cyte antigen (HLA)-restricted T cells and natural killer (NK) cells (top row). This system is characterized 
by a vigorous graft-versus-host reaction that narrows the experimental window to approximately 
2–5 weeks. Despite this limitation, the system is useful for certain analyses, such as monitoring the 
recruitment of T lymphocytes to tumours by therapeutic antibodies170. Fully humanized systems 
(bottom four rows) use severely immunodeficient mouse strains such as NOG (NOD‑Cg‑Prkdcscid 
Il2rgtm1Sug/JicTac)171, NSG (NOD.Cg‑Prkdcscid Il2rgtm1Wjll/SzJ)172 and BRG (C.Cg‑Rag1tm1Mom 
IL2rgtm1Wjl/SzJ)173,174. Mice with a NOD (non-obese diabetic) background have functionally deficient NK 
cells. SCID (severe combined immunodeficiency) is a loss‑of‑function mutation that affects DNA-
dependent protein kinase (DNA‑PK), a DNA repair enzyme involved in V(D)J recombination during  
T cell and B cell development. As a consequence, SCID mice have reduced levels of T cells and B cells. 
Inactivation of the interleukin‑2 (IL‑2) receptor γ‑chain leads to impaired T cell and B cell development 
and prevents the generation of NK cells. Recombination-activating gene 1 (RAG1) is necessary for V(D)
J recombination; thus, RAG1 inactivating mutations affect T cell and B cell development. All these 
different strains show subtle differences to support the engraftment of functional human immune 
cells173. Injection of human CD34‑positive HSCs into these mice leads to the generation of major histo
compatibility complex (MHC)-restricted T cells and B cells, as well as to limited amounts of monocytes, 
macrophages, neutrophils and dendritic cells. In addition, these mouse strains have been improved 
by genetic modifications for the production of a variety of human cytokines that stimulate the differ-
entiation of additional haematopoietic lineages. For example, strains such as NOG‑GM3 (which 
expresses human IL‑3 and granulocyte–macrophage colony-stimulating factor (GM‑CSF; also known 
as CSF2)175, NSG‑SGM3 (which expresses human IL‑3, GM‑CSF and SCF (also known as KIT ligand))176 
and MISTRG (which expresses IL‑3, GM‑CSF, macrophage CSF (M‑CSF; also known as CSF1), signal 
regulatory protein-α (SIRPα) and thrombopoietin (THPO))177 produce increased numbers of human 
myeloid and mast cells, regulatory T cells and NK cells (see Supplementary information S1 (table)). 
PDXs, patient-derived xenografts.
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strains that not only express human-specific 
do‑not-eat‑me signals but also express 
human-specific cytokines or HLAs. These 
mouse strains differ upon transplantation 
in durability and quality of engraftment 
of the human immune system78. Some 
key examples of how humanized models 
are currently evolving to support PDX 
transplantation towards application in the 
immune-oncology space are presented as 
online supplementary information (see 
Supplementary information S1 (table)).

Modelling metastatic disease. Subcutaneous 
transplantation usually fails to reproduce the 
organ-specific tropism of distant metastases 
that is observed in patients. Therefore, 
models of metastatic disease are typically 
generated through orthotopic procedures. 
These include the transplantation of 
fragments of the primary tumour into 
the same location in the mouse, which 
is usually followed by the development 
of spontaneous metastases, or the direct 
transfer of metastatic lesions into the same 
organ in the host (TABLE 1). Patient-derived 
orthotopic xenografts (PDOXs; also known 
as orthoxenografts) of primary tumours can 
reproducibly lead to local invasive growth 
and metastases, often identical to those 
observed in the patient82–84. PDOX models 
for most cancer indications have typically 
been developed from surgical specimens. 
More recently, however, they have been 
successfully derived from biopsy samples, 
despite the limited quantity and quality of 
tissue available85.

Advantages of orthotopic models 
include the ability to investigate tumour–
host interactions at the relevant site of 
primary and secondary tumour growth, 
the development of patient-like metastases, 
the ability to interrogate site-specific 
dependence of therapy, and the potential to 
conduct clinically relevant studies, such as 
monitoring the effects of adjuvant therapy 
on occult metastases (TABLE 1). Nevertheless, 
orthotopic models remain relatively 
rare, probably owing to the non-trivial 
microsurgical procedures that are required 
for organ-specific transplantation. 
Furthermore, the incorporation of clinically 
relevant imaging modalities and appropriate 
in vivo imaging probes is necessary to 
visualize tumour orthotopic implants and 
metastatic progression in deep tissues and 
to ensure timely therapeutic intervention 
when animals develop disease symptoms86.

PDOX models of breast cancer are 
particularly amenable for modelling 
metastasis. They primarily rely on 

CTC-derived PDX models. As mentioned 
above, a step forwards for minimally 
invasive tumour sampling is the isolation 
and characterization of CTCs, detected at 
low concentrations in the peripheral blood 
of patients with different solid tumours40. 
Although the role of CTCs in metastasis 
development is still uncertain40, their 
levels ostensibly correlate with patient 
survival and response to therapy94–96. These 
features mean that CTCs are promising 
tools to monitor cancer burden and drug 
susceptibility in metastatic and late-stage 
disease, when repetitive biopsies are not 
indicated. Technological advances now allow 
the isolation of viable CTCs, which maintain 
tumorigenicity when xenografted into 
immunocompromised mice97–99 (TABLE 1).

Several reports have demonstrated the 
feasibility of establishing CTC-derived PDX 
models by directly injecting freshly isolated 
and enriched CTCs from patients with 
different cancers into immunocompromised 
mice. Using various CTC-capture techniques 
(such as epithelial cell adhesion molecule 
(EPCAM) or cytokeratin-based selection of 
cancer cells derived from epithelial tissues or 
microfluidic-based leukocyte depletion100,101), 
CTC-derived xenografts are now practicable 
for breast cancer97, prostate cancer102, gastric 
cancer103, small-cell lung cancer (SCLC)98 
and melanoma91. Moreover, it has also been 
shown that ex vivo cultivated and fully 
molecularly characterized breast104 and 
colorectal105 CTCs maintain their tumorigenic 
potential. Notably, both freshly isolated CTCs 
and CTC-derived PDXs genetically and 
histologically mirror the original tumour and 
retain analogous drug sensitivities91,97,98,100,102–

105. For example, PDXs that are established 
from chemotherapy-naive circulating SCLC 
cells recapitulate donor patients’ response to 
both platinum and etoposide98. In patients 
with ER‑positive breast cancer, CTCs have 
also proved to be a useful model to study 
the genetic evolution of the tumour and to 
identify novel drug susceptibilities104.

Although technically challenging, 
the use of CTC-derived PDX models 
opens new possibilities for translational 
research. In addition to being a source of 
information regarding disease prognosis106, 
tumour heterogeneity107,108, evolution109 and 
dissemination110,111, CTC-derived PDXs hold 
promise for precision medicine applications 
(TABLE 1). For example, CTCs from women 
with treatment-refractory ER-positive 
breast tumours have been recently analysed 
to investigate the functional and phenotypic 
consequences of prolonged anti-hormonal 
therapies, and xenografts from such CTCs 

mammary fat pad injection of primary 
tumour samples, which successfully 
recapitulates the entire metastatic 
process from the appropriate primary 
anatomical site8,87. PDOX models of brain 
metastases and primary brain tumours are 
challenging. To prevent the default seeding 
of intravenously injected tumour cells in 
the lung and to ensure colonization of the 
central nervous system, intra-cardiac left 
ventricular inoculation of tumour cells is 
required88. Cells may also be implanted 
intracranially to overcome the blood–
brain barrier89. Orthotopic homing and 
the metastatic potential of cancer cells 
can be boosted by genetic modification; 
for example, colorectal cancer PDX 
cells engineered to express C‑C motif 
chemokine receptor 9 (CCR9) efficiently 
localize to the mouse colon after tail-vein 
injection, attracted by the abundance of 
the CCR9 ligand C‑C motif chemokine 
ligand 25 (CCL25) in the intestine, and 
then spontaneously metastasize to the 
liver90. Genetic manipulation is useful to 
develop models of spontaneous metastasis 
for mechanistic studies in vivo; however, 
the introduction of exogenous molecules to 
patient-derived material may affect some 
properties of the original tumour, thus 
reducing translational relevance.

Whether PDOX models more accurately 
recapitulate clinical response to anticancer 
drugs compared with conventional 
subcutaneous PDX models remains to be 
established. One report showed that the 
antitumoural effects of a microtubule-
stabilizing drug on PDX models of brain 
metastases from non-small-cell lung 
cancer were different in orthotopic versus 
subcutaneous implants85, but results remain 
anecdotal. It is conceivable that therapies 
that target components of the tumour 
microenvironment, such as endothelial cells 
and immune cells, would be better evaluated 
in an orthotopic context. Conversely, the 
therapeutic response of ‘oncogene-addicted 
tumours’, which intrinsically rely on 
activating mutations for their growth and 
survival, is likely to be less dependent on 
anatomical location and more influenced 
by the underlying cancer genetic makeup. 
Indeed, despite their heterotopic location, 
subcutaneous PDXs from BRAF-mutant 
melanoma9,91 and HER2 (also known as 
ERBB2)-amplified colorectal cancer6,92,93 
mimic the therapeutic response observed 
in patients. Sharing results from different 
experimental models within the EurOPDX 
consortium will allow us to shed some light 
on this important question.
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have been used to design new therapies 
to overcome resistance112. Similarly, the 
next-generation sequencing of tumours, 
complemented with genomic analysis 
of CTCs and CTC-derived PDX mouse 
models, has proved to be a powerful platform 
for developing precision medicine strategies 
in patients with melanoma91. This approach 
has, in specific cases, facilitated the clinical 
implementation of alternative therapeutic 
strategies informed by the preclinical models91.

PDXs for clinical decision-making
PDX population xenopatient trials. Across 
tumours of the same origin, genetic lesions 
that sustain tumorigenesis (and that therefore 
associate with response to targeted drugs) 
often involve many different oncogenes, each 
of which is mutated at a low frequency113. 
Furthermore, genotype-based prediction 
of drug response is not unequivocal. 
Despite harbouring the genetic lesion that 
is known to correlate with drug response, 
many tumours do not regress owing to the 
presence of signals that compensate for target 
inhibition114. Collectively, this information 

treatment were identified as mechanisms 
of tumour adaptation to EGFR family117,118 
or MEK119 inhibition in colorectal cancer. 
The flexibility of PDXs also enabled 
preclinical testing of drug combinations in 
models displaying some of these resistance 
traits, with a permutation capability that 
was clearly beyond the number of testable 
hypotheses in humans (FIG. 2).

An analogous population-based drug 
screen has recently been carried out in 
more than 1,000 PDX models representing 
a wide range of solid cancers (the ‘PDX 
Encyclopaedia’)9. Some genetic hypotheses 
and biomarkers of drug sensitivity, which 
emerged from cultured cancer cell lines, 
were successfully validated in this large 
panel of PDX models (FIG. 2). Notably, 
experiments in PDXs also enabled the 
identification of therapeutic candidates that 
in vitro model systems failed to capture9. 
In all these studies, responses obtained in 
mice were highly consistent with responses 
in patients. For example, the distribution 
of tumour regression, disease stabilization 
and progression in colorectal cancer 

indicates that the genetic selection of tumours 
for the application of targeted therapies 
requires representative study populations and 
suitable pharmacogenomic platforms.

Provided that they are generated in high 
numbers and extensively characterized at the 
molecular level, PDXs can act as a powerful 
resource for large-scale genotype–response 
correlations and therapeutic studies in 
genetically defined tumour subsets. Several 
recent studies testify to this potential; in 
late-stage colorectal cancer, for example, 
a systematic assessment of response to 
antibodies targeting epidermal growth 
factor receptor (EGFR) using PDX models 
(‘xenopatients’) derived from hundreds 
of individual tumours was coupled to 
candidate-gene or whole-exome sequencing 
analyses. Through this effort, several genetic 
determinants of resistance to EGFR blockade 
were discovered, including amplifications 
or mutations in genes encoding druggable 
kinases6,7,115,116. Similarly, more dynamic 
features such as expression changes in 
pro-survival genes and the activation of 
compensatory feedback loops during 
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Figure 2 | PDX preclinical study designs. a | Large collections of patient-
derived xenograft (PDX) models (‘xenopatients’) now allow population-based 
studies to be carried out, which better mimic the inter-tumour heterogeneity 
that is seen in patients and are more predictive of clinical efficacy than con-
ventional xenografts of immortalized cancer cell lines. PDX molecular char-
acterization and correlation with therapeutic response also facilitates 
biomarker discovery, as well as the identification of primary (and acquired) 
resistance mechanisms. These studies can lead to new hypotheses and 

support the initiation of new clinical trials. b | For some cancer types for which 
avatar models can be developed, co‑clinical avatar studies allow for simul
taneous drug testing in mice and patients for real-time adaptive therapeutic 
decisions. c | In the ‘biofacsimile’ or ‘proxy’ study format, integrative systems-
based bioinformatics analysis can be used to pinpoint the best-matched PDX 
for a given patient from a collection of molecularly profiled models. PDX-
associated information is then leveraged to instruct clinical treatment options 
and/or to derive prognostic indicators. NGS, next-generation sequencing.
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xenopatients receiving EGFR antibodies 
was similar to that found in the clinic, and 
treatment-refractory tumour grafts were 
enriched for known genetic predictors of 
therapeutic resistance in patients6 (TABLE 3); 
moreover, in analogy with clinical studies120, 
the addition of an EGFR small-molecule 
inhibitor to the EGFR antibody increased 
tumour regression118. Similarly, PDXs from 
BRAF-mutant melanomas underwent 
substantial shrinkage when treated with 
BRAF inhibitors, a response that was further 
magnified – as in patients – by the addition 
of a MEK inhibitor9,121. PDX platforms 
have recently been used for the systematic 
identification of cancer vulnerabilities 
through RNA interference-based genetic 
screens in tumour grafts, which have revealed 
new oncogenic drivers in melanoma122 and 
pancreatic tumours123.

PDX population trials may be highly 
informative, but they are also expensive 
and technically cumbersome, and the 
trade-off between sufficient sample size to 
ensure adequate coverage of inter-patient 
heterogeneity and experimental feasibility 
requires careful study design. To reduce 
the number of animal replicates while 
preserving statistical power, reproducibility 
studies have been conducted to compare 
response calls made on a single mouse with 
majority responses in reference cohorts 
composed of many animals. Thus, a 
strong concordance between single-mouse 
responses and majority responses has been 
found, with a prediction accuracy varying 
from 75%124 to 95%9. Accordingly, ‘one 

the patients and the preclinical model will 
help to define the mechanism of action 
of a given drug, as well as biomarkers of 
response. Originally implemented with 
GEM models, the co‑clinical trial concept 
has been expanded to include PDX models 
(‘avatars’), which are generated from cancer 
patients enrolled in clinical trials and, in 
parallel, treated with the same drug or 
drugs that the patient is receiving10 (FIG. 2). 
In general, these studies aim to develop a 
PDX model from newly diagnosed patients 
and use it to explore therapies that can 
be administered to the patient at the time 
of disease progression. Ongoing trials 
cover different tumour settings, including 
sarcomas (NCT02720796)135, head and 
neck carcinomas (NCT02752932)136, 
ovarian cancer (NCT02312245)137 and 
pancreatic cancer (NCT02795650)138. 
Although a cogent argument exists for 
implementing avatar trials, and several case 
reports have provided data to support the 
concept139–141, the logistical difficulties and 
technical hurdles are likely to limit the broad 
applicability of this approach (see above).

PDX models in biomarker development. 
The validation of mechanisms that 
link specific biomarkers to treatment 
efficacy will have direct clinical effects, 
allowing patient stratification for tailored 
treatment protocols. Large-scale PDX trial 
formats, such as the PDX Encyclopaedia9 
mentioned above, represent a more accurate 
approach to identify predictive biomarkers 
compared with the use of cell lines (TABLE 1). 

animal per model per treatment’ (1 × 1 × 1) 
approaches have recently been advocated9,125.

Alternative strategies to reduce 
experimental burden could rely on 
step-wise approaches, in which large-scale 
pharmacogenomic screens are carried out 
using less laborious formats (such as cancer 
cell lines) followed by in vivo validation 
in selected, molecularly relevant PDX 
models. In this regard, it is noteworthy 
that patient-derived material from human 
tumours, such as colorectal, pancreas and 
prostate cancers126–132, can be grown and 
nearly indefinitely expanded as three- 
dimensional (3D) organoids. These can be 
easily transplanted to establish PDXs, and 
vice versa, and are amenable to drug screens 
in a semi-high-throughput manner130. 
Albeit more difficult to establish and 
propagate, two-dimensional (2D) primary 
cultures of dissociated cancer cells from 
both patient samples and PDXs are also 
being attempted with a similar rationale 
and objectives133. In this vein, a platform for 
drug testing in short-term cultured breast 
cancer cells from PDXs has recently been 
developed and shown to predict in vivo 
drug response29.

PDX co‑clinical avatar trials. The term 
co‑clinical trial refers to simultaneous 
clinical and preclinical trials with 
anticancer agents in patients with a 
tumour type of a defined genetic makeup 
and a mouse model with similar genetic 
abnormalities134. The underpinning idea is 
that the comparison of responses between 

Table 3 | Comparative quantitative data of response rates in PDXs versus human patients

Tumour 
type

Clinical question Comparative response rates

PDXs Patients

CRC* Response to EGFR antibody monotherapy 
in genetically unselected CRC PDXs6 or 
unselected chemorefractory patients with 
CRC178

•	PR: 5 of 47 (10.6%)
•	SD: 14 of 47 (29.8%)
•	PD: 28 of 47 (59.6%)

•	PR: 12 of 111 (10.8%)
•	SD: 24 of 111 (21.6%)
•	PD: 59 of 111 (53.2%)
•	Not evaluated: 16 of 111 (14.4%)

CRC* •	PDXs118: response to EGFR antibody 
monotherapy in KRAS, NRAS and BRAF 
wild-type models

•	Patients179: response to EGFR antibody plus 
chemotherapy in chemorefractory patients 
with KRAS, NRAS and BRAF wild-type CRC

•	PR: 31 of 125 (24.8%)
•	SD: 60 of 125 (48%)
•	PD: 34 of 125 (27.2%)

•	PR: 15 of 56 (26.8%)
•	SD: 29 of 56 (51.8%)
•	PD: 12 of 56 (21.4%)

NSCLC Co‑clinical trial, PDX versus donor patient66: 
response to EGFR small-molecule inhibitors 
in four representative cases of six established 
PDXs

•	1 PR
•	1 SD
•	2 PD

•	1 PR
•	1 SD
•	2 PD

Breast 
cancer

Co‑clinical trial, PDX versus donor patient63: 
response to several therapies

•	Doxorubicin: 4 PD
•	Docetaxel: 1 PR and 6 PD
•	Anti‑HER2 combination therapy 

(trastuzumab and lapatinib): 1 PR

•	Doxorubicin: 4 PD
•	Docetaxel: 1 PR and 6 PD
•	Anti‑HER2 combination therapy 

(trastuzumab and lapatinib): 1 PR

CRC, colorectal cancer; EGFR, epidermal growth factor receptor; NSCLC, non-small-cell lung cancer; PD, progressive disease; PDX, patient-derived xenograft;  
PR, partial response; SD, stable disease. *Data represent separate PDX and patient population studies.
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A transcriptional profiling study on 85 PDX 
models of nine different cancer types 
treated with nine separate cancer drugs 
identified 1,578 genes, the expression of 
which correlated with sensitivity to at 
least one drug; 333 of these genes showed 
significant association with sensitivity to 
two or more drugs, and 32 genes predicted 
response to six or seven drugs142. This type 
of study provides an initial set of biomarkers 
that require further evaluation in clinical 
material to determine translatability into a 
clinically useful assay.

Epigenetic biomarkers, such as DNA 
methylation, can also be assessed in 
PDXs as possible response predictors. 
A study that included 28 glioblastoma 
PDOXs showed that the poly(ADP-ribose) 
polymerase (PARP) inhibitor veliparib 
significantly enhances the efficacy of 
temozolomide (TMZ) chemotherapy only 
in models with O-6‑methylguanine-DNA 
methyltransferase (MGMT) promoter 
hyper-methylation143. On the basis of these 
data, MGMT promoter hyper-methylation 
was included as an eligibility criterion for 
TMZ and veliparib combination treatment 
in an ongoing phase II/III glioblastoma 
clinical trial (NCT02152982)144.

Determinants of therapeutic sensitivity 
can be identified at the protein level using 
pathway analysis in PDXs: a proteomic 
survey of 20 PDX models of glioblastoma 
and their parental tumours identified a 
subset of cases with comparable proteomic 
profiles displaying high levels of expression 
and phosphorylation of EGFR and its 
downstream signalling proteins145. The 
expression and phosphorylation status of 
EGFR and downstream targets might be 
used as a predictive biomarker of response 
to EGFR inhibition in preclinical trials and, 
if successful, included in future clinical trials 
aiming to inhibit EGFR signalling in patients 
with glioblastoma.

PDX models are also useful for the 
preclinical identification of metabolic 
biomarkers using magnetic resonance 
spectroscopy (MRS). This technique 
has recently been used to demonstrate 
differences in metabolic characteristics 
between molecular subtypes of breast 
cancer146,147. Elevated phosphocholine levels 
and low glycerophosphocholine levels have 
been proposed to be metabolic markers of 
aggressive disease in breast cancer based on 
in vitro studies148. However, MRS on intact 
tissue from PDX models of poor-prognosis 
basal-like breast cancer displays an inverted 
metabolic profile, with high glycerophospho
choline concentration rather than high 

molecular levels; retaining, to the highest 
possible extent, the functional, phenotypic 
and genotypic characteristics of human 
tumours; faithfully predicting response to 
therapies, and recapitulating mechanisms of 
innate and acquired resistance; and allowing 
for experimental flexibility.

Although PDXs fulfil several of these 
criteria and can be further improved to 
meet additional requirements, certain 
inherent limitations remain difficult to 
address. A major obstacle is the necessity 
of using immunocompromised mice 
to circumvent xenograft rejection. This 
requirement hampers the use of current 
PDX models to assess immunotherapeu-
tics. Although emerging humanization 
procedures are now expected to overcome 
some of the most important concerns (see 
Supplementary information S1 (table)), 
issues still remain with the incorporation 
of particular immune cell types, immune 
responses and lymphoid structures 
into these humanized models and with 
the eradication of xenogeneic GvHD. 
It is expected that the development of 
novel immune-deficient mice will take 
advantage of emerging technologies 
based on engineered nuclease enzymes 
for genome editing (such as transcription 
activator-like effector nuclease (TALEN) 
and CRISPR–Cas9). These modifications 
will include the replacement or introduction 
of combinations of human-specific cytokine 
receptors and adhesion molecules, as well as 
more comprehensive sets of HLA class I and 
HLA class II molecules.

As mentioned above, serial passaging 
of tumours leads to the substitution of 
human stroma by murine components, and 
mouse-derived cytokines and growth factors 
in some cases do not crossreact with receptors 
that are expressed by human (cancer) 
cells159–162. This makes the contribution 
of the tumour microenvironment to 
drug response difficult to assess in PDXs. 
Moreover, the lack of a species-compatible 
tumour stroma complicates the identification 
of pharmacodynamic markers of target 
inactivation for drugs that intercept 
cancer-related microenvironmental processes, 
such as angiogenesis and inflammation. 
Although mouse humanization procedures 
seek to reconstitute the human immune 
system, the replacement of stromal elements 
such as endothelial cells and fibroblasts 
with their human counterparts is currently 
daunting, if not unfeasible.

PDX-based efforts for cancer 
precision medicine also require 
adequate logistics, from proper archival 

phosphocholine concentration146,147. 
These observations suggest that proper 
tumour architecture, as maintained in 
PDXs, influences choline metabolism. 
Accordingly, a strong correlation between 
PDX models and clinical material was 
observed in the expression of genes that 
are involved in key metabolic pathways146. 
MRS technology also holds potential for 
in vivo non-invasive detection of metabolic 
biomarkers through tailored techniques 
such as 31P MRS or hyperpolarized 13C 
MRS149,150. Recently, a proof‑of‑principle 
study demonstrated the ability of in vivo MRS 
to distinguish basal-like from luminal-like 
breast cancer PDXs non-invasively using 31P 
MRS imaging151.

For some cancer types, the ability of 
tumours to successfully engraft in mice can 
be considered per se as a surrogate biomarker 
of risk for disease progression. For example, 
in mammary tumours, the ability to generate 
stable tumour grafts significantly predicted 
reduced survival8,152, and gene expression 
signatures associated with successful PDX 
engraftment correlated with worse survival 
outcome when tested in prognostically 
annotated data sets of triple-negative 
breast cancer153. Similarly, tumour grafts 
of pancreatic ductal adenocarcinoma 
displayed higher expression of metastasis- 
associated genes compared with samples 
that failed engraftment, and patient donors 
of successfully engrafted tumours had 
shorter survival154.

It is now well established that human 
tumour stromal cells are replaced by mouse 
counterparts following engraftment155. 
As a consequence of this substitution, 
species-specific RNA sequencing-based 
expression profiling of PDXs offers a 
unique opportunity to distinguish mouse 
stroma-derived transcripts from human 
cancer cell-derived transcripts without 
the need to physically separate the two 
components before RNA extraction. Such 
analyses led to the identification of stromal-
associated transcriptional signatures in 
colorectal cancer that are associated with 
poor prognosis and treatment resistance156. 
The negative prognostic significance 
of tumour stromal transcriptional 
signatures and their value for therapeutic 
decision-making and patient follow‑up have 
also been described in other reports157,158.

Challenges and opportunities
Ideal animal models for preclinical 
experimentation in oncology should fulfil 
several criteria: reflecting the diversity of 
cancer patients at the epidemiological and 
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biobanking to continuous propagation 
of live biospecimens, intensive animal 
experimentation and systematic integration 
of therapeutic results with high-content 
molecular annotation. The perception 
of this complexity and the awareness 
that resource sustainability cannot be 
maintained by individual academic 
laboratories have fuelled initiatives 
for creating and implementing shared 
large-scale PDX platforms, including the 
European EurOPDX resource, the US 
National Cancer Institute (NCI) repository 
of patient-derived models, the Public 
Repository of Xenografts (PRoXe), the 
Children’s Oncology Group (COG) cell 
culture and xenograft repository, and the 
Pediatric Preclinical Testing Consortium 
(PPTC) (BOX 1).

When dealing with such large multi-
institutional platforms, standardized 
methodological procedures should be 
carried out to ensure reproducibility and 
to streamline readouts so that they are 
interpretable across different laboratories 
(BOX 1). Further, therapeutic outcomes should 
be univocally deciphered and stringently 
interpreted. Retardation of tumour growth 
during therapy typically results in tumours 
that are smaller than controls at end point, 
but larger than they were before starting 
treatment; although this may well suggest 
that the therapy is biologically active (because 
it affects cancer cell proliferation), it is not 
an indication that the therapy is clinically 
effective; indeed, this kind of response would 
be clinically defined as ‘disease progression’ 
or, at best, ‘disease stabilization’. In the 
EurOPDX experience, even manifest effects of 
tumour growth inhibition — as observed, for 
example, after blockade of MEK in PDXs of 
KRAS-mutant colorectal cancer125 — did not 
translate into clinical benefit when analogous 
therapies were applied to patients163. By 
contrast, overt regression in PDXs predicted 
positive results in the clinic: the finding that 
an antibody and small molecule combination 
against HER2 induced massive regressions in 
HER2‑amplified colorectal tumour grafts6,117 
has recently been translated into a successful 
clinical trial, with the vast majority of patients 
achieving tumour shrinkage when treated 
with the same regimen93. It has also become 
increasingly clear that the use of quantitative 
metrics to classify response (equivalent to 
clinical Response Evaluation Criteria in Solid 
Tumours (RECIST)) should be implemented 
to more precisely assess therapeutic effects 
in PDX trials. Modified RECIST criteria for 
mouse xenograft applications have recently 
been described9. ‘Best response’ is defined as 

interoperable standards for normalization, 
correction and retrieval of complex data 
sets. The issue of big data collection, 
harmonization and storage is particularly 
important when working with large PDX 
collections, in which one original tumour 
from a single patient gives rise, upon serial 
passages, to many descendants that expand 
at an exponential rate (BOX 2). In EurOPDX, 
efforts are ongoing to aggregate cancer 
genomic profiles obtained through different 
technologies in different laboratories and 
to implement a user-friendly, open-source 
portal that showcases the molecular 
characteristics of the participating collections 
(BOX 1). Importantly, besides the detection of 
individual variants with clinically actionable 
potential, multi-dimensional molecular 
information from existing PDX models can 
be subjected to systems-based bioinformatics 
analysis to extract algorithms that identify 
key biological parameters164. Preliminary 
evidence suggests that such algorithms can 

the minimum value of percentage tumour 
volume change, compared with tumour 
volume at baseline, for treatment durations 
equal to or longer than 10 days, and ‘best 
average response’ is the minimum value of the 
mean percentage of tumour volume change, 
as measured at each evaluation time point 
along treatment, compared with baseline9. 
Such definitions, coupled with specific 
tumour volume cut-offs, have been applied 
to categorize complete response, partial 
response, stable disease and progressive 
disease in tumour-bearing mice. These 
modified RECIST criteria capture response 
kinetics, robustness and durability, and thus 
improve the ability of preclinical studies to 
accurately predict patient outcome.

Extended and detailed molecular 
annotation is a prerequisite for precision 
oncology paradigms. However, the 
accumulation of multiple layers of genomic 
information requires the development of 
computational systems with common or 

Box 2 | Data management and integration

By combining the flexibility of preclinical analysis with the instructive value of population-based 
studies, patient-derived xenografts (PDXs) offer unprecedented opportunities for drawing 
statistically robust correlations between genetic or functional traits and sensitivity to anticancer 
drugs. However, the advantages of high-throughput studies with PDX-based approaches may 
become major hurdles when dealing with large-scale data management, analysis and utilization. 
The deployment of PDX models for translational studies often requires their stratification into 
existing predictive or prognostic molecular classes and subgroups as derived on tumours from 
patients. The portability of the stratification criteria from human to mice, and vice versa, is not 
trivial, owing to multiple sources of biological and genomic variation, which may be introduced in 
the process of engrafting and propagating patient tumour material into murine hosts.

Data management issues
Data complexity and dynamics. The representation of cancer data in classical oncogenomic portals 
is normally static: the results obtained by analysing such public resources are not fed back to 
refine, update or complement the original information. The possibility to incrementally stratify and 
integrate multiple layers of information generated from the same original sample by diverse 
laboratories at different times represents one of the key added values of PDX-based approaches. 
This implies the need for further dimensions of complexity to interrogate an almost infinite number 
of variables and to implement decision-making algorithms in case of data inconsistency across 
experiments166.

Data normalization and annotations. The joint utilization of human and PDX data requires the 
standardization of sample metadata such as clinical and molecular ontologies. Through this effort, 
data derived from different experiments, technologies and platforms can be normalized against 
common categories and used to interrogate samples with integrative queries exploring 
heterogeneous data domains.

Data analysis issues
Population selection bias. Owing to the different engraftment efficacies inherent to each tumour 
sample, the population of xenografts might not recapitulate the full distribution of tumour 
phenotypic or molecular variables observed in patients. Any prior-dependent statistical models 
should be adapted to the new distribution of subclasses within the PDX population. This implies the 
necessity to identify the missing or underrepresented subgroups through analytical investigation 
of multidimensional parameters (genomics, transcriptomics, histopathology, and so on).

Loss of human immune and stromal cells. Although both stromal and immune components are 
replaced over time by murine analogues, the haematopoietic elements show important differences 
in their spatial distribution167 or may be missing overall156,168. This affects the signal received from 
molecular profiling, and could require the application of specific algorithms for signal correction to 
avoid or reduce artefacts and biases156,169.
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be subsequently used to identify one or 
more ‘biofacsimile’ or ‘proxy’ PDX models 
for individual patients, and PDX-associated 
information may be leveraged to instruct 
treatment options and/or to derive predictive 
indicators in the clinic164 (FIG. 2).

All these considerations underscore the 
opportunities offered by PDX models to 
illuminate new angles of translational cancer 
research, but they also put forward the 
challenges that are intrinsic to this approach, 
and the need for finding new ways to 
maximize PDX potential. Industry-led PDX 
ventures rely on common and extensively 
tested operating procedures, backed by 
considerable funding, which ensures scalable, 
homogeneous and reproducible experimental 
schemes; however, pharmaceutical initiatives 
are typically bound to preclinical testing 
of proprietary compounds and may face 
obstacles in publishing results, especially 
when data relate to sensitive commercial or 
patenting issues. Conversely, owing to their 
multi-institutional nature, scholarly consortia 
usually suffer from heterogeneous character-
ization of their PDX collections, a flaw that 
is hardly corrected by the relatively limited 
resources provided by government or charity 
grants; however, PDX academic efforts enjoy 
flexibility in drug testing and unfettered 
scientific reporting (including reporting of 
negative results, which avoids the duplication 
of effort and reduces costs). As EurOPDX 
members working in academia, we share 
with our colleagues of PRoXe the concern 
that “academic centers are ill suited to bear 
the burden of housing, expanding, archiving, 
characterizing, and disseminating PDXs 
to investigators (academic and industrial) 
across the world” (REF. 165). Meanwhile, we 
believe that joining forces, incorporating 
models, coordinating methodologies, and 
improving the public shareability and 
visibility of molecular data in an academic-
oriented rather than in an industry-scale 
format are viable objectives that will foster 
not only a stronger collaborative spirit 
in cancer medicine, but also a change of 
mind-set within institutional authorities and 
industrial stakeholders. EurOPDX started as 
a crowd-funded initiative of scientists with 
common goals, complementary skills and 
similar needs, and is now growing in a more 
structured manner thanks to enterprise-wide 
development plans. Ultimately, we envision a 
virtuous circle in which new knowledge from 
bottom‑up efforts such as ours and others 
will inform clinical decision making, which 
in turn will orient public and private financial 
interests to secure further sustainability of 
PDX-based activities. Successful examples 

in other contexts of biomedical research, 
such as TRANSAUTOPHAGY (see Further 
information; a European consortium for 
multidisciplinary research and translation 
of knowledge on autophagy) and GENiE 
(see Further information; a network of 
scientists using Caenorhabditis elegans as 
a model organism), bode well to achieve 
this ambition.
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Abstract

Background: Genomics and proteomics are nowadays the dominant techniques for novel biomarker discovery.
However, histopathology images contain a wealth of information related to the tumor histology, morphology and
tumor-host interactions that is not accessible through these techniques. Thus, integrating the histopathology images
in the biomarker discovery workflow could potentially lead to the identification of new image-based biomarkers and
the refinement or even replacement of the existing genomic and proteomic signatures. However, extracting
meaningful and robust image features to be mined jointly with genomic (and clinical, etc.) data represents a real
challenge due to the complexity of the images.

Results: We developed a framework for integrating the histopathology images in the biomarker discovery workflow
based on the bag-of-features approach – a method that has the advantage of being assumption-free and data-driven.
The images were reduced to a set of salient patterns and additional measurements of their spatial distribution, with
the resulting features being directly used in a standard biomarker discovery application. We demonstrated this
framework in a search for prognostic biomarkers in breast cancer which resulted in the identification of several
prognostic image features and a promising multimodal (imaging and genomic) prognostic signature. The source
code for the image analysis procedures is freely available.

Conclusions: The framework proposed allows for a joint analysis of images and gene expression data. Its application
to a set of breast cancer cases resulted in image-based and combined (image and genomic) prognostic scores for
relapse-free survival.

Keywords: Histopathology images, Image analysis, Biomarker discovery, Gene expression, Multimodal data mining

Background
The recent technological progress made scanning the
whole pathology slides affordable and its integration in
the routine pathology workflow feasible. This resulted
in a revived interest in developing new computational
methods for nuclear morphometry and tissue architecture
characterization, as well as for developing new tissue-
based biomarkers [1]. In the last decade, genomic and
proteomic techniques have been the methods of choice
for novel biomarker discovery. When applied to the same
sample, the pathology imaging and *omics technologies

*Correspondence: popovici@iba.muni.cz
1Institute of Biostatistics and Analyses, Faculty of Medicine, Masarykova
Univerzita, Kamenice 5, 62500 Brno, Czech Republic
Full list of author information is available at the end of the article

allow the investigation of the underlying biology from
different perspectives, increasing the chances for iden-
tifying effective biomarkers. Ideally, these perspectives
could be integrated in a common data analytical frame-
work, to enable a joint (or multimodal) data mining and
decision [2].
Traditionally, the methods for analyzing pathology

images focused on extracting quantitative measures for a
set of predefined morphological parameters (e.g. count-
ing, classifying and characterizing the nuclei) and on
reproducing the expert’s decision in diagnostic applica-
tions (for a review see Gurcan et al. [3]). More recently, a
number of applications of pathology image analysis com-
bined image-based quantitative features with genomic
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information. For example, Yuan et al. [4] showed that
nuclearmorphometry is an independent prognostic factor
that can improve a genomic signature. A similar approach
is discussed by Kong et al. [5] in the case of glioblas-
toma where they show how nuclear and cytoplasmic
features can be linked to genomic profiles and sur-
vival outcome. More advanced techniques combine sev-
eral image-derived characteristics, such as co-localization
of tumor nuclei and lymphocyte infiltration [6]. In all
these cases however, the imaging features were prede-
fined and based on previous known associations between
histopathology and diagnostic/prognostic.
Our interest is in developing a more general compu-

tational framework that would allow the integration of
the standard histopathology images in the biomarker dis-
covery workflow and in which the image features would
be learned in a data-driven fashion, enabling a prior-
free data mining. The main challenge when analyzing the
pathology images stems from their high complexity and
size, and seeming incompatibility with *omics data. In
the present work we propose to use the bag-of-features
approach [7] for reducing the dimensionality of the images
and extracting salient features. This approach has already
been used in histopathology image classification appli-
cations [8, 9] and has the main advantage of allowing
an unsupervised learning of image representation. The
features extracted describe mostly the textural appear-
ance of small neighborhoods and may be combined with
other types of features (e.g. nuclear morphometry) in later
stages of image analysis, but these approaches will not
be discussed here. As an alternative to bag-of-features,
one could use deep learning methods for learning image
features as proposed by Cireşan et al. [10] or Cruz-Roa
et al. [11]. However, these methods require a larger
sample size and were applied in a supervised learning
context.
We propose a novel representation of histopathology

images which extends the standard bag-of-features with
a number of derived measurements aimed at capturing
more global characteristics of the tissue sample. In addi-
tion, we introduce an objective criterion for optimizing
the image representation. The new computational frame-
work is demonstrated in a biomarker discovery scenario,
where prognostic features (both imaging and gene expres-
sion) for relapse-free survival in breast cancer are sought.
We see the application of this approach as a succession
of two independent steps, not necessarily performed on
the same data corpus. In the first step, a histopathol-
ogy image representation is learned from a collection of
images representative for the pathology under investiga-
tion. In the second step, the images of interest are recoded
based on the constructed representation and the resulting
image features are jointly analyzed with the molecular and
clinical data.

Methods
Data
The data used in this study is a subset of the data from
Moor et al. [12], selected solely based on the availability of
the material for analysis. Overall there were n = 196 stan-
dard pathology (haematoxylin-eosin-stained) slides with
breast tissue sections, not all containing a tumoral compo-
nent and not necessarily from different cases. All images
were obtained by whole-slide scanning of the pathology
slides at 40× magnification, resulting in color images of
about 150, 000 × 100, 000 pixels.
These data were partitioned into an image model learn-

ing set (n = 131) and a biomarker discovery/data mining
set (n = 65). In the biomarker discovery set we kept
unique cases for which the slides contained > 70 % tumor
component and the clinical, survival and gene expression
data were all available. The expression profiles of 47 target
genes (including 5 control genes) were obtained by quanti-
tative real-time PCR (qRT-PCR). A full description of the
data set is available in Moor et al. [12] and the major char-
acteristics of the biomarker discovery set used here are
given in Additional file 1.
We computed the genomic prognostic signature

(PRO_10) as described in Antonov et al. [13] for all the
cases with full genomic profiles.

Image processing
Preprocessing
All images were downscaled to an equivalent of 2.5×mag-
nification by subsampling the Gaussian-filtered higher
resolution images (the 4-th level in a Gaussian pyramid).
In the resulting images a mask corresponding to the tis-
sue regions was obtained by adaptive thresholding in the
green channel. The mask was subsequently refined by
morphological operations: erosion with a circular struc-
turing element with radius 13 followed by gap filling and
removal of small objects.
For each image we estimated the intensity of haema-

toxylin (H) staining by deconvolving the RGB-images as
described by Ruifrok et al. [14]. The intensity levels of
the haematoxylin image (H-image) were adjusted by adap-
tive histogram equalization. Finally, the background pixels
were masked out using the tissue region mask computed
as above. In all subsequent image processing steps, only
the H-images were used.

Learning the image representation
The bag-of-features [7] approach has two main stages:
(i) learning an appropriate codebook for representing the
images of interest and (ii) re-coding the images based
on the frequencies of each codeblock (codeword from
the codebook). Thus, the resulting representation of the
image is a histogram of the codeblocks. For the current
application, we extended this representation to include
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several derived features. We point out that once an appro-
priate image representation is learned, it can be applied
unchanged to other similar image collections thus this
step does not need to be repeated on each new data set.

Codebook learning The codebook is a collection of rep-
resentative local descriptors {C1, . . . ,CK } obtained as cen-
ters of K clusters resulting from k-means clustering of a
number of image local descriptors (i.e. a vector quanti-
zation procedure). For this, the images are decomposed
in a set of local neighborhoods for which descriptor vec-
tors are computed. The local descriptors range from pixels
intensities to responses to filter banks or other textu-
ral descriptor. For the histopathology images, the Gabor
wavelets provide a good set of descriptors, so they were
adopted in the present work. Each local neighborhood
of size w × w was convolved with a bank of 24 Gabor
filters [15],

G(x, y; ν, θ , σ) = exp
(

−x2 + y2

2σ 2

)
×exp

(
2πνj(x cos θ + y sin θ)

)

where j = √−1, ν was the frequency, θ the orientation and
σ the bandwidth of the Gaussian kernel. These parame-
ters were set to σ ∈ {1, 2√2}, θ ∈ {k π

4 |k = 0, . . . , 3} and
ν ∈ {3/4, 3/8, 3/16}, respectively. They were kept fixed
throughout all the experiments. For each filter response,
its mean and standard deviations were recorded, thus each
local neighborhood w × w was represented by 48 values
(24 means and 24 standard deviations). A comparison of
Gabor wavelets with other local descriptors, in the con-
text of histopathology image analysis, is given by Budinská
et al. [9].
The size of the codebook (i.e. the number of clusters in

k-means clustering), K, is a free parameter that has to be
chosen/guessed at the moment of codebook construction
[8]. It can also be optimized for the problem at hand [9]
using, for example, the Gap statistic [16]. Here we took
advantage of having available a number of examples for
different tissue components (fat, fat foamy macrophages,
comedo necrosis, connective tissue and carcinoma infil-
trating fat – for examples see Additional file 1) which we
used as reference categories. The goal was to choose the
size of the dictionary K in such a way that the represen-
tations of these categories are sparse and have a minimal
overlap. For each image i, let yi = {j | if codeblock Cj
is used in coding the sample i}, be the set of codeblocks
used in its coding. Then we define the following quantities
(where | · | denotes the cardinality of a set):

• total Jaccard index,

J(K) = 0.5
∑ |yi ∩ yj|

|yi ∪ yj| ,

where the sum is taken over all pairs (i, j) of images
from different reference categories;

• total sum of within-cluster distances,

D(K) =
K∑

k=1

∑
i∈cluster k

‖xi − Ck‖2,

where xi are the descriptor vectors.

With these quantities, we defined an (empirical) objec-
tive function:

�(K) = log
nc(nc − 1)

2
−log J(K)−log

√
D(K)−0.75 logK ,

where nc is the number of reference categories (in our case
nc = 5). The overall goal of our image recoding step is
to find a low dimensional (sparse) representation which
still bears enough information for discriminating major
tissue components. For this, we minimize J(K), i.e. the
overlap between the representations of the reference cat-
egories. At the same time, we require tight clusters (small
within-cluster total distances D(K)) and sparse represen-
tation (small K). Hence, the desired value for K is the one
that maximizes �(K), where we note that the first term is
constant (included to bring the values closer to 0) and that
the scaling factor 0.75 is used to reduce the influence of K.

Image recoding Once a suitable K is found and a code-
book is constructed by k-means clustering, the standard
bag-of-feature approach represents the images as code-
block histograms. However, in this coding, all spatial
information about the distribution of the codeblocks is
lost. Consider the situation in Fig. 1a: all four images have
the same number of patches assigned to the same code-
block, but the spatial arrangement is very different. In
order to characterize these spatial differences, we extend
the image representation with a number of statistics on
the distribution of the codeblocks. For a given image
and for each codeblock k ∈ {1, . . . ,K}, we construct
a binary image in which 1s represent regions assigned
to the codeblock and 0s everything else. In these binary
images, the connected components (4-neighbor connec-
tivity) define individual objects and for each of them we
compute the area (in pixels) and the compactness index
(ratio of the squared perimeter to the area of the object).
Finally, for each image and each codeblock, we compute
(i) the median area, (ii) the maximum area, (iii) the ratio of
the maximum area to the total area of the objects, (iv) the
skewness of the distribution of the area values and (v) the
mean compactness. Thus, for each codeblock in an image,
aside from its frequency, we add five new values aimed
at characterizing the distribution of the codeblock in the
image. We will refer to these additional quantities as the
“extended set of features”. The final representation of an
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A B

Fig. 1 Codeblocks and codebook. a An example of four different hypothetical distributions of the codeblocks leading to identical frequencies. To
cope with such situations, the distribution of codeblocks is also taken into account through extended image features. b A visual representation of the
obtained codebook. The 70 image patches are the closest to the codeblocks obtained after k-means clustering. The three groups of codeblocks (with
29, 20 and 21 elements, respectively) correspond to the major clusters in Fig. 2 and the ordering of the image patches is the same as in the clustering

image has a length of 6K : K values for the codeblock his-
togram (the standard representation) and 5K values of the
extended representation.

Joint data mining
The new representation of the images allows for direct
application of standard data mining techniques. In the
case of multi-modality data mining, the choice of a proper
similarity metric/measure is of crucial importance. Two
main strategies may be attempted for defining a proper
similarity: combination of single, modality-specific, met-
rics or building/learning a fully multi-modality metric.
The first approach has the advantage of using established
metrics usually resulting in easily interpretable mod-
els and facilitating the comparison with known results.
The second approach promises to build a similarity met-
ric that better exploits the multi-modality nature of the
data. These ideas can be implemented, for example, in
the context of kernel machines (such as Support Vec-
tor Machines) where composite kernels (based on closure
properties – see [17] p.75) would represent a possible
implementation of the first approach and multiple kernel
learning [18] an implementation of the latter.
In the present work and in order to demonstrate the

general analytical framework, we make use of standard
statistical tools. We aim at identifying image features that
could be linked to expression levels of the genes of inter-
est (genotype-phenotype association) and potential image
biomarkers that alone or in combinationwith gene expres-
sion can be used for defining a prognostic signature.
Besides the gene expression, we also used a prolifera-
tion gene signature PRO_10 [12, 13], which was shown to
be prognostic in various cohorts of patients with breast
cancer.
To test the association between image features and

tumor size (T) and grade (G) we dichotomized the clin-
ical variables (T: {T1, T2} vs {T3, T4}, and G: {G1,G2}

vs. G3, respectively) and used two-sided t-test, with 0.05
significance level. The association of image features with
gene expression was assessed based on correlation test
(Pearson) with significance level 0.05 and the condition
that the correlation coefficient was at least 0.5 (in absolute
value). We also used canonical correlation analysis (CCA)
to study the associations between image features and
molecular data with significance level of 0.05 for Wilks’
test. The association between image features and survival
outcome (relapse-free survival – RFS) was tested using
Cox proportional hazard models (log-likelihood test),
with significance level of 0.05. The hazard ratios were
estimated from interquartile range-standardized variables
(both image and genomic variables). To test if an image
feature improves the prognostic value of the gene signa-
ture, we tested the difference between the models with
and without the variable of interest using likelihood ratio
tests. To assess the difference in survival between two
groups we used log-rank tests. We binarized the variables
by their median value, into high- and low- expressions or
values. Since the work reported here is purely exploratory
and the sample size is rather small, no adjustment for mul-
tiple hypotheses testing was performed. We used hierar-
chical clustering (Ward method) with Euclidean distance
between samples to cluster the codeblocks.
All statistical analyses were performed in R package for

statistical computing (http://www.r-project.org) version
3.2.2.

Results
Codebook
The image analysis methods described above were imple-
mented in a Python package (available at https://github.
com/vladpopovici/WSItk), using the scikit-image
[19] and Mahotas [20] libraries.
For the codebook construction we used only the mod-

eling set of images, none of the image used in the data

http://www.r-project.org
https://github.com/vladpopovici/WSItk
https://github.com/vladpopovici/WSItk
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mining phase being used for learning the codebook. From
each image, a set of 3000 random patches of size 32 × 32
was extracted and the corresponding Gabor descriptors
computed (vectors of 48 elements). These descriptor vec-
tors were clustered using the k-means algorithm to build
the codebooks. We estimated the optimal (in the sense
of the � objective function, described above) codebook
size by evaluating �(k) for k = 10, 20, . . . , 1000. The
optimal value was found to be K = 70 (see Additional
file 1 for a plot of �(k)) leading to 420 feature vec-
tors for each image. Since the codeblocks are centers of
the clusters (the means of descriptor vectors assigned to
the respective cluster), they might not necessarily cor-
respond to observed image regions. Thus we selected
the closest regions to the codeblocks (the corresponding
descriptor vectors were the closest to the codeblocks) to
provide an approximate visual representation of the code-
book - Fig. 1b. In the following, to designate a specific
codeblock from the codebook, we will use the notation
C.xy. We have extensively investigated the stability of
the learned codebooks and the resulting image repre-
sentations and we found the process to be stable – see
Additional file 1.
The hierarchical clustering of the codeblocks

(Fig. 2) revealed a rather structured content: three
major groups of codeblocks could be identified. We
tentatively labeled them as “proliferation patterns”,
“invasion/differentiation patterns/connective tissue” and
“sparse tumor nuclei/differentiation/fat” to indicate the

major components in the clusters - without claiming a
precise histopathological characterization.
A number of codeblocks were found to be associated

with tumor size (C.10, C.18, C.29, C.38, C.41, and C.42)
and grade (C.09, C.34, C.43, C.45, C.48, and C.62).

Correlations between image features and gene expression
The association analysis between image features and gene
expression identified a number of significant (p < 0.05
and ρ > 0.5) pairwise correlations (all in the range
0.50 − 0.60). In all, eight different codeblocks were asso-
ciated with different genes, most of them with CCNE1
and CCNB2. The codeblock C.31 was associated with
most genes (CCNE1, CCNB2, BIRC5, PRC1, SPAG5)
either by its frequency of appearance in the image or
by the skewness of its distribution. By summing the fre-
quencies corresponding to image features that are highly
correlated (e.g. C.38, C.31, C.01, C.51, C.41, C.68) the
correlations coefficients were improved to 0.65 − 0.70.
CCA confirmed the association between these image fea-
tures and gene expression data (Wilks’ test p = 0.026).
The image features C.10, C.19, C.57, and C.68 and the
genes CCNE1, CCNB2, and SPAG5 had the strongest
impact on the canonical dimensions. These were also the
most stable image features-gene expression correlations
in the image representation stability experiments – see
Additional file 1.
Despite the fact that the PRO_10 gene signature is an

average of proliferation genes which were found to be

Fig. 2 Hierarchical clustering of the codebook. Clustering the codeblocks led to identification of three major clusters, to which generic terms have
been assigned. The codeblocks correlated with gene expression are marked with red dots. The codeblocks with potential prognostic value (in
univariate analysis) are marked with blue squares (dark blue for p-value < 0.01, light blue for 0.01 ≤ p-value ≤ 0.05
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correlated with image features, the correlations between
image features and PRO_10 did not reach the required
significance level in all but one case: the skewness of
codeblock C.31.

Survival analyses
The goal of the analyses performed was to assess the util-
ity of image-based variables for predicting relapse-free
survival independently, or combined with the PRO_10
signature. In the set of samples analyzed, the genomic
score is a strong prognostic marker (Cox regression:
p = 0.001,HR = 2.12, 95 % CI = (1.29, 3.51)).
Univariate Cox proportional hazards models were fit for

each of the 420 image features resulting in the identifi-
cation of several significant associations with relapse-free
survival endpoint. The most prognostic image features
were C.41, C.56, C.65, C.67, C.69, with p < 0.01 and
HR between 1.16 and 1.70. From the extended set of fea-
tures, the median area of the regions assigned to clusters
C.15 and C.26 were significantly associated with RFS (p <

0.05). The strongest predictor among the image features
was C.69 (p = 0.0018,HR = 1.7, 95 % CI = (1.22, 2.37)).
In combined models (image feature and genomic score)

a number of image features led to improved models (like-
lihood ratio test p < 0.05), most of them from the
extended set of features. From all these image features,
C.69 remained significant in the multivariate model (with
PRO_10) and had no significant interaction with the
genomic signature.
We defined an image score variable by averaging C.41,

C.56, C.65, C.67, C.69 which resulted in a stronger prog-
nostic factor (Cox regression: p = 0.0003 and HR =
1.76, 95 % CI = (1.30, 2.40) - see also Figure 3). In a
regression model including the genomic and the image
scores, both remained independent significant variables
(PRO_10: p = 0.05, image score: p = 0.007, no significant
interaction) and themodel was signficantly better than the
corresponding univariate models (p = 0.013). In Fig. 4
the Kaplan-Meier curves for binarized (by median value)
scores are shown, together with corresponding p-values
(log-rank tests) and hazard ratios. Another visualization
of the prognostic scores is given in Fig. 5 where the
expected survival at 4 years is shown as a function of
the genomic, image-based, and combined scores, respec-
tively. Two examples of high risk cases, according to the
image-based score, are given in Additional files 2 and 3.

Discussion
The main challenge in introducing the histopathology
images in the general data mining biomarker discovery
framework stems from their high complexity and low level
of information representation. Thus, while the images
contain a huge amount of data (in the order of 1010 pixels)
the extraction of information implies a considerable effort.

Fig. 3 Regions assigned to the most prognostic codeblocks.
512 × 512 regions from two different samples with high image score
(high risk of relapse), at 2.5× magnification. The image patches
represented in full color were assigned to one of the C.41, C.56, C.65,
C.67 or C.69 codeblocks. In Additional files 2 and 3, the corresponding
whole slide images are provided

Traditionally, this effort is performed by the expert pathol-
ogists or, more recently, by using quantitative methods for
measuring a set of predefined morphological aspects to
complement the pathology report. In this work, we took
a third approach, in which the image data is reduced to
a number of essential patterns (the codeblocks) whose
frequency and spatial distribution in the image is used
for data mining. The codeblocks are learned indepen-
dent of any prior knowledge about the images, potentially
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A B C

Fig. 4 Kaplan-Meier curves for binarized scores. The genomic (a), image-based (b) and combined scores (c) were binarized by the respective
median values into “low score” (low risk) and “high score” (high risk) categories. The combined score slightly improves on the genomic score

enabling the discovery of new image features not necessar-
ily assessed during the pathology review of the cases. The
obvious drawback is the difficulty of interpreting some of
the patterns and the possibility of having also artifacts in
the model. The adopted representation of local neighbor-
hoods in the image (responses to a bank of Gabor filters)
encouraged the identification of codeblocks with distinc-
tive textural appearance (Fig. 1). This local appearance
may be later on combined with a nuclei detector and clas-
sifier (as in Yuan et al. [4]), for example, to obtain a more
comprehensive characterization of the image.
By examining the similarities between codeblocks, we

identified three major aspects of the images that are cap-
tured: proliferation, invasion/differentiation (within con-
nective tissue) and isolated tumor nuclei (within regions
predominantly with fat component) (Fig. 2). This result
combined with the observation that the whole third clus-
ter did not contribute to the prognostic models, suggests a
possible refinement of the current method, in which these

regions with high fat content are discarded in an initial
preprocessing stage and a more detailed model is used to
characterize the remaining regions.
We demonstrated the integration of the image features

in a standard biomarker discovery scenario, in which
both image-genes correlations (precursors to genotype-
phenotype associations) as well as various survival prog-
nostic models were tested. Since the main purpose of this
exercise was to demonstrate the integration of image fea-
tures with genomic information and the sample size was
relatively modest, we did not adjust for multiple hypothe-
ses testing and restricted ourselves to an exploratory
analysis. Thus the associations found, while hypothesis-
generating, have to be taken with caution and more
validation is needed.
Most of the genes in the panel were related to pro-

liferation processes, thus it is not surprising that the
correlations with image features involved almost exclu-
sively these genes. The strongest associations were found

A B C

Fig. 5 Prognostic scores at 4 years. Predicting the likelihood of an event (relapse) at 4 years, based on genomic signature (PRO_10 - panel a), the
image-based score (panel b) and the combined score (panel c)
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with CCNE1 and CCNB2. Somehow surprising, no signif-
icant correlation was found with MKI67 gene, a common
marker (with Ki-67 specific staining) for proliferation.
A number of image features were found to be prog-

nostic for RFS and we proposed a simple image-based
prognostic score which averages five basic image fea-
tures. The new score is strongly prognostic and is not
correlated with the genomic score considered (PRO_10).
When combining the two scores in a multivariable
Cox regression, the two remained significant (with a
marginal significance for the genomic score) and inde-
pendent predictors (no significant interaction) leading to
an improved model. Thus, the image-based score can be
used either alone - as a first line predictor - or in com-
bination with the genomic predictor. These results also
demonstrate the complementarity of the two modalities -
histopathology imaging and genomics - and suggest
that refined predictors can be built by a combination
thereof.
It must be noted that the sample size and the num-

ber of events did not allow for more variables in the
regression models. Further analysis of the scores (either
image-based or combined) in the context of usual clin-
ical predictors (TNM-staging, hormonal status, etc.) is
required before a definite conclusion about its clinical util-
ity can be drawn. Nevertheless, the image-based score can
already be used in applications like searching or indexing
in histopathology image archives.

Conclusions
We proposed a general framework for integrating the
histopathology images in the routine genomic data anal-
ysis pipeline. The image features used are based on
the responses of Gabor filters applied to single channel
images. The approach can easily be extended to exploit
the full color information and to include other types of
features.
When applying ourmethod to a data collection of breast

cancer samples, we were able to identify a number of
associations between image features and gene expression
levels. More importantly, several prognostic image fea-
tures were identified, some of them complementary to the
genomic score. Thus, we could build an image-based and
a combined survival score, improving on the performance
of the genomic score. These results must be validated in
larger data sets.
The code implementing the methods described is

made freely available and continues to be under active
development.
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Abstract

Motivation: Whole genome expression profiling of large cohorts of different types of cancer led to

the identification of distinct molecular subcategories (subtypes) that may partially explain the

observed inter-tumoral heterogeneity. This is also the case of colorectal cancer (CRC) where sev-

eral such categorizations have been proposed. Despite recent developments, the problem of sub-

type definition and recognition remains open, one of the causes being the intrinsic heterogeneity

of each tumor, which is difficult to estimate from gene expression profiles. However, one of the

observations of these studies indicates that there may be links between the dominant tumor

morphology characteristics and the molecular subtypes. Benefiting from a large collection of CRC

samples, comprising both gene expression and histopathology images, we investigated the possi-

bility of building image-based classifiers able to predict the molecular subtypes. We employed

deep convolutional neural networks for extracting local descriptors which were then used for con-

structing a dictionary-based representation of each tumor sample. A set of support vector machine

classifiers were trained to solve different binary decision problems, their combined outputs being

used to predict one of the five molecular subtypes.

Results: A hierarchical decomposition of the multi-class problem was obtained with an overall ac-

curacy of 0.84 (95%CI¼0.79–0.88). The predictions from the image-based classifier showed signifi-

cant prognostic value similar to their molecular counterparts.

Contact: popovici@iba.muni.cz

Availability and Implementation: Source code used for the image analysis is freely available from

https://github.com/higex/qpath.

Supplementary information: Supplementary data are available at Bioinformatics online.

The last two decades witnessed fundamental changes in the way we

investigate the biology of living organisms, with technological devel-

opments fueling major breakthroughs in our understanding of vari-

ous pathologies and paving the road towards a personalized

medicine. Currently, the researchers are armed with a battery of

techniques for interrogating the same biological reality at various

scales (from sub-cellular to whole population) and from very diverse

perspectives (clinical, imaging, genomic, proteomic, etc.) generating

high-throughput multimodal data. The bottleneck is now repre-

sented by our limited ability to interpret such data in an integrated

way (Li et al., 2016) and the need for a more inter-disciplinary ap-

proach is epitomized by large scale projects such as The Cancer

Genome Atlas (TCGA). In cancer research, one of the main goals it

to identify homogeneous groups of patients—i.e. to stratify the
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patient population—in the hope of finding the common causes and

tailored treatments. Traditional stratification of cancer patients is

based on histologic and morphologic assessment of the tumor sam-

ple and it still defines the golden standard. Lately, various molecular

biomarkers have been proposed for the same purpose. The two per-

spectives are partly overlapping and partly orthogonal, making their

integration more challenging. Our present work focusses on

translating a gene expression-based cancer patient population strati-

fication into an image-based biomarker, thus trying to bring tran-

scriptomics data into a histopathologic context.

Colorectal cancer (CRC) is the third most frequent cancer world-

wide and the second leading cause of cancer mortality in Europe,

with metastatic disease accounting for 40–50% of newly diagnosed

patients. At the same time, it is a highly heterogeneous disease in

terms of prognosis and its response to therapy. Using whole-genome

profiling of large data collections, several systems for sub-

categorization of CRC have been proposed recently (Budinsk�a et al.,

2013; De Sousa et al., 2013; Marisa et al., 2013; Sadanandam et al.,

2013; Roepman et al., 2013). In general, they relied on clustering

the CRC tumors in order to identify patterns of co-regulation of

genes that could be indicative of common oncogenic pathways and

coherent treatment responses of these tumors. Our own analysis

(Budinsk�a et al., 2013) identified five stable tumor clusters (labeled

as Subtypes A, B,. . ., E), but also showed that a relatively high pro-

portion of cases remained unaccounted for by this system. A recent

effort (Guinney et al., 2015) to harmonize all these discoveries con-

firmed the presence of four distinct and reproducible subtypes across

all studies, labeled CMS1,. . ., CMS4, which match closely our

Subtypes A,. . ., D (Guinney et al., 2015). The current golden stand-

ard for the identification of the molecular subtype of a given tumor

requires the interrogation of a large panel of genes and the applica-

tion of a genomic classifier. In the analyses reported here, we will

use the subtypes as defined in Budinsk�a et al. (2013). There are sev-

eral reasons for this choice: first, since they were derived from the

same gene expression data that accompany the images we use, it is

hoped that the subtype assignment is less noisy. Second, in Budinsk�a

et al. (2013), it is noted that an expert pathologist, when presented

with the molecular categorization for a set of cases, was able to iden-

tify a number of morphological features that were preferentially en-

riched in one or a few of the subtypes hence, showing preliminary

evidence that such connections exist. And third, we are interested in

identifying the imaging support for the five previously identified

subtypes.

The problem of recognizing the tumor subtype based on imaging

data is not new and probably the most studied is the case of breast

cancer. For these cancers, five molecular subtypes are currently con-

sidered—Luminal A, Luminal B, basal, Her2-enriched and normal-

like (Perou et al., 2000)—and surrogate immunohistochemical stains

are available (corresponding to hormonal status of ER, PR and Her2

and the invasion marker Ki-67, respectively). Consequently, auto-

matic stain quantification is the strategy of choice for molecular sub-

type recognition from image data and it was shown to outperform

the human expert (Stålhammar et al., 2016). A systematic review of

the connections between histological and molecular subtypes in

breast cancer is given in Weigelt et al. (2010). Other efforts concen-

trated on the recognition of the high-risk group of triple negative

breast cancers on various imaging platforms (Agner et al., 2014;

Dogan and Turnbull, 2012). The quantitative image analysis of

pathology slides can also serve as a main means for subtype defin-

ition. For example, Chang et al. (2011) found five subtypes of glio-

blastoma, one of which being predictive value and correlated with

the expression of several genes. Similarly, Lan et al. (2015) propose

an alternative subtyping of ovarian cancer based on quantitative

analysis of tumor microenvironment. A general approach to the

identification of disease subtype based on morphologic analysis of

pathology slides is described in Cooper et al. (2012).

In the case of CRC, Budinsk�a et al. (2013) showed that Subtype

A had either serrated or papillary architecture, Subtype B repre-

sented typical colorectal adenoma with complex tubular architec-

ture, Subtype C was mucinous or solid trabecular, Subtype D was a

mixture of desmoplastic and complex tubular architecture, and

Subtype E was mixed (see Budinsk�a et al., 2013 for example

images). However, these annotations did not lead to a strong

classifier.

This observation—that associations can be found between the

molecular subtypes and morphological traits of the tumors—consti-

tutes the starting point of our investigations reported here. Our

interest is to construct a histopathology image-based classifier able

to predict the molecular subtype of a given tumor section without

resorting to any other staining but the standard hematoxylin–eosine.

This classifier may be seen as a surrogate image biomarker (actually,

as we will see, a combination of several biomarkers) for the molecu-

lar subtypes and, to the best of our knowledge, it is the first such

biomarker to be proposed. This constitutes the main contribution of

our work reported here and it represents a largely improved result

from our earlier explorations (Budinsk�a et al., 2016). Equally im-

portant, our approach does not rely on predefined morpho-

pathological features: the feature selection is guided by the predic-

tion task. This would allow identifying potentially unknown (or

overlooked) image features but may also make the interpretation of

the models less obvious.

There are many potential application of such a system once es-

tablished and well tested. First, since it does not require any special

laboratory work, it could be easily integrated in the diagnostic

workflow to provide hints about the molecular subtype, with no

extra costs. It could also be used for sample stratification and selec-

tion for retrospective studies, where large collections of samples

could easily be filtered for the subtypes of interest without the need

of the much more expensive molecular profiling.

Currently, the molecular subtype is established by profiling the

expression of a set of genes from the DNA/RNA extracted from the

tumoral region of a tissue section and combining their values

through a genomic classifier. The whole process involves a number

of parameters (from defining the characteristics of the region to be

profiled—tumor content, presence/absence of stroma, etc.—to the

cut-offs of the classifiers) that are yet to be formalized, thus being

error-prone and leading to noisy labels. While we consider the mo-

lecular subtypes as the ground truth our image-based classifier is

measured against, one has to keep in mind the somehow fuzzy na-

ture of the class definition. These specific settings of our problem

make it even more challenging than the more classical applications

in the field of digital/computational pathology.

The rest of the paper is structured as follows: the data and the

methods used are described in Section 1, followed by the discussion

of the results in Section 2 and conclusions in Section 3.

1 Methods

1.1 Data
The present work is based on the data from a subset of the

PETACC3 clinical trial (Van Cutsem et al., 2009) samples. The trial

compared two treatment regimens (fluorouracil/leucovorin alone or

in combination with irinotecan) in CRC and found no differences
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between the two. The gene expression data for a set of n¼688 sam-

ples was used (along with other data sets) in the derivation of the

molecular subtypes of CRC (Budinsk�a et al., 2013) and is publicly

available from ArrayExpress under accession number E-MTAB-990.

In (Budinsk�a et al., 2013) the molecular subtypes (denoted A–E)

were assigned to a number of n¼458 cases, the rest being con-

sidered ambiguous (or representing other low-prevalence subtypes)

and were labeled as ‘outliers’. From those 458 samples, n¼300

cases were selected for this study based purely on technical consider-

ations (availability of histopathology tumor section, acceptable

whole slide image quality, tissue sample not too fragmented, etc.).

The ‘outlier’ (from a molecular subtype perspective) cases were not

considered in the present study.

All molecular subtypes were represented in this collection with

the following frequencies: (A) 21, (B) 140, (C) 37, (D) 81 and

(E) 21. The slides were annotated by an expert pathologist and these

annotations were present in the digital versions—a typical example

is given in Figure 1 (note the annotations delineating the loosely the

tumoral and normal tissue components).

From the whole collection of 300 images, a subset of 100 images

was selected by stratified random sampling to form the development

set. This development set was used for selecting the image represen-

tation model and, for designing, the classification approach. We did

not use the whole available data in order to reduce the likelihood of

obtaining a model too adapted to our particular collection of

samples (overfitted). For the same reason, we also preferred limiting

the number of experiments, comparing only several modeling

approaches. The remaining 200 images were added at a later stage

when the multi-class classifier performance was estimated by cross-

validation. Other strategies of selecting a development set (eventu-

ally larger, equal number of cases per class, etc.) could have been at-

tempted, with their own advantages and drawbacks, but we found

the chosen approach to provide a reasonable trade-off.

1.2 Image acquisition and preprocessing
All whole slide images of hematoxylin–eosin stained tumor sections

were acquired at 20� magnification, using a Hamamatsu

NanoZoomer C9600 scanner. The resulting images were com-

pressed by the image acquisition software using JPEG standard (at

80% quality) and stored in the proprietary NDPI format. The reso-

lution of the images was 455nm/pixel (equivalent of 55824 DPI) for

a typical size of 100 000� 50 000 pixels (depending on the size of

the tissue section). The images were exported in standard TIFF for-

mat using OpenSlide software library (Satyanarayanan et al., 2013).

The images were down-scaled to an equivalent 10� magnifica-

tion and only tumoral regions were retained from each sample

(manually cut following the pathologist’s annotations)—the pixels

outside the tumors being set to zero. For example, the image in

Figure 1 contains two tumoral regions (marked with ‘T’). No further

preprocessing was applied to the images.

1.3 Local descriptors
We based our sample description on the aggregation of local infor-

mation over the tumor regions in the image. The choice of image

features plays a major role in the performance of image recognition/

classification system. Traditionally, most of such features are hand-

crafted, consisting of some dense sampling of local patches, like in

wavelet decomposition, Scale-Invariant Feature Transform (SIFT)

(Lowe, 1999), Local Binary Patterns (LBP) (Ojala et al., 1996), etc.

These local descriptors are later pooled into a global representations

by means of methods such as Bag-of-Visual-Words (BoVW) (Csurka

et al., 2004), Fisher Vector (FV) (Perronnin and Dance, 2007) or

Vector of Locally Aggregated Descriptors (VLAD) (Jégou et al.,

2010, 2012).

More recently, Convolutional Neural Networks (CNNs) (LeCun

et al., 1989, 2015) gained momentum due to the superior perform-

ance of the systems employing them and to the increasing availabil-

ity of dedicated software (and hardware) systems facilitating their

use. While the CNNs also require a number of design decisions

(such as their structure), they also have a large number of param-

eters that are learned from data, leading to adapted image descrip-

tions. Cimpoi et al. (2016) provide a detailed comparison of deep

image features and some standard ones in the general context of tex-

ture classification. In biomedical imaging, there are a number of suc-

cessful recognition systems based on various CNNs architectures,

such as U-Net (Ronneberger et al., 2015). In general, training CNN-

based recognition systems requires a large number of labeled image

examples, the deeper the architecture more images being needed.

For example, the well-known image recognition systems like

ImageNet (Krizhevsky et al., 2012) or GoogleNet (Szegedy et al.,

2015) were trained on millions of images. Such large data collec-

tions are usually not available in biomedical field, thus the interest

in transferring general pre-trained CNN models to the medical ap-

plications. For example, van Ginneken et al. (2015) and Kawahara

et al. (2016) describe such successful systems that are based on pre-

trained CNN features.

An alternate route for obtaining local descriptors is represented

by the autoencoding methods, where an identity function is learned

under the constraint of a lower dimensional (or sparse) internal rep-

resentation. The parameters of the function are obtained through an

optimization process, where the distance (usually L2) between the

original and reconstructed image is minimized, eventually with

some additional constraints over the parameters. Examples of such

methods are represented predictive sparse decomposition methods

(as used in Chang et al., 2015, for example) and deep autoencoding

networks. We do not explore further this direction on the present

work.

For the problem addressed here, we chose to use a very deep

CNN trained on ImageNet data collection—imagenet-vgg-f

(Chatfield et al., 2014)—as implemented in the MatConvNet library

(Vedaldi and Lenc, 2015) (for the architecture see http://www.

vlfeat.org/matconvnet/models/imagenet-vgg-f.svg). The network is

trained to predict the probability of an input color image of size 224

� 224 to belong to one of the 1000 categories. By using the output

of the next to last layer (relu7, before the classification layers), a

4096 element description vector can be obtained. Since we will use

Gaussian Mixture Models (GMMs—see Section 1.4) for building

the coding dictionary, such a high-dimensional space would require

Fig. 1. Typical whole slide image from the data collection. At 10� magnifica-

tion, this image is 39 936�22 528 pixels in size. The regions marked with a ‘T’

correspond to tumoral component, while the ‘N’ annotation indicate normal

tissue
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a prohibitively large number of samples for a good fit of the models,

so we choose to perform PCA to further reduce the dimension of the

local descriptor vectors by retaining the first d¼128 coordinates

(chosen to be fixed, non-trainable). Thus, a local RGB patch of

224�224 pixels was reduced to a set of 128 values corresponding

to the projection of the 4096-value ImageNet vector onto the first

128 principal axes.

As a side note, we remark that the CNN-based descriptor vector

is itself the result of a combination of a number of filters applied to

even smaller neighborhoods. However, in this work, we consider

the basic neighborhood to be the 224�224 patch on which the

CNN is applied.

1.4 Aggregating local descriptors
Once a set of local descriptors is obtained from an image, they are

pooled into a summarizing feature vector supposed to capture the

global aspects of the image. The first step of the process involves the

re-coding of the image in terms of elements of a visual dictionary

(codebook), the same for all classes, which is followed by the com-

putation of the image representation.

For the construction of the codebook, k-means clustering and

GMMs are the most common choices, and are typically used with ei-

ther the standard Bag-of-Visual-Words (Csurka et al., 2004) or other

aggregators. Jégou et al. (2012) give a comprehensive comparison of

various design choices. Here we shortly remind the main differences

between BoVW, FV and VLAD:

• Bag-of-Visual-Words typically uses k-means clustering for ob-

taining a codebook, with the K centroids from the clustering

being the codewords (visual words). Then the representation of

an image is simply the histogram of the number of local descrip-

tors assigned to each codeword, thus an image is reduced to a

K-dimensional vector. This histogram can be further normalized

using Manhattan or Euclidean normalization Jégou et al. (2012).

One can also use a soft-coding scheme in which the patches are

assigned, for example, a code based on the distance to the cen-

troids (Sivic and Zisserman, 2003).
• Fisher Vector represents a generalization of BoVW as it encodes

higher order statistics of the distribution of the codewords. In

this case, the codebook is usually obtained as a GMM with K

components fitted via expectation maximization on the training

data. The FV encodes the gradient of a given sample’s likelihood

with respect to parameters of the fitted GMM, thus it indicates

the direction in the parameter space in which the learned GMM

has to be modified to accommodate the observed data (Jégou

et al., 2012). For a full FV that accounts for differences both in

mean and variance between the model and observed data, the re-

sulting representation vector has 2Kd elements (d being the size

of the local descriptor vector).
• VLAD can be seen as a non-probabilistic version of FV (Jégou

et al., 2012) and was designed to provide a low dimensional repre-

sentation of the image (Jégou et al., 2010) that would allow the

indexing of very large image databases in memory. It tries to com-

bine the simplicity of BoVW with some ideas of FV: the codebook

is learned via k-means clustering and each patch is assigned the

closest codeword as in BoVW, but the feature vector accumulates

the differences between each patch and its corresponding code-

word, similar to FV. See Arandjelovic and Zisserman (2013) for a

detailed discussion and further extensions.

In the present work, we decided to use a common method for

constructing the visual codebook, namely the GMMs. This allowed

us to test a soft-coding scheme as well, in which codes were based

on the posterior probabilities of being generated by a particular

component of the GMM.

1.5 Classifier training and performance estimation
Training the system could be summarized by the following steps:

1. for each image, extract the local descriptors (based on ImageNet)

for all non-overlapping regions corresponding to tumoral

component(s);

2. construct a visual codebook by:

a. performing PCA and retain the first 128 components (the

PCA model is saved for later application on validation set)

b. fitting a K ¼ 128-component GMM on PCA-transformed

local descriptors (the visual codebook is saved for later usage

on validation set)

3. train the binary classifiers (save the models for validation). Each

such binary classifier was a support vector machine with a radial

basis function kernel. Two parameters were tuned in an inner

cross-validation loop: the c parameter of the kernel and the C

parameter for the misclassification penalty. The final prediction

of the subtype label is made according to the decision tree in

Figure 2. This particular decomposition of the multi-class prob-

lem was the result of the analysis of misclassified samples in the

development set which suggested that first Subtypes A and B

should be separated from the rest (see Section 2.1).

Since the ImageNet is an external model independent of the data

analyzed, it does not need to be included in the cross-validation

loop, this being an additional reason for preferring a pre-built CNN

model. The other steps, however, were repeated at each cross-

validation iteration on the corresponding training data.

1.6 Statistical analyses
For the identification of image features enriched/depleted in a sub-

type with respect to the other subtypes, we used Wilcoxon rank-sum

tests since the measurements were not normally distributed. For

hierarchical clustering we used the Ward method with an Euclidean

distance between feature vectors. Survival analysis was performed

using survival package (version 2.39-4) from R statistical computing

environment (version 3.3.1, www.r-project.org). The estimation of

hazard ratios was obtained from Cox proportional hazards regres-

sion in the absence of any other covariates, while the comparison of

survival experience of different subgroups was assessed by log-rank

test (Mantel–Haenszel test). Statistical significance level was chosen

to be P¼0.01 and all tests yielding a P value 0:01 � P � 0:05

were considered marginally significant. Finally, the 95% confidence

Fig. 2. Decomposition of the multi-class classification problem. For each non-

terminal node a binary classifier was trained to split the respective groupings

of molecular subtypes
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intervals (95%CI) for binomial random variables (such as accuracy)

were estimated using the (Agresti and Coull, 1998) method.

2 Results and discussion

The results discussed here are complemented by larger images on the

project’s website: http://bias.cerit-sc.cz/somopro-subtypes.html.

2.1 Initial experiments
As mentioned, in an attempt to avoid overfitting the available data,

a development set has been used to guide the design decisions and

to set a number of meta-parameters. We tested dictionaries with

K1 ¼ 64 and K2 ¼ 128 codewords and compared the performance

of BoVW, FV and VLAD representations when predicting the five

molecular subtypes. We performed this comparison under two

standard decompositions of the multi-class classification problem,

namely 1-vs-all and 1-vs-1.

These tests showed that BoVW with GMM-based quantization

performed as good as the more involved representation by FV and

VLAD see Supplementary Materials—Section S1. The small sample

size definitely influences this observation, since both FV and VLAD

have much higher dimensionality and would require more data for a

better training. Table 1 shows the results for BoVW method with

1-vs-all decomposition of the multi-class problem, on the develop-

ment set (obtained by stratified 4-fold cross-validation)—for the

other approaches the results were similar, so they are not detailed

here.

Another important observation was that the 1-vs-1 and 1-vs-all

decompositions of the multi-class classification problem might not

be the best suited for the present case. By analyzing the confusion

matrix and taking into account the performance indexes (precision

and recall), it appeared that a first split would have been more ad-

vantageous between Classes A and B on one side and C, D and E, on

the other side. This observation is also supported by the results in

Budinsk�a et al. (2013) where it is noted that Subtypes A and B, on

one hand, and C, D and E, on the other hand, share dominant and

secondary dominant morphological features as well as similar sur-

vival expectancy. So, the final design for the multi-class classifier

was chosen to be as depicted in Figure 2.

2.2 Prediction of molecular subtypes
Once the final decisions for the classification system were taken

based on the initial experiments described above, the performance

of the system was assessed using 10-fold cross validation, on the

whole set of 300 samples.

The estimated overall accuracy of the multi-class classifier was

Acc ¼ 0:84; 95%CI ¼ ð0:79� 0:88Þ for a weighted average recall and

precision of R ¼ 0:85; 95%CI ¼ ð0:80� 0:89Þ and P ¼ 0:84;

95%CI ¼ ð0:80� 0:88Þ; respectively. Table 2 details the performance

metrics of the classifier. We note the good performance of the first

decision level ({A, B} versus {C, D, E}) (Acc ¼ 0:89; 95%CI ¼
ð0:85� 0:92Þ) but also the poor recognition of the Subtype E.

We repeated the same experiments on the 200 samples not used in

the development set and the results were in line with those above

(thus not repeated here), only with Subtype A being slightly worse

separated from Subtype B (see Supplementary Materials—Section S2).

This indicates that the current sample size may still be too small for

some cases and some improvements may be expected by enlarging the

training set.

2.3 Associations between predictions and clinical data
The study (Budinsk�a et al., 2013) indicated that some associations

could be found between molecular subtypes and clinical variables

and molecular markers. Hence, we were interested in testing

whether such associations are transferrable to the predictions made

by the image-based classifier. To avoid overly-optimistic discoveries,

we use the predictions (A–E labels) produced during the cross-

validation estimation of the system. There is also one caveat: as ex-

plained the selection of the cases was governed by technical con-

straints and thus it does not represent the true population-based

statistics for various clinical variables and the results reported here

should not be compared directly with those in Budinsk�a et al.

(2013). Nevertheless, we investigate these associations and compare

them with those found between gene expression-based subtypes and

the clinical variables, on the same set of cases.

We first tested whether the predicted subtypes were associated

with relapse free survival (RFS). In Budinsk�a et al. (2013), Subtypes

A and B have a lower risk of relapse than Subtypes C, D and E. The

same can be observed in the set of 300 samples used here

(P¼0.0014, HR ¼ 1:75;95%CI ¼ ð1:24� 2:49Þ; Figure 3(a)). The

image-based subtype predictions also produce a statistically signifi-

cant stratification of the population (P¼0.012, HR ¼ 1:56;95%CI

¼ ð1:10� 2:21Þ; Figure 3(b)).

We also found associations between microsatellite stability,

BRAF and KRAS mutations, and mucinous histology and various

subtypes—both image-based and gene expression-based. In the case

of image-based predictions, Subtypes A and C were enriched in mu-

cinous histology compared with the sample average, while Subtype

E was almost depleted of it. BRAF-mutated cases (5.8% of all cases)

were mostly found in Subtype C (20% of cases predicted), and rarely

in Subtype B (2.4%), while KRAS mutation (38.4% of all cases) rep-

resented 77% of cases predicted as Subtype A and only 29% and

22% of cases predicted as Subtypes B and E, respectively. Finally,

high microsatellite instability (MSI) was almost exclusively found

in Subtype C (10 out of 13 cases). The same trends were found

in gene-expression subtypes, with some variations below statistical

significance.

Table 1. Confusion matrix for BoVW

Predicted

A B C D E Precision Recall

A 3 4 0.75 0.43

B 1 41 5 0.76 0.87

C 3 7 2 0.44 0.58

D 4 8 13 2 0.59 0.48

E 1 2 1 2 1 0.33 0.14

Empty cells correspond to null values.

Table 2. Ten-fold cross-validation confusion matrix for the multi-

class classifier and corresponding per-class performance metrics

Predicted

A B C D E Precision Recall

A 21 0.95 1.00

B 1 119 13 7 0.91 0.85

C 2 29 6 0.91 0.78

D 8 1 71 1 0.75 0.88

E 2 2 5 12 0.60 0.57

Empty cells correspond to null values.
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A related question was whether the misclassified samples were en-

riched in any particular type of tumors. The only significant associ-

ation was between the misclassified Subtype B samples, which were

enriched in higher T-stage and N-stage tumors. This observation may

provide hints about further refinement of the classifier for Subtype B.

Detailed results are given in Supplementary Materials—Section S3.

2.4 Visual codebook
We explored the structure of the visual codebook as obtained by

training the model on the full data set. A visual depiction of the ex-

tracted codewords (centers of the Gaussian components) is shown in

Figure 4 and a higher resolution image is given in Supplementary

Materials—Section S4. Note that the visual codewords are the cen-

ters of the Gaussians in the GMM, hence the means of feature vec-

tors obtained by projecting the ImageNet features in the PCA space.

The patches shown are just the closest image neighborhoods to these

centers, thus they are an approximation of the true centers (whose

visual appearance would require inverting the CNN function). We

use this simplification only for visualization purposes and to get a

qualitative assessment of the results.

As one can see most of the codewords could be associated with

distinct tissue architectures (from various parts of the glands, papil-

lary or tubular structures, to necrotic and fat regions). On the other

hand, it is apparent that some of the codewords were affected—to

different degrees—by the markings on the slides. Finally, a few code-

words clearly corresponded to artifacts (either due to out-of-focus

regions or markings). However, none of these artifact-related code-

words were found to be associated with the subtypes, indicating that

the approached use can cope, to some extent, with the noise inherent

in such images.

Some of the codebooks had a much higher incidence in a particu-

lar subtype than in all the others (Wilcoxon rank-sum test). In

Figure 5, the top four visual codewords resulted from this analysis

are shown along with the corresponding P values (no adjustment for

multiple testing was performed, since this is purely exploratory). For

all the Subtypes but E, the associations were statistically significant

(P � 0:01). The Subtype E seemed to not have a strong preference

for any of the codewords, the few found associations being weakly

statistically significant (0:01 � P � 0:05). It appears that Subtype

A is associated with well differentiated morphology (Fig. 5(a–d)),

with Subtype B being less well differentiated (Fig. 5(e–h)). For

Subtypes C, D and E, the top codewords could be associated with ei-

ther necrotic tissue (Fig. 5 (j and l)), stromal reaction (Fig. 5(m–p))

or poorly differentiated morphology (Fig. 5(q)). It is important to

stress that the classifiers were built based on non-linear support vec-

tor machines, so the results from this analysis cannot be directly

extrapolated to understanding the classification models.

We performed a hierarchical clustering (Ward method) of all the

codewords using Euclidean distance and the result showed a rather

structured codebook (see Supplementary Materials—Section S5). By

corroborating the clustering results with those above, one can see

that there are two major clusters—one corresponding mostly to fea-

tures that are enriched in Subtypes A and B (and depleted in C, D

and E) and one corresponding to features enriched in Subtypes C, D

and E. This post-hoc analysis supports our decision of having a first

decision level separating Subtypes A and B from Subtypes C, D

and E.

3 Conclusion

We presented an approach at recognizing the CRC molecular sub-

types from the routine histology images. The results indicate that an

automated system could be built to identify with high confidence at

least four of the five subtypes—Subtype E apparently being much

more challenging to recognize. The predictions made by the classi-

fier were found to be also prognostic for relapse-free survival and

associated with other clinical parameters, as their molecular

counterparts.

Fig. 3. Survival analysis: risk of relapse stratified by (a) molecular subtypes and (b) image-based classifier. Subtypes A and B represent a lower risk group, while

subtypes C, D and E a higher risk

Fig. 4. Visual dictionary for colorectal cancer. While most of the selected vis-

ual words correspond to various tissue architectures, some are clearly linked

to artifacts still present in the images, or regions partially covered by the an-

notations. The ordering of the image patches is given by the index in the

GMM, with indexes from 0 to 127 (by rows) (see Supplementary Materials -

Section S4 for the color version)

Image-based surrogate biomarkers for molecular subtypes of colorectal cancer 2007

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/33/13/2002/2964790 by guest on 07 January 2025

Deleted Text: subtype 
Deleted Text: subtype 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btx027/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btx027/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btx027/-/DC1
Deleted Text:  - 
Deleted Text:  - 
Deleted Text: <italic>p</italic>
Deleted Text: -
Deleted Text: subtypes 
Deleted Text: subtype 
Deleted Text: subtype 
Deleted Text: subtype 
Deleted Text: subtypes 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btx027/-/DC1
Deleted Text:  - 
Deleted Text: subtypes 
Deleted Text: ,
Deleted Text: subtypes 
Deleted Text: ,
Deleted Text: subtypes 
Deleted Text: ,
Deleted Text: subtypes 
Deleted Text: ,
Deleted Text: colorectal cancer
Deleted Text:  - 
Deleted Text: subtype 
Deleted Text: relapse 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btx027/-/DC1


The models used for predicting the subtypes are based on sup-

port vector machine classifiers with radial basis functions kernels,

making the direct interpretation of the models rather intricate.

Nevertheless, we qualitatively evaluated the image features by test-

ing their associations with various subtypes and inspecting their dis-

tribution in the whole image. To obtain better insights, we plan to

also build simplified models—even at the expense on degraded per-

formance—that would better lend themselves to a biological inter-

pretation, a mandatory condition for the acceptance of the system.

In the current work, we concentrated on recognizing the five mo-

lecular subtypes from pre-segmented tumoral regions. This simplifi-

cation will be addressed in future work where we plan to use an

automatic segmentation of the tumor region as a preprocessing step

for the subtype recognition. Another question we will address in the

future pertains the classification of the so-called ‘outliers’: tumors

for which no molecular subtype was assigned. It would be interest-

ing to see how the subtypes predicted by the current image-based

classifier correlate with the similarity between their expression pro-

files and those of well-assigned tumors.

One has to bear in mind that despite recent efforts to consolidate

the molecular taxonomy of CRC, the sub-categorization of CRC is

still not definitive. Indeed, depending on the size of the cohort and

parameters chosen for cut-offs, more or less molecular subtypes can

be observed, thus this categorization is still fluid. Nevertheless, in

the present work, it has been considered the golden standard to

which the image-based models were compared against. We believe

that actually combining the observations from the two modalities

may lead to an even more refined subtyping of the CRC. However,

this would probably involve a more supervised (by expert patholo-

gists) construction of the image-based models.

As they stand now, our results are clearly supporting the possi-

bility of translating some molecular observations into image-based

models, as it is the case of molecular subtypes. These results are rein-

forced by similar observations made by an expert pathologist

(Budinsk�a et al., 2013), where several tissue architectural patterns

could be linked, in a supervised analysis, to the molecular subtypes.

It is interesting to note that some of the regions/patterns found rep-

resentative in our data-driven analysis are also visually similar to

those hand-picked by an expert (see example images in Budinsk�a

et al., 2013). On the other hand, the intra-tumoral heterogeneity

and pathology sampling region clearly influence sample’s assign-

ment to a molecular subtype (Dunne et al., 2016). In the light of the

results presented here, it can be imagined an image-analysis ap-

proach to the delineation of the tissue sampling regions to improve

the stability of the subtype assignment.

While it is too early for considering any clinical application of

the models described here, they could, however, be used for index-

ing/annotating or for retrieval of samples of interest from archives.

Consider the situation in which one would like to test for some bio-

marker which is hypothesized to work in one or several subtypes on

a retrospective collection of samples. Since determining the molecu-

lar subtypes relies on profiling hundreds of genes, it makes more

sense to use a classifier such the one proposed here, to select the

most promising samples. And this can be implemented without sig-

nificant effort since more and more of the pathology departments

are adopting the digital pathology workflows, thus the images being

readily available.
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Abstract Heterogeneity of colorectal carcinoma (CRC) represents a major hurdle towards 
personalized medicine. Efforts based on whole tumor profiling demonstrated that the CRC molec-
ular subtypes were associated with specific tumor morphological patterns representing tumor 
subregions. We hypothesize that whole-tumor molecular descriptors depend on the morpho-
logical heterogeneity with significant impact on current molecular predictors. We investigated 
intra-tumor heterogeneity by morphology-guided transcriptomics to better understand the links 
between gene expression and tumor morphology represented by six morphological patterns 
(morphotypes): complex tubular, desmoplastic, mucinous, papillary, serrated, and solid/trabecular. 
Whole-transcriptome profiling by microarrays of 202 tumor regions (morphotypes, tumor-adjacent 
normal tissue, supportive stroma, and matched whole tumors) from 111 stage II-IV CRCs identified 
morphotype-specific gene expression profiles and molecular programs and differences in their 
cellular buildup. The proportion of cell types (fibroblasts, epithelial and immune cells) and differenti-
ation of epithelial cells were the main drivers of the observed disparities with activation of EMT and 
TNF-α signaling in contrast to MYC and E2F targets signaling, defining major gradients of changes 
at molecular level. Several gene expression-based (including single-cell) classifiers, prognostic and 
predictive signatures were examined to study their behavior across morphotypes. Most exhibited 
important morphotype-dependent variability within same tumor sections, with regional predictions 
often contradicting the whole-tumor classification. The results show that morphotype-based tumor 
sampling allows the detection of molecular features that would otherwise be distilled in whole tumor 
profile, while maintaining histopathology context for their interpretation. This represents a practical 
approach at improving the reproducibility of expression profiling and, by consequence, of gene-
based classifiers.
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eLife assessment
This study presents a valuable finding on the putative molecular patterns underlying characteristic 
morphological regions observed in colorectal cancer (CRC). The authors provide a morphological 
framework through which clinicians might improve the performance of molecular signatures and 
consequently predict the clinical response of patients with better accuracy. The evidence supporting 
the claims of the authors is solid. The work will be of interest to clinicians and cancer biologists 
working in the field of CRC.

Introduction
Colorectal cancer (CRC), the third cause of death among cancer patients, is a highly heterogeneous 
disease, with a slow initial progression that favors the accumulation of mutations leading to a complex 
phenotype. Differences that exist both between and within tumors of the same cancer type are a major 
hurdle towards proper treatment selection and for developing more targeted therapies. Depending 
on the perspective under which these differences are investigated, various categorization paradigms 
have emerged. The systematization of clinical and histopathological parameters led to the definition 
of current TNM staging system (Amin, 2017), which presently constitutes the gold standard for diag-
nosis and prognosis. The development of high throughput molecular technologies brought a novel 
perspective and set the stage for the appearance of molecular taxonomies categorizing the tumors 
into subgroups sharing common molecular traits (Perez-Villamil et al., 2012; Budinska et al., 2013; 
Marisa et al., 2013; De Sousa E Melo et al., 2013; Sadanandam et al., 2013; Roepman et al., 2014) 
with consensus molecular subtypes (CMS)(Guinney et al., 2015) representing their common denomi-
nator. While these studies were based on whole-tumor (bulk) gene expression data, the developments 
in single-cell sequencing further refined the CMS classes adding two intrinsic epithelial subtypes 
(iCMS2/3) to the picture (Joanito et al., 2022). Other studies combined genomics and transcriptomics 
data and an alternative classification emerged (Muzny et al., 2012).

Whole transcriptome expression profiling of tissue sections is generally performed on RNA 
extracted from regions of interest covering diverse cell collections. By consequence, the expression 
levels associated with various transcripts represent, in the end, a weighted mean of contributions of 
each cell type, being driven by the most abundant ones. The signals from less abundant cell types are 
reduced or even silenced and are, therefore, overlooked. In the case of solid tumors, this approach 
requires a representative region, enriched in tumoral cells, to be selected in the tissue section(s) and 
used for RNA extraction. This is the predominant approach to tissue expression profiling that fueled 
the myriad of studies over the last two decades and led to significant progress in understanding the 
various cancers. Newer technologies such as single cell sequencing and spatial transcriptomics allow 
for a much finer selection of cells to be interrogated (Tang et al., 2019; Rao et al., 2021). However, 
while powerful, these techniques rely on fresh tissue and have still to find their place in routine clinical 
practice.

The importance of a morphological perspective on the molecular classification has been acknowl-
edged from the beginning, Jass, 2007 already identifying several morphological features associated 
with the five groups proposed (e.g. serration, mucinous and poor differentiation were highly present 
in two of the five groups), but also noted that these features were not sufficient for predicting the 
groups. Later, Budinska et al., 2013 proposed six morphological patterns (morphotypes) as major 
histological descriptors and showed that a two-tier histological score is strongly associated with the 
five molecular subtypes identified. Interestingly, a pure data-driven image-based classifier for the 
same molecular subtypes resulted in selecting remarkably similar morphological motifs (Budinska 
et  al., 2016; Popovici et  al., 2017). Müller et  al., 2016 reviewed the TCGA and CMS subtypes 
and their links with some morphological aspects, most notably the serrated phenotype. It is worth 
mentioning that in all these cases the evaluation of the morphological features referred to the whole 
tumor section; for example, a tumor was considered of mucinous morphology if the mucinous pattern 
was present in more the 50% of the tumor region, in accordance with standard definitions endorsed by 
the World Health Organization (Bosman, 2010). These links between tumor morphology and molec-
ular features also imply that the gene expression profile may depend on the tumor region sampled for 
RNA extraction. The sensitivity of gene-based classifiers to tumor sampling raised concerns regarding 

https://doi.org/10.7554/eLife.86655
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the stability of consensus molecular subtypes (Dunne et al., 2016) and may partially explain the low 
proportion of biomarkers that reach clinical relevance (Stewart et al., 2017).

It is evident that, while intra-tumoral heterogeneity is recognized as a major challenge, we still lack 
the practical tools for its characterization that would easily translate into a diagnostic and predictive 
model. In contrast with previous results, in our study we explored region- (morphotype-) based tran-
scriptomics approach as a possible solution to this problem. This method offers a trade-off between 
whole-tumor profiling and spatial transcriptomics. It has a better signal resolution than whole-tumor 
profiling, since it selects tumor regions with more similar cellular buildup, and covers the whole tran-
scriptome, but clearly has a much lower spatial resolution than true spatial transcriptomics. However, 
it represents a practical approach where several regions of interest can be stably identified, and their 
profiling could be easily integrated in the current molecular pathology diagnostic practice.

Building on our previous results (Budinska et al., 2013), we based our study on a detailed explo-
ration of the transcriptome of the six morphotypes identified earlier as associated to the molecular 
subtypes of CRC: complex tubular (CT), desmoplastic (DE), mucinous (MU), papillary (PP), serrated 
(SE) and solid/trabecular (TB), respectively. As reference, we also profiled several tumor-adjacent 
normal (NR) and supportive stroma (ST) regions. The present study was based on a single center 
cohort and was designed to achieve several goals: (i) identifying representative samples for each of 
the morphotypes, (ii) providing a comprehensive characterization of their transcriptomics landscape, 
and (iii) studying the intra-tumoral heterogeneity from the perspective of morphotype-resolved tran-
scriptomics. We characterized the morphotypes from several transcriptional angles: basic molecular 
programs as captured by differential expression and pathway analyses, molecular tumor classifiers and 
prognostic gene signatures. At the same time, we looked for variations both across all tumors and 
across matched samples (within tumors). The emerging picture is of an unexpectedly high heteroge-
neity, with clear implications both from fundamental biological and practical perspectives, opening 
new avenues for biomarker design.

Results
Data
From n=111 unique cases of primary CRC tumors (stages: II: 59, III:32, IV:20), n=202 regions were 
macrodissected representing either tumor morphological regions (n=149), tumor-adjacent normal 
tissue (NR, n=17), supportive stroma (ST, n=8), or whole tumor (n=28), respectively. Among the tumor 
morphological regions, n=126 ‘core samples’ were identified based on ‘morphological purity’, indi-
cating regions containing at least 80% of a unique morphological pattern. The six morphotypes of 
interest (Figure 1) consisted of (in brackets the additional non-core samples) 41 (+11) CT, 13 (+2) 
DE, 18 (+3) MU, 10 (+2) PP, 33 (+7) SE, and 9 TB samples, respectively. The distribution of associated 
main clinical parameters is given in Supplementary file 1. The only statistically significant associa-
tions found were between MU or TB and grade 3 tumors, and SE and lower grade tumors (p=0.019, 
Supplementary file 2), respectively.

To complement the results presented here, we created a web application https://morphogene.​
recetox.cz allowing the interrogation of gene expression in various morphological regions.

Morphotype cellular admixtures
The transcriptomic profile of solid tumor sample is a mixture of gene expression profiles of indi-
vidual cell types and their specific programs, including cancer cells at different levels of differentiation, 
specific immune cells, or supportive fibroblasts. As a first step, we performed in-silico deconvolution 
of the expression profiles to identify the most prevalent cell types in each of the morphotypes and 
GSEA to score cell-type-specific gene sets (see Materials and methods) in each morphotype, and NR 
and ST regions (used as controls, Figure 2, Supplementary files 3–4).

The results from ESTIMATE indicated, as expected, a high stromal content for ST, DE, and MU 
and a high epithelial tumor cell content for normal region and TB and SE morphotypes, respectively 
(Figure 2A). A more balanced situation was observed for CT and PP morphotypes (similar to NR). This 
agreed with the (stroma-related) ‘Isella signatures’ (Isella et al., 2015) where ST, DE, and MU were 
enriched in endothelial cells, CAFs and immune cells (Figure 2B). When investigating the categories 
of epithelial cells, the signatures of top of the normal colon crypt cells (Kosinski et al., 2007) and 

https://doi.org/10.7554/eLife.86655
https://morphogene.recetox.cz
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colon differentiated epithelial cells (Merlos-Suárez et al., 2011) were enriched solely in NR regions, 
while DE, MU, CT, SE, and TB were depleted in these cell types (Figure 2B). On the other hand, 
MU, CT, PP, and TB regions expressed genes specific for the basal crypt cells (Kosinski et al., 2007) 
and ST, DE, and MU were enriched in signatures of intestinal stem cells. These observations are in 
perfect agreement with the definition of the morphotypes and confirm the proper selection of the 
samples. quanTIseq revealed that all tumor morphotypes were enriched in M1 macrophages (with 
maximal presence in MU and DE), while M2 macrophages, NK cells and myeloid dendritic cells where 

Figure 1. Morphological patterns and their distribution in the dataset. (A) The six CRC morphological patterns of interest (morphotypes). Left: example 
of an original annotation used for macrodissection and RNA extraction. Note that the original annotations in the image are not identical to the ones 
used in the main text. Here, A-SE stands for serrated (SE) in the text, B-DE for desmoplastic (DE) in the text, C-MUC for mucinous (MU) in the text, and 
D-ST for solid/trabecular (TB) in the text, respectively. Also, N indicates a tumor-adjacent normal epithelial region and S a supportive stroma region, 
respectively. Right: examples of morphotypes – complex tubular (CT), desmoplastic (DE), mucinous (MU), papillary (PP), serrated (SE), and solid/
trabecular (TB). (B) Morphotype distribution per case (unique tumor) and intersections thereof: some cases had several morphotypes profiled.

https://doi.org/10.7554/eLife.86655
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highly present in supporting stroma and tumor-adjacent normal regions (Figure 2C). Additionally, TB 
morphotype had the lowest scores for regulatory T cells (TREGs) and B cells.

Further we refined the morphotype cell admixtures by testing signatures of different cell types 
and their active programs as derived from single-cell sequencing studies. We evaluated more than 
150 signatures of stromal, epithelial, and immune cell population (supplemental tables of Pelka 
et al., 2021) and cancer associated fibroblasts (CAFs) (Khaliq et al., 2022; Kieffer et al., 2020) (see 
Supplementary files 3–4 for full signatures). Interestingly, the morphotypes differed in the signatures 
of CAFs subpopulations (Figure 2D). ST, MU, and DE had high GSEA scores of most of the CAFs 
subpopulations, while the rest (CT, PP, SE, and TB) had mostly negative scores, indicative of depletion 
of corresponding cell types. DE and MU were most strongly enriched in signatures of ECM-myCAF 
S1 – associated with immunosuppressive microenvironment and pro-metastatic functions (Kieffer 
et al., 2020) – and wound-healing myCAF S1 populations, while the adjacent stroma mainly showed 
signatures of normal fibroblasts, detox-iCAF S1 and IL-iCAF S1 populations, both characterized by 
detoxification and inflammatory signaling. NR regions were enriched only in normal fibroblasts and 
detox-iCAF S1. By exploring the signatures from Pelka et al., 2021, we observed even finer differ-
ences between morphotypes within all three cell type populations and their programs (Figure 2—
figure supplements 1–3). For instance, CT, TB, and SE had enriched pS04 (ribosomal) and pS12 
(proliferation) stromal cell signatures, in addition, CT and TB expressed pS05 (interferon-stimulated 
genes, ISGs) and pS21 (FOS, JUN) signatures. Also, NR had a specific enrichment in mitochondrial 
(pS09), metallothionein (pS16) and BMP-producing (pS17) fibroblasts. CT and TB resembled MU in 
expressing pS20 signature and, additionally, TB showed similar levels of pS13 (inflammatory) signa-
ture as MU and DE. ST regions and DE and MU morphotypes had significantly increased pS02 (​Fibro.​
matrix/​stem cell niche) signature. Full results for other cell types and programs are provided in the 
Supplementary file 4.

Figure 2. CRC morphotypes: in silico decomposition of the cellular admixture. (A) Boxplots of the tumor purity (epithelial content – ESTIMATE method) 
in each tumor morphotype and the two non-tumor regions, ordered by increasing median values. (B) Signatures specific to colon crypt compartments 
and major cell types estimated from gene expression data in terms of normalized enrichment scores (NES): only statistically significant scores are shown. 
(C) Immune cell fractions (and unassigned fractions) inferred from gene expression data using quanTIseq method. (D) Types of cancer-associated 
fibroblasts (CAFs) as estimated from gene expression using the signatures from Khaliq et al., 2022; Kieffer et al., 2020.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Epithelial signatures from Pelka et al., 2021.

Figure supplement 2. Immune signatures from Pelka et al., 2021.

Figure supplement 3. Stromal signatures from Pelka et al., 2021.

https://doi.org/10.7554/eLife.86655
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Table 1. Results of comparison of each morphotype (and the two non-tumoral regions) with the average profile.
The table shows the top 20 up- and down- regulated genes and significantly activated hallmark pathways and processes (as result of 
GSEA). The genes not significant after p-value adjustment (at FDR = 0.15) have their symbols greyed. See also Supplementary files 
5–6.

Morph
Top 20 up-regulated genes 
(compared to mean)

Top 20 down-regulated genes 
(compared to mean) Hallmark pathways with high score

Active processes (based on the 
active hallmark pathways)

MU

ARF4, MUC2, SULF1, FNDC1, LOXL1, 
LGALS1, ANTXR1, BGN, COL12A1, 
PALLD, MEG8, DKK3, ACVR1, GPX8, 
CALD1, FBN1, MLLT11, CSRP2, 
TUSC3, GREM1

TIMD4, PRELID3BP3, EREG, KDM4A, 
CCDC175, TDP2, CHMP1B2P, ACE2, 
NLRP7, UGT2A3, SLC26A3, A1CF, 
TSPAN6, CLDN10, TMIGD1, BMP5, 
MS4A12, FAM3B, CLCA4, MEP1A

EMT, TNF a signaling via NFKB, 
Complement, IL2 STAT5 signaling, 
hypoxia, inflammatory response, KRAS 
signaling, UV response, myogenesis, 
coagulation, apical junction, allograft 
rejection, IL6 JAK STAT3 signaling, 
interferon gamma response, apoptosis, 
TGF-beta signaling, angiogenesis, 
hedgehog signaling, estrogen response 
early, NOTCH signaling, WNT beta 
catenin signaling, cholesterol homeostasis

Inflammation, neoangiogenesis, 
increased metastatic potential, 
apoptosis, development

DE

OLFML2B, INHBA, LUM, SULF1, 
PTPN14, PRDM6, SPOCK1, RDX, 
EDNRA, COL12A1, CTHRC1, PRRX1, 
LGALS1, COPZ2, COL10A1, TNFAIP6, 
IGFL1P1, ST6GAL2, FAP, BGN

SLC17A4, ANPEP, DEFA5, RAP1GAP, 
MRAP2, ADH1C, TRIQK, REG1A, 
SLC4A4, UGT2B15, REG4, SEMA6A, 
L1TD1, MS4A12, SI, SPINK4, CLCA4, 
MUC2, CLCA1, CA1

EMT, TNF a signaling via NFKB, 
Complement, IL2 STAT5 signaling, 
hypoxia, inflammatory response, KRAS 
signaling, UV response, myogenesis, 
coagulation, apical junction, apoptosis, 
TGF-beta signaling, angiogenesis, 
hedgehog signaling, estrogen response 
early

Inflammation, neoangiogenesis, 
increased metastatic potential, 
apoptosis

PP

PTPRD, KNDC1, MIMT1, UPK3B, 
MPZ, MMP15, CYP4F12, SNORD4A, 
SNAR-C3, TMTC4, LRCOL1, 
GATA5, SNAR-E, EPHA7, IPO4, 
SNAR-I, CASC21, NUTF2, SNAR-B2, 
RPL31P50

IGKV3-11, IGHV4-39, ANPEP, OR4F8P, 
HEPACAM2, ADAM28, CPS1, 
TMIGD1, NPY6R, ITLN1, SI, ADH1C, 
CAV1, MMP2, FDCSP, CLU, REG1A, 
RSPO3, PAX8-AS1, PALMD

MYC targets V1, MYC targets V2, E2F 
targets, KRAS signaling DOWN, WNT 
beta catenin signaling,

SE

PPAN-P2RY11, TUBB4BP7, JADE3, 
PFDN6, CLDN2, YAF2, BOLL, 
SLAMF9, SLC12A2, CCDC175, 
GRIN2B, TUBB3P2, GAPDHP71, 
RPS2P25, MAT1A, NOX1, 
SNORD12C, SMAD6, MECOM, 
EXTL2

IGKV2D-29, MYLK, TAGLN, 
CNTNAP3P2, GLI3, CPXM2, NR3C1, 
CNN1, PECAM1, COLEC12, IGKV4-1, 
IGKV2D-30, DPYD, CLU, TSHZ2, 
ADH1B, IL10RA, PDE7B, ABCA8, 
CDC42SE2

MYC targets V1, MYC targets V2, E2F 
targets, G2M checkpoint,

CT

TMEM97, RPL13, CLDN1, TFDP1, 
CKS2, CDCA7, TPX2, ANLN, 
RAD54B, KRT18, HSPH1, CCT6A, 
PLK1, TMEM97P2, CSE1L, MIPEP, 
SNORA71D, SNORA71C, PTTG1, 
PLBD1

CR2, OGN, SNORD114-21, 
SLC30A10, CLCA4, SNORD114-12, 
DCLK1, FAT4, CPA3, ADH1B, 
SLC26A2, SNORD114-20, SFRP1, 
ZG16, FGF7, SNORD113-1, ABCA8, 
B4GALNT2, MS4A12, CA1

MYC targets V1, MYC targets V2, E2F 
targets, G2M checkpoint, MTORC1 
signaling, unfolded protein response, 
Glycolysis, oxidative phosphorylation, fatty 
acid metabolism, protein secretion

Proliferation, Catabolism, oxidative 
stress, cell cycle disruption

TB

CKAP2, HSP90AA1, PPP3CA, REEP4, 
MSH6, TOP2A, HSPE1, PPP2R5C, 
TBCA, VRK2, NIFK, TXNL4A, MNAT1, 
ERI1, XPO1, VTRNA1-2, ANP32A, 
ARF6, RNF2, EIF4A1P7

FLJ22763, TMEM236, NPY6R, 
IGKV3D-20, IGKV2D-30, OLFM4, 
SELENBP1, LRRC19, CDHR1, IGHA1, 
SNORD123, SLC26A3, CXCL14, 
SLC3A1, SEMA5A, MS4A12, IGHA2, 
CLCA4, NXPE4, NXPE1

MYC targets V1, MYC targets V2, E2F 
targets, G2M checkpoint, MTORC1 
signaling, unfolded protein response, 
Glycolysis, oxidative phosphorylation, 
fatty acid metabolism, protein secretion, 
cholesterol homeostasis,

Inflammation, catabolism, apoptosis, 
oxidative stress, proliferation, cell 
cycle disruption

NR

PIGR, SLC26A3, ADH1B, NXPE1, 
IGHA2, CLCA1, JCHAIN, IGHA1, 
FCGBP, IGK, NXPE4, SLC9A2, MUC2, 
NR3C2, TMEM236, MS4A12, FABP1, 
IGLC3, IGKV1D-39, LRRC19

TACSTD2, FAM83D, ASPN, CXCL11, 
CTHRC1, SLC39A6, IFNE, SULF1, 
HSPH1, ELFN1-AS1, THBS2, CLDN1, 
SIM2, SLC22A3, SPARC, FN1, 
AHNAK2, COL11A1, SPP1, INHBA

Heme metabolism, bile acid metabolism, 
xenobiotic metabolism, fatty acid 
metabolism

ST

SFRP2, ADH1B, EMCN, STEAP4, 
ADAMTS1, ABI3BP, SPARCL1, DCN, 
PTGDS, PALMD, NOVA1, SLIT3, 
OGN, SERPINF1, RSPO3, CPA3, 
FBLN5, C3, EFEMP1, PBX3

FRK, AADACP1, CKS2, HOOK1, 
CLDN1, ANLN, S100P, UGT8, 
MACC1, EXPH5, CYP3A5, OCIAD2, 
SLC12A2, GK, EVADR, TMC5, REG4, 
TFF1, TCN1, CXCL8

EMT, TNF a signaling via NFKB, 
Complement, IL2 STAT5 signaling, 
hypoxia, inflammatory response, KRAS 
signaling, UV response, myogenesis, 
coagulation, apical junction, allograft 
rejection, IL6 JAK STAT3 signaling, 
interferon gamma response

Inflammation, neoangiogenesis, 
increased metastatic potential

https://doi.org/10.7554/eLife.86655
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CRC morphotypes and molecular programs
The molecular programs and pathways represented in MSigDB were scored by performing GSEA on 
differentially expressed genes (DEGs) in all morphotypes (and NR and ST).

For the first analysis, the ordered lists of DEGs per morphotype were obtained by contrasting 
the individual expression profiles to the average profile of pooled samples (Supplementary file 5 
contains all DEGs). This allowed the identification of all molecular programs significantly de-/activated 
in each morphotype (Table 1, Figure 3; Supplementary file 6). When considering only the hallmark 
signatures (H collection), the discriminative gradients between the morphotypes (and NR and ST) 
were along the EMT and TNF-α signaling axes at one end, and the MYC and E2F targets at the other 
end (Table 1, Figure 3A). Desmoplastic and mucinous shared active pathways involved in immune 
system response (TNF-α signaling via NF-κB, interferon gamma response, complement, IL2-STAT5 
signaling), neoangiogenesis, and increased metastatic potential (EMT, coagulation, TGF-β, NF-kB, 
NOTCH, Apical junction). At the other end of the spectrum, CT and TB morphotypes had activated 
major pathways involved in proliferation processes (P53, MTORC 1, Myc targets, G2M checkpoint, 
Mitotic spindle, NOTCH signaling, Protein secretion). In contrast with CT, TB morphotype shared 
with MU and DE active TGF-β signaling, apoptosis, and most pathways involved in immune system 
response. PP and SE morphotypes had activated MYC and E2F targets, with PP morphotype exhib-
iting downregulation of the KRAS signaling and upregulation of the WNT-β catenin signaling.

We performed principal component analysis (PCA) of the GSEA scores of hallmark pathways. Their 
projection onto the first two principal components revealed a specific bi-dimensional clustering of the 
morphotypes and illustrated the gradient of changes between morphotypes (Figure 3B, Figure 3—
figure supplement 1). At one end, MU and DE shared the same region in PCA space with positive 
coordinates on the axis defined, among others, by EMT, inflammatory response, and UV response. 
At the same time, they had opposite projections on the second axis of variation, defined by p53, 
unfolded protein response and cholesterol homeostasis. In contrast, SE and PP shared the same quad-
rant with negative coordinates on the first axis, but positive on the second axis. The CT and TB fell 
between the two previous groups with respect to the first axis of variation, while having similar acti-
vations of pathways defining the principal components. Overlaid on top of the transcriptomics layer, 
an additional gradient could be observed: epithelial cell differentiation. Indeed, while SE, PP, and CT 
were well or moderately differentiated, TB, DE and MU had low or undifferentiated morphology.

Figure 3C shows heatmap of median expressions of all top 5 up- and down-regulated genes of 
each morphotype with respect to the average profile (full lists in Supplementary files 5–6). A second 
analysis identified morphotype-specific processes and pathways by GSEA of differentially expressed 
genes between each morphotype and all other five (excluding ST and NR) (Supplementary files 7–8).

Several macrodissected regions originated from the same section allowing for paired comparison 
of morphotypes. While the reduced number of such pairs (MU vs SE: 8 pairs, DE vs SE: 7, CT vs DE: 5, 
and CT vs MU: 5, respectively) impacted the statistical power, we were able to identify genes differ-
entially expressed (after p-value adjustment) in all but MU vs SE, indicative of regional differences 
(Supplementary files 9–10). The differences between gene expression signatures from the matched 
paired comparisons were in line with those from comparisons not accounting for sample pairing, 
indicating that the morphotype specific effect was dominating the contrasts (see Figure 3—figure 
supplement 2).

We also performed comparison between all pairs of morphotypes (Supplementary files 11–12). 
This comparison shows that, despite similar content in terms of fibroblasts or epithelial cells (discussed 
above), there are still differences both in terms of differentially expressed genes (Supplementary file 
11) and activated molecular programs (Supplementary file 12) between DE and MU, on one side, 
and CT, PP, SE, and TB. These results refine those presented above and allow an ordering of morpho-
types in terms of relative activation of pathways. For example, KRAS signaling appears to be highest 
in PP, followed by CT.

Morphotypes and molecular subtypes
The molecular subtyping taxonomies of CRC were derived from datasets representing profiles of 
whole tumor sections, therefore aggregating the expression of many cell types. In our previous 
work (Budinska et al., 2013), we associated molecular subtypes with morphotypes assessed on the 
whole tumor and hence we were interested to see how this observation translated to the case of 

https://doi.org/10.7554/eLife.86655
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Figure 3. Top differentially expressed genes and hallmark pathways. (A) GSEA scores for hallmark pathways in the six morphotypes and two non-
tumoral regions. Only pathways with statistically significant scores are shown. (B) Principal component analysis of hallmark pathways: the median profiles 
of the six morphotypes (CT: complex tubular, DE: desmoplastic, MU: mucinous, PP: papillary, SE: serrated, and TB: solid/trabecular) and the two non-
tumoral regions (NR: tumor-adjacent normal and ST: supportive stroma) are projected onto the space defined by first two principal components (74% of 
the total variance). The top pathways contributing to the principal axes are shown as well. See also Figure 3—figure supplement 1. (C) Heatmap of top 
5 up- and down-regulated genes for each of the six morphotypes.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Principal component analysis of hallmark pathways GSEA scores: loadings for the first two principal components, i.e., 
contribution of pathways to the first two axes.

Figure supplement 2. Hallmark pathways differential activation between pairs of morphotypes.

https://doi.org/10.7554/eLife.86655
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macrodissected morphological regions. We predicted both the consensus (CMS) (Guinney et  al., 
2015) and intrinsic (iCMS) (Joanito et al., 2022) molecular subtypes.

All ST regions were predicted as CMS4, and 82.4% of NR regions as CMS3. For the morphotypes, 
the predictions were more distributed across subtypes: DE and MU were most often assigned to 
CMS4 (63.6% and 58.8%), PP, SE, and CT to CMS2 (62.5%, 41.7% and 41.9%) and TB to CMS1 (80%; 
Figure 4A, Figure 4—figure supplement 1). More importantly, this heterogeneity was also observed 
intra-tumoral, with regions within the same tumor section being assigned to different subtypes 
(Figures 4A and 5, Figure 5—figure supplements 1 and 2).

In contrast, intrinsic molecular subtypes (iCMS2/3) were much more stable, most of the time all the 
morphotypes within a tumor sharing the same iCMS label (Figure 4B, Figure 4—figure supplement 
1) and agreeing with the whole-tumor assignment. NR, MU, TB, and ST regions were classified most 
of the time as iCMS3 (100%, 94,4%, 71.4%, 66.7%), while PP, CT and DE were predominantly classified 
as iCMS2 (77.8%, 70.3%, 66.7%). The serrated morphotype was almost equally assigned to each of 
the iCMSs (iCMS2: 58%, iCMS3:42%).

Figure 4. Intra-tumoral heterogeneity and the morphotypes (for all core samples, including those unassigned by the classifiers). Only cases with at 
least two distinct morphotypes present are shown. (A) Left: CMS assignment for tumors represented by multiple regions. Right: CMS assignment 
per morphotype (and two non-tumoral patterns). (B) Left: iCMS assignment for tumors represented by multiple regions. Right: iCMS assignment per 
morphotype (and two non-tumoral patterns). (C) Differences between paired signatures: morphotypes vs whole tumor (each signature was normalized 
to [0,1] prior to computing the differences). Only four (morphotype, whole tumor) pairs were represented enough in the data. (D) Boxplots for the ten 
(normalized) signatures across morphotypes. The ‘Eschrich’ and ‘Jorissen’ signatures vary significantly (Kruskal-Wallis’s test) across morphotypes. For 
equivalent plots for all samples, including non-core, see Figure 4—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Molecular subtypes and morphotypes in all samples, including non-core samples.

https://doi.org/10.7554/eLife.86655
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Prognostic and predictive gene-based signatures
The morphotypes generally differed in terms of score distributions, with two signatures reaching 
statistical significance (Kruskal-Wallis’s test: Eschrich p=0.0228, Jorissen p=0.00085, Figure 4C–D). A 
more pronounced variability was observed when comparing tumor regions to matched whole tumor, 
with amplitude of the differences (region vs whole tumor) larger than 50% of the whole tumor score in 
some cases (Figure 4C). Figure 5 shows a case study with three different morphological regions (CT, 
MU, SE) which manifest rather large deviations from the whole tumor-based risk scores for most of the 
prognostic signatures (see also Figure 5—figure supplements 1 and 2).

Figure 5. Intra-tumoral heterogeneity case study. For the same case, different CMS labels are assigned to regions and whole tumor profile. The hallmark 
pathways show various levels of activation (as computed by GSVA) within same section. The relative change in prognostic scores indicate potential 
underestimation of risk for some signatures, while others appear to be stable across tumor. See also Figure 5—figure supplements 1 and 2. Note that 
in the pathology section image, the original annotations were preserved, and they are not identical to the ones used in the main text. Here, MUC stands 
for mucinous (MU) in the text. Also, N indicates a tumor-adjacent normal epithelial region and S a supportive stroma region, respectively.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Intra-tumoral heterogeneity additional case study.

Figure supplement 2. Intra-tumoral heterogeneity additional case study.

https://doi.org/10.7554/eLife.86655
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The predicted resistance/sensitivity to different therapeutics varied across morphotypes: MU resis-
tance to gefitinib; DE sensitivity to azaticidine, dasatinib, and aplidin, and resistance to tamoxifen 
and gefitinib; PP resistance to cantharidin, SE resistance to aplidin, CT sensitivity to alkylating agents 
(Figure 6). The differences were observed even within tumor (Figure 5), with some of the suppos-
edly sensitive tumors (whole tumor scoring) having regions of predicted resistance (Figure 6—figure 
supplement 1).

Discussion
The analysis of the morphotypes from transcriptomics perspective is meant to bridge the histopa-
thology and gene expression. The present exploratory study was motivated by our earlier observa-
tions linking the morphological aspects of CRC to the molecular subtypes (Budinska et al., 2013). The 
original observations semi-quantitatively scored the morphotypes as primary or secondary dominant 
in the whole tumor section and showed that subtype A (corresponding to CMS3) was enriched in 
PP and SE morphologies, subtype B (corresponding to CMS2) in CT morphology, subtype C (corre-
sponding to CMS1) in MU and TB morphologies, and, finally, subtype D (CMS4) in DE/stromal reaction 
(Budinska et al., 2013). In contrast, here we focused on tumor regions rather than whole tumor, which 
also allowed the characterization of the intra-tumor heterogeneity.

The results show a whole landscape of changes at gene and pathway levels, with morphotypes 
residing on a continuum space of molecular descriptors. The analysis of hallmark pathways and 

Figure 6. Normalized enrichment scores from GSEA for selected resistance signatures (from C2 section of MSigDB). Only significant scores are shown.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Resistance scores (GSVA) per patient and morphotype for cases where the whole–tumor prediction is contradicted by some 
regional score.

https://doi.org/10.7554/eLife.86655
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selected signatures combined with in silico deconvolution of cellular admixtures served two purposes. 
First, to confirm that the samples exhibit known properties (e.g. TB, SE, and PP have high tumor 
epithelial cell content, and DE and MU are enriched in fibroblasts; molecular EMT signature is high in 
MU and DE, but low in CT and SE, etc.), thus ensuring proper quality of the data. Second, it served to 
refine the characterization of the morphotypes and sketching their ‘molecular portraits’. The morpho-
types investigated had a fluid characterization from a transcriptomics perspective, with many pairwise 
similarities and some striking differences. Even from a strict histopathology perspective, it was diffi-
cult, if not impossible, to clearly distinguish the separation between adjacent morphological regions 
therefore a certain degree of contamination between morphotypes was to be expected. Neverthe-
less, the enrichment in specific cell types and states allowed the identification of characteristic molec-
ular features.

MU and DE morphotypes (previously associated with CMS1 and CMS4, Budinska et al., 2013), as 
expected, exhibited high score of genes up-regulated in colon fibroblast TGF-β signaling pathway, 
genes associated with high tumor stromal content, CAFs and endothelial cells as well as pathways 
involved in immune system response. The detailed analysis of CAFs in fibroblast-rich regions (DE, MU, 
and ST) based on signatures derived from single cell sequencing studies (Pelka et al., 2021; Kieffer 
et al., 2020) revealed some finer differences: the supportive stroma (ST) region had the complete 
panel of fibroblast tested, while DE and MU most notably missed the ‘normal CAFs’. The main differ-
ence between DE and MU appeared to be that former was enriched in CAFs associated with inflam-
matory response (IL-iCAF), all the other CAFs being present at similar levels. The other morphotypes 
were either significantly depleted in fibroblast signatures or their GSEA scores were not statistically 
significant. Deconvolution of immune cell fractions by quantiSeq showed enrichment of DE and MU in 
M1 macrophages. Given the involvement of CAFs in modeling the tumor microenvironment through 
ECM remodeling, angiogenesis promotion and immune system regulation (Desbois and Wang, 
2021), our results support the idea of scoring separately the stromal component by either molecular 
or histopathology descriptors, in addition to tumor regions themselves. Even though DE and MU (and 
ST) also had the highest scores for the molecular EMT signature, our observations rather support the 
description of CMS4 as stromal/desmoplastic subtype than ‘true’ mesenchymal, in agreement with 
(Loughrey et al., 2021). Further, the poor prognostic associated with CMS4 could be explained by 
the stromal component: both (Roseweir et al., 2020) and (Ten Hoorn et al., 2022) agree that a high 
stromal invasion/desmoplastic reaction is prognostic of shorter time to relapse.

CT morphotype represents a classic adenocarcinoma and is one of the most common morphologies. 
In our previous study (Budinska et al., 2013), this morphotype was associated mainly with subtype B 
(vastly overlapping with CMS2). TB morphotype seems to be mostly representative of higher-grade 
tumors and was associated with CMS1. In contrast to NR, CT and TB showed significant enrichment of 
signatures of normal colon basal cells. From the molecular perspective, CT together with TB had both 
activated major pathways involved in proliferation processes. TB, in addition, resembled MU and DE 
morphotypes by sharing active TGF-β signaling, apoptosis, and active immune system response. SE 
and PP morphologies may be indicative of a different oncologic pathway – the ‘serrated pathway’ (De 
Palma et al., 2019). The two morphologies share common features like well to moderately differen-
tiated, with low stromal content and crypt structure still preserved. From a molecular perspective, we 
found that both SE and PP were both distributed similarly across molecular subtypes (both CMS and 
iCMS) and had similar activation of hallmark pathways: EMT, IL2/STAT5, IL6/STAT3, KRAS signaling 
all being down-regulated, while MYC targets being up-regulated. Among the hallmark pathways, 
androgen response, heme metabolisms and IL6/STAT3 (all silenced), appeared to be specific (and 
statistically significant) to SE and PP.

Given the relatively small sample size and similarities already observed between the morphotypes, 
it came as no surprise that the lists of differentially expressed genes, morphotype-specific, were gener-
ally short (for FDR ≤0.15). Nevertheless, literature search of the genes on top of these lists showed 
importance of these genes in CRC development, progression, EMT transition or response to therapy. 
For CT, the top gene was PIP5K1B which was related to PI3K/AKT signaling and seems to be involved 
in colorectal cancer development (Zhang et al., 2019). TB had the most differentially expressed genes 
(n=662) in comparison with all other morphotypes, with top genes including FBXO5 – prognostic of 
shorter time-to-relapse in various cancers (Liu et  al., 2022), FLRT3 – a proapoptotic gene which, 
when overexpressed, inhibits EMT (Yang et  al., 2022), SETSIP – gene coding chromatin-binding 

https://doi.org/10.7554/eLife.86655
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protein capable of participating in fibroblast reprogramming and differentiation into epithelial cells 
(Margariti et al., 2012), E2F7 – up-regulated by p53 in response to DNA damage (Carvajal et al., 
2012), CXCL14 (downregulated) - depending on the cell of origin can have both tumor suppressive 
or supporting role (Westrich et al., 2020), SEMA5A (downregulated) gene – proposed as prognostic 
marker in CRC (Demirkol et al., 2017). Among top overexpressed genes specific to MU morphotype 
we found FGF7 (fibroblast growth factor 7) whose disrupted signaling was associated with deregula-
tion of cell differentiation (Patel et al., 2019), and MUC2 (intestinal mucin) whose downregulation has 
been suggested a marker of adverse outcome (Betge et al., 2016). At the same time, MUC2 was also 
among the DE-specific genes, but downregulated, consistent with the observation that desmoplastic 
reaction is a marker of shorter relapse-free survival (Ueno et al., 2021). Still in DE, we found as top 
overexpressed genes PIEZO2 – a paralog of PIEZO1 which is involved in colorectal cancer metastases 
(Sun et al., 2020), SLIT3 – a member of the Slit/Robo pathway, a major regulator of several oncogenic 
pathways and potential therapeutic target (Gara et al., 2015), and OLFML2B – a potential biomarker 
for resistance to MEK inhibitors (Hu et al., 2022). SE morphotype had only one specific gene overex-
pressed at FDR ≤0.15, CCDC175. At the other end of the list, very interestingly, we found significantly 
downregulated gene for dihydropyrimidine dehydrogenase (DPYD) gene – the variants of which are 
predictive of 5-fluoruracil toxicity in adjuvant colon cancer treatment (Lee et al., 2014), GLIPR2 which 
participates in positive regulation of ERK1/2 cascade and EMT transition (Kang et al., 2012b), or the 
HOXA9A gene, the overexpression of which was suggested to contribute to stem cell overpopulation 
responsible for development of CRC (Osmond et al., 2022) or the GLI3 gene – that participates in 
sonic hedgehog (Shh)-Gli-mediated tumorigenesis and the loss of Gli3 signaling was shown to initiate 
cell growth inhibition in colon cancer cells, while sensitizing colon cancer cells to treatment with anti-
cancer agents (5-FU and bevacizumab) (Kang et al., 2012a). The only specific gene marker of the PP 
morphotype was the downregulation of MZP – myelin protein zero.

We also found significant differences between pairs of morphotypes, especially in terms of molec-
ular signatures/programs. These results reinforce the observations above and show that they are 
robust to the proportion of fibroblasts and/or epithelial cells present in the compared morphotypes.

In our collection, several cases were represented by several regions and an additional whole-tumor 
profile. Taking advantage of these matched samples, we investigated several molecular classifiers from 
an intra-tumor variability perspective as well. The CMS classification was less stable than iCMS, with 
whole tumor CMS class differing from at least one of the constituent morphological regions in about 
60% of cases (11 out of 18, excluding cases in which CMS class was not predicted; see Figure 5). 
Additionally, we tested several prognostic and predictive expression-based classifiers/signatures. The 
goal was not to compare them in terms of their predictive capabilities (the experimental design did 
not allow for such an exercise), but rather to have a clear picture of the extent to which the various 
morphotypes ‘distract’ these predictors. We found that all the prognostic signatures varied with the 
morphological regions with some striking cases in which the morphotype scores exceeded the corre-
sponding whole tumor scores by more than 50%. This observation suggests that, in some cases, the 
whole tumor-based predictions were too optimistic, the models failing to recognize higher risk cases. 
While these signatures were derived from whole-tumor expression profiles, their variability across 
tumor indicates the need for precise tumor sampling strategies.

Our exploratory study has, inherently, several limitations. The selection of cases may not represent 
the proportions of various morphotypes found in general population of CRC patients. Our selection 
tried to cover as many scenarios as feasible with a limited number of samples. Also, the tumor hetero-
geneity in terms of morphotypes cannot be estimated from these data since a single tissue block per 
tumor was considered. The reduced sample size in some of the paired comparisons within same tumor 
calls for further external validation. However, our results pave the way to future studies addressing 
these questions and others related to optimizing the tumor sampling strategy, for example.

We have analyzed the gene expression profiles of six morphotypes (and two peritumoral regions), 
building a comprehensive molecular picture of their salient features. The observed heterogeneity, 
especially intra-tumoral (Figure 5), calls for a finer resolution of the tumor sampling in profiling studies. 
Until spatial transcriptomics becomes integrated in routine clinical practice, using the morphotypes 
for anchoring the expression profiles is a feasible approach. Our study already provides indications 
of the molecular programs one would expect to find de-/activated in these regions, thus helping in 
designing future experiments. The implications for molecular classifiers are clear: it is necessary to 
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account for tumor morphology when designing new biomarkers. Given the sensitivity of many gene-
based classifiers to the tumor and stroma proportions in the samples, there is a need to adjust these 
classifiers to control for their relative proportions. This can be achieved by different means, and we 
presented an approach based on morphotypes.

From a molecular pathology practice perspective, the molecular descriptors found to vary across 
morphotypes may help in patient stratification and provide hints for further, more targeted investiga-
tions. Several questions call for further investigation: (i) how much of a tumor needs to be embedded 
to achieve a precise molecular diagnostic? and (ii) what precise tumor region(s) are needed for a 
molecular diagnostic? The morphotypes selected here may need further refinement and achieving 
consensus among pathologists regarding their exact definition, a point that could potentially be 
addressed by automatic image analysis approaches.

Ideas and speculation
Our analyses indicate that both prognostic and response to therapy signatures may predict more 
severe cases (shorter relapse free survival or resistance to therapy) when applied to subregions than 
to the whole tumor. This might be one of the reasons the said signatures may fail their real-world vali-
dation. Therefore, morphologically heterogeneous tumors need several sampling locations to provide 
a more sensible result. Sensitivity and cost analyses need to be performed to estimate the benefits of 
multi-regional sampling.

Further, the fact that we were able to identify specific molecular programs associated with the 
morphotypes calls for investigating the inverse problem as well, that is whether sufficiently discrim-
inatory features could be extracted for estimating the proportions of the morphotypes from whole 
tumor profiles.

Materials and methods
Samples
This retrospective cross-sectional study used tumor samples from patients with CRC who were exam-
ined at Masaryk Memorial Cancer Institute, Brno, Czech Republic in years 2002–2015. The study was 
reviewed and approved by the Committee for Ethics of Masaryk Memorial Cancer Institute, Brno, 
Czech Republic (number 2018/861/MOU). All patients gave written informed consent for the use of 
their biological samples for research purposes. Fundamental ethical principles and rights promoted by 
the European Union EU (2000/C364/01) were followed. All patients’ data were processed according 
to the Declaration of Helsinki (last revision 2013). Inclusion criteria for this study were: age >18 years, 
clinical and histopathologically confirmed diagnosis of primary CRC. Standard clinical and histopatho-
logical variables (TNM, grade etc.) were retrieved for all patients. Failure of laboratory analyses (prob-
lematic sample preparation, low quality and/or quantity of isolated RNA, low quality of expression 
data) was a reason for excluding these samples from the study.

Sample preparation
A total of 111 colon cancers (unique patients) were identified in the tumor archive of the Masaryk 
Memorial Cancer Institute and were assessed by two expert pathologists. Morphological regions of 
interest, representing complex tubular (CT), desmoplastic (DE), mucinous (MU), papillary (PP), serrated 
(SE) and solid/trabecular (TB) morphologies, respectively (see Figure  1), were digitally marked in 
scanned whole slide images (at 20 x magnification) and macrodissected for RNA extraction. Addi-
tionally, from several slides, tumor-adjacent normal (NR) and tumor-associated stroma (ST). Tumor 
samples with limited contamination of additional morphologies (<20%) were called ‘core samples’ and 
used morphotype molecular characterization. The labelling of the regions was repeated after 1 year 
to ensure a stable assignment. For n=28 cases, whole-tumor regions were macrodissected from the 
histology section immediately adjacent to the section used for morphological regions. Standard clin-
ical and histopathological variables were retrieved for most of the patients.

Gene expression profiling
The RNA extraction was performed from formalin-fixed paraffin-embedded histopathological slides 
using AllPrep DNA/RNA Kits (Qiagen, Hilden, Germany) according to their specific manufacturer’s 
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instructions. A few modifications were made to the protocol: FFPE slides (2x3 μm) were bathed in 
a solution to remove paraffin (3 x in xylene for 5 min and 3 x in ethanol for 5 min). Tumor tissue was 
spotted with 8 ul PKD puffer and collected from slides using a scalpel. Purification was done for total 
RNA, including small RNAs. For elution, 20 ul RNA free water (1 min. incubation) was used and then 
repeated with eluate. The extracted RNA served as input for a GeneChip WT Pico Reagent Kit (Thermo 
Fisher Scientific, Waltham, MA, USA) for analysis of the transcriptome on whole-transcriptome arrays. 
We selected the input amount from the recommended range according to the manufacturer’s instruc-
tions. Total RNA from HeLa cells provided in the kit was used as a positive control together with a 
high-quality low-concentration RNA isolated from a serum as a low input control. Clariom D Array for 
human samples (Thermo Fisher Scientific, Waltham, MA, USA) was used for target hybridization to 
capture both coding and multiple forms of non-coding RNA. Finally, the arrays were scanned using 
Affymetrix GeneChip Scanner 3000 7 G (Thermo Fisher Scientific, Waltham, MA, USA). The sample 
preparation and analysis were performed according to the manufacturer’́s instructions. The protocol 
included several control points in which the workflow was monitored. All the samples complied with 
the quality control requirements and none of the samples were excluded from the analysis.

The data generated in this study are publicly available in ArrayExpress under accession number 
E-MTAB-12599 (https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-12599).

Bioinformatics analyses
All resulting CEL files were processed using Bioconductor (RRID:SCR_006442) (Huber et al., 2015) 
(v.3.15) packages oligo (Carvalho and Irizarry, 2010) (v.1.60), affycoretools (v1.68) and, for Clariom 
D chip annotation, ​pd.​clariom.​d.​human (v.3.14). For the quality control we used AffyPLM (v.147) and 
imposed a maximal median Normalized Unscaled Standard Errors (NUSE) of 1.12. In all, n=202 passed 
all the quality control steps and were normalized together using RMA (oligo) with core-probeset 
summarization. Further, the array data was summarized at gene level by selecting the most variable 
probeset per unique EntrezID and entries corresponding to missing HUGO symbols, speculative tran-
scripts, and short non-coding RNA were discarded resulting in a reduced list of 27,302 unique genes. 
Batch effects were removed using ComBat (Johnson et al., 2007) from package sva (v.3.44.0).

For the identification of differentially expressed genes we used linear models (limma package 
v.3.52.2) with a cut-off for false discovery rate FDR = 0.15. The pathways were scored in terms of 
enrichment in specific signatures using gene set enrichment analysis (GSEA) (Subramanian et  al., 
2005) as implemented in fgsea package (v.1.22.0). For scoring the signatures in individual samples, we 
used gene score variation analysis (GSVA) (Hänzelmann et al., 2013) implemented in GSVA package 
(v.1.44.1). MSigDB (RRID:SCR_016863) (all collections: H, C1-8; v.7.4.1) (Liberzon et al., 2015) was 
used as the main source for gene sets and pathways. Additional cell type-specific gene sets, some 
derived from whole tumor others from single-cell sequencing studies, representing (i) cancer asso-
ciated fibroblasts (CAFs) (Isella et al., 2015; Pelka et al., 2021; Khaliq et al., 2022; Kieffer et al., 
2020) (ii) epithelial cells (Kosinski et al., 2007; Merlos-Suárez et al., 2011; Pelka et al., 2021), and 
(iii) immune cells (Isella et al., 2015; Pelka et al., 2021) were used (see Supplementary file 3 for full 
list). The consensus molecular subtypes were predicted using CMSCaller (Eide et al., 2017) (v.2.0.1) 
and the intrinsic epithelial subtypes (Joanito et al., 2022) using the signatures therein (P. Tsantoulis, 
personal communication, July 2022). The cellular mixture of various tumoral regions was explored 
computationally using quanTIseq (Finotello et al., 2019) (for immune cells) and ESTIMATE (Yoshihara 
et al., 2013) (for tumor purity/epithelial cells). The core samples were used for deriving the lists of 
differentially expressed genes, for gene set enrichment analyses and for in silico deconvolutions of cell 
populations. The analyses treating the samples independently were applied to all samples, including 
non-core.

Ten different survival/prognostic genomic signatures (full list in Supplementary file 13) were 
computed per-sample as (weighted, when weights were provided) means of signature genes, and 29 
sensitivity/resistance signatures selected from MSigDB/C2 were scored by GSVA.

All data analyses were performed in R 4.2 (R Development Core Team, 2022).
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Stool sampling and DNA isolation 
kits affect DNA quality and 
bacterial composition following 16S 
rRNA gene sequencing using MiSeq 
Illumina platform
Petra Videnska1, Kristyna Smerkova   1, Barbora Zwinsova1, Vlad Popovici1, 
Lenka Micenkova1, Karel Sedlar2 & Eva Budinska1

Many studies correlate changes in human gut microbiome with the onset of various diseases, mostly 
by 16S rRNA gene sequencing. Setting up the optimal sampling and DNA isolation procedures is 
crucial for robustness and reproducibility of the results. We performed a systematic comparison of 
several sampling and DNA isolation kits, quantified their effect on bacterial gDNA quality and the 
bacterial composition estimates at all taxonomic levels. Sixteen volunteers tested three sampling 
kits. All samples were consequently processed by two DNA isolation kits. We found that the choice 
of both stool sampling and DNA isolation kits have an effect on bacterial composition with respect to 
Gram-positivity, however the isolation kit had a stronger effect than the sampling kit. The proportion 
of bacteria affected by isolation and sampling kits was larger at higher taxa levels compared to lower 
taxa levels. The PowerLyzer PowerSoil DNA Isolation Kit outperformed the QIAamp DNA Stool Mini Kit 
mainly due to better lysis of Gram-positive bacteria while keeping the values of all the other assessed 
parameters within a reasonable range. The presented effects need to be taken into account when 
comparing results across multiple studies or computing ratios between Gram-positive and Gram-
negative bacteria.

The gut microbiome plays a key role in shaping human health and has been the subject of an increasing num-
ber of studies in the context of disease development, diagnostics and treatment. Important progress has been 
made especially in investigating uncultured bacteria, which constitute the main part of the gut microbiome 
and were previously difficult to characterize with standard techniques such as cloning, Sanger sequencing or 
Denaturing Gradient Gel Electrophoresis (DGGE)1,2. Next generation sequencing (NGS) provides new and more 
detailed means to study the human microbiome and helps uncovering its impact on the human immune system 
development3–5, or on the development of chronic diseases6,7. However, human microbiome is very dynamic 
and can change rapidly in response to many factors such as diet, antibiotic use, lifestyle or environment8–16. 
Many diseases were associated with a phenomenon called dysbiosis – microbial imbalance. Unfortunately, due 
to the huge microbiome variability it is very difficult to define a normality baseline for an individual. To extract 
disease-relevant information and generate new or confirm existing biological hypotheses, large cohort microbi-
ome studies are needed. These studies face multiple challenges with the microbiome sampling. First, successful 
compliance of participants with the established protocol demands both motivation and an easy sampling proce-
dure. Especially, sampling of the stool at home can induce a “yuck effect” and positive education and uncompli-
cated sampling workflow can significantly decrease the number of study drop-outs17,18.

Another major problem is the large variability of methodological approaches employed by different micro-
biome studies. The final composition of bacteria as assessed by sequencing the 16S rRNA gene is influenced 
by many factors: sampling method19–22, sample storage conditions20,22–29, DNA extraction8,21,22,26,30–39, primers 
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targeting different parts of the 16S rRNA gene40,41 and data analysis42. All of these factors may lead to the mis-
interpretation of changes in the microbiome and thus hamper direct comparisons of results between individual 
studies43–45. These technical problems, along with an as yet unknown gut microbiome diversity in the healthy 
population, lead to challenges in the implementation of metagenomics into cohort studies and, in consequence, 
delay the translation of the knowledge to clinical practice.

Most studies focused on the technical factors influencing the assessment of bacterial composition often pro-
vide only a description of the observed differences on a limited number of samples, while the comparison of the 
effect sizes of these factors, or combination thereof remains unexplored. The effect of sampling was previously 
described with respect to storage conditions (such as temperatures20,23,26,28,29, periods at room temperature20,24 or 
a presence and type of stabilizer19,21,22,27,28). None of these studies reported on the volunteers’ compliance or the 
differences in preprocessing steps specific to different sampling kits. Multiple studies describe the effect of stool 
homogenization prior DNA extraction25,46, but they only report its overall effect on the interindividual variation, 
without quantifying this effect at different bacterial taxon levels.

The DNA extraction method was highlighted as a critical factor influencing the observed bacterial compo-
sition39,47. Commercially available extraction kits use different lysis procedures such as enzymatic, chemical or 
mechanical bacterial cell disruption methods. Generally, the combination of enzymatic and mechanical disrup-
tion is recommended as more effective in the lysis of Gram-positive bacteria8,22,26,34,35,37,39. However, these DNA 
extraction comparison studies are limited to a rather small number of individuals (from 2 to 9) and none of them 
compared the kits in terms of DNA yield and quality, presence of PCR inhibitors, the human to bacterial DNA 
ratio, the efficiency of Gram-positive bacteria cell wall lysis and the observed bacterial composition at different 
taxa levels all at once.

The aim of our study was therefore to perform systematic assessment of effect of sampling and DNA isolation 
kits and their combinations on a full range of parameters of bacterial DNA quality, bacterial diversity and com-
position, with respect to user acceptance.

Results
We analyzed stool samples from sixteen volunteers. Each volunteer collected the samples from the same stool 
sample using three different sampling kits (SK): a stool container (SK1); a flocked swab (SK2) and a cotton 
swab (SK3). The DNA was extracted using two isolation kits PowerLyzer PowerSoil DNA Isolation Kit (PS) and 
QIAamp DNA Stool Mini Kit (QS) (see Methods), totaling 96 samples for the analysis.

Evaluation of user acceptance of the sampling kits.  The participants were asked to select the best and 
the worst kit based on their ease of manipulation including the time spent using it. All 16 volunteers selected the 
stool container as the easiest to use and 13 out of 16 (81.25%) volunteers indicated the flocked swab as the worst 
sampling kit. We believe that the manipulation with cotton and flocked swabs is uncomfortable due to the small 
size and the necessity to insert the swab stick back into the tube without touching the tube wall. On the contrary, 
the stool container is easy to manipulate even for people with reduced motoric skills. In addition, the flocked 
swab is designed for sampling of liquid samples and the solid stool samples do not adhere on its synthetic fibers.

The effect of sampling and DNA isolation kits on the bacterial gDNA quality.  DNA yield, purity 
and integrity.  Significantly higher DNA yields were obtained with the QS isolation kit, regardless of the sam-
pling kit used (q < 0.01) (Fig. 1, Supplementary Table S1). The median values of the A260/A280 ratio (the meas-
ure of purity of DNA) were well within the expected range (1.8–2) and did not differ significantly between the 
DNA isolation kits or between the sampling kits (Fig. 1, Supplementary Table S1).

The DNA integrity was determined using the GQN measure (on a scale from 1 to 10; low GQN indicates 
strongly degraded gDNA sample) and the proportion of short fragments (≤1500 bp; the larger the proportion 
the more degraded gDNA). We observed interaction effects of isolation and sampling kit for both DNA integrity 
measures. We found significantly lower proportion of short fragments when using the PS isolation kit (Fig. 1, 
Supplementary Table S1) and this difference was much larger when the stool container was used for sampling. 
There was no difference in GQN measure between the isolation kits when cotton or flocked swabs were used. 
However, for stool container samples, the QS kit provided much lower GQN values compared to the PS kit. These 
results point to worse DNA integrity for the QS isolation kit compared to the PS isolation kit mostly when stool 
container is used for sampling.

Presence of PCR inhibitors.  The presence of PCR inhibitors in the samples decreases the sensitivity of the PCR 
reaction and even can lead to the impossibility of amplification of the selected region of 16S rRNA. It is usually 
measured by median efficiency values estimated from inhibition plots. Ideally, the efficiency should be 100%, 
meaning the template doubles in each cycle. Usually, the efficiency within 90–110% range is considered accept-
able, where lower efficiency is caused by non-optimal reagent concentration or lower enzyme quality, while higher 
efficiency values are caused by the presence of PCR inhibitors. In our data, the efficiency values ranged from 
96.7% to 114.0% (Fig. 1, Supplementary Table S2). In each of the isolation/sampling kit combinations, there were 
minimum two samples which exceeded the efficiency of 110%. The efficiency values of all isolation/sampling kit 
combinations, except for stool container samples after DNA isolation with the QS kit, were significantly increased 
compared to control samples without PCR inhibitors (efficiencymed = 94.7%). No difference in efficiency values 
was observed between the isolation kits. The samples from stool containers (regardless of the isolation kit used) 
contained less PCR inhibitors in comparison to all other sampling/DNA isolation kit combinations (significantly 
lower efficiency, Supplementary Table S2). We hypothesize that this sampling kit effect is due to the sample dilu-
tion step prior to the DNA isolation step.
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Human to bacterial DNA ratio.  In all samples, the quantity of human DNA was lower than that of the bacterial 
DNA (ranging from 2947x to 221239x, median 29369x, see Fig. 1, Supplementary Table S2). No difference was 
found between sampling/isolation kit combinations in terms of human to bacterial DNA ratio, except for the 
increased ratio in the stool container compared to flocked swab samples after isolation with the QS kit (q = 0.03).

The effect of sampling and DNA isolation kits on bacterial diversity and composition.  Bacterial 
diversity.  In total, 96 stool samples were sequenced. The number of reads after quality filtering and removal of 
chimeras ranged from 27680 to 67809, with median of 46192. We assessed the bacterial diversity using the num-
ber of observed OTUs and the Chao 1 diversity metric (Fig. 1, Supplementary Table S1). Overall, both diversity 
measures were independent of the DNA yield in all sampling/DNA isolation kit combinations.

While there was no difference in Chao 1 measure between the isolation kits, the number of observed OTUs was 
significantly increased after isolation with the PS kit, but only for cotton swab samples (q-value = 0.029). When 
comparing diversity measures between the sampling kits within each isolation kit separately, the stool container 
resulted in significantly higher number of observed OTUs in both DNA isolation kits (Fig. 1, Supplementary 
Table S1). In addition, we observed significantly higher number of OTUs in flocked swab samples compared to 
cotton swab samples after DNA isolation with the PS kit (q-value = 0.04) and significantly lower number of OTUs 
in flocked swab samples compared to cotton swab samples after DNA isolation with the QS kit (q-value = 0.09). 
For the Chao 1 diversity metric, significant differences were found in stool container samples compared to flocked 
swab samples in both PS and QS isolation kits (q = 0.04 and q = 0.09, respectively).

Bacterial composition.  We identified 12,948 OTUs belonging to 13 bacterial phyla.
In order to quantify the effect of the sampling and isolation kits on bacterial composition, we performed mixed 

linear regression on each taxon that passed the filtering criteria (maximum abundance across all samples ≥1%) at 
all the seven taxonomical levels (phylum, class, order, family, genus, species, OTUs) separately. Interestingly, the 
proportion of taxa significantly affected by isolation or sampling kit differed between taxonomical levels (Fig. 2). 
The choice of sampling or DNA isolation kit affected 100% of taxa at phylum, class and order levels, and had 
decreasing trend from family to OTU level. The effects of sampling and isolation kits on the ten most abundant 
taxa at different taxa levels are summarized in Table 1 (see Supplementary Tables S3–S8 for complete results), the 
composition of significantly affected families is shown in Fig. 3. Overall, the choice of the isolation kit affected the 
abundance of more taxa than the choice of the sampling kit. In most of the cases where the taxa was affected by 
both factors, the p-values associated with the effect of the isolation kit were smaller than those of the sampling kit, 
indicating a more significant contribution of isolation kit to the overall model.

We hypothesized that the observed effect of the isolation kit was a result of different efficiency of the 
kit-specific bacterial cell walls lysis procedure. In this case, one of the kits would be more successful in isolating 

Figure 1.  Comparison of sample DNA quality and diversity using different sampling and isolation kits. 
(A) DNA yield and purity comparison. dthe samples were five times diluted prior the DNA extraction (see 
Methods); (B) DNA integrity comparison; (C) Presence of PCR inhibitors and human to bacterial DNA ratio 
comparison. Horizontal dotted line represents median efficiency value of the positive control; (D) Bacterial 
diversity comparison.
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Gram-positive (G+) bacterial species. The Table 2 shows the numbers of significantly affected G+ taxa in all taxo-
nomic levels and statistical pairwise comparison of their proportion after both isolation methods and all sampling 
methods. We found significantly higher proportions of G+ bacteria after the isolation using the PS kit at all the 
taxon levels. (96.4% to 100%, Table 2), compared to the QS isolation kit (G+ proportion varying from 0 to 44%). 
Similar observations were made for the effect of the sampling kit (Table 2), but this trend was not significant on 
any of the taxa levels except for the comparison of cotton swab (SK2) and stool container (SK1) on the genus level. 
We hypothesize that these differences are attributed to the dilution of the samples during the preprocessing steps 
specific to the stool container (see Methods for more details), resulting in lower sample density thus increasing 
the efficiency of the bead beating procedure. No difference in proportion of Gram-positive bacteria was found 
between flocked and cotton swabs. Figure 4 shows estimated effect sizes pairwise between the sampling kits on 
the genus level. Figure 5 visualizes bacteria with significant changes in abundance between isolation or sampling 
kits, with nodes colored according to Gram-positivity, where we can observe association of Gram-positive bac-
teria with the PS isolation kit.

Discussion
The gut microbiome seems to be crucial factor influencing human health and to date, a number of different 
diseases were correlated with microbiome dysbiosis. Understanding the true role of microbiome and fully com-
prehending its variability will require many cohort studies and, most probably, comparison of their results in 
large-scale meta-analyses. As with any other scientific domain, the incoherent methodological approaches con-
stitute an important obstacle for such comparisons44. In an attempt to elucidate some of the factors determining 
the success of such studies, we focused on the effects of sampling and DNA extraction methods on a number of 
relevant variables from DNA integrity to final bacterial composition at different taxa levels. For this purpose, we 
selected sampling and DNA isolation kits that are the most common and accessible and hence are probably the 
most relevant for majority of cohort studies.

Our group of sixteen healthy volunteers used three different sampling kits – stool container, flocked swabs 
and cotton swabs. Without exception, the stool container was indicated as the most acceptable by the volun-
teers. Moreover, stool in the container can be easily diluted, homogenized and aliquoted for different analyses. 
Unfortunately, the stool container is inconvenient for sampling diarrhea or baby stool. Importantly, as we discuss 
below, the pre-processing specific to stool container samples influences both DNA quality and bacterial compo-
sition and these effects seem to interact with the DNA isolation kit.

For measuring the effect of different DNA extraction procedures, we used PowerLyzer PowerSoil DNA 
Isolation Kit (PS) and QIAamp DNA Stool Mini Kit (QS).

While the PS kit cell-wall lysis procedure is based on combination of bead-beating step and enzymatic lysis, 
the standard protocol of the QS kit comprises only enzymatic lysis. Considering the fact that the beat-beating step 
leads to higher DNA yield and higher number of observed OTUs from difficult-to-lyse bacteria, we added the 
bead-beating step also into the QS protocol, as commonly recommended8,30,34,35,39.

DNA isolation by the QS kit resulted in significantly higher DNA yields compared to the PS kit (regardless of 
the sampling kit). Similar results were observed in other studies30,32. In agreement with previous studies30,35,37, we 
found no significant correlation between DNA yield and alpha diversity.

Figure 2.  The proportion of taxa significantly affected by sampling or isolation kit at different taxonomical 
levels. Proportion of the tested taxa significantly affected by the sampling kit only (green), by the isolation 
kit only (dark yellow) and by both sampling and isolation kit (brick red). Grey indicates taxa not affected by 
sampling or isolation kit. The significance level was chosen at FDR < 10%, only taxa that met the selection 
criteria (maximum abundance >1%) were tested.
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Taxonomic level (# of all and 
significantly affected taxa)

Taxa (show ten most 
abundant)

q-value
Sign of the estimated effect size of 
the isolation or sampling kit Relative 

abundance: 
total sum %

Gram 
stain

isolation kit 
effect

sampling 
kit effect

PS to 
QS

SK2 to 
SK1

SK3 to 
SK1

SK3 to 
SK2

Phylum
All taxa: 14
Max >1% taxa: 6
Significantly affected taxa: 6
Isolation only: 1
Sampling only: 0
Both: 5

Firmicutes 1.27E-15 4.43E-11 + − − + 68.3 G+

Bacteroidetes 3.42E-02 1.81E-02 − + + + 18.5 G−

Actinobacteria 3.67E-17 5.13E-04 + − − − 7.1 G+

Proteobacteria 5.05E-08 3.47E-04 − + + + 1.1 G−

Verrucomicrobia 1.69E-03 2.39E-03 − − − + 0.5 G−

Tenericutes 2.08E-03 4.05E-01 − − − − 0.1 G−

Class
All taxa: 30
Max >1% taxa: 12
Significantly affected taxa: 12
Isolation only: 1
Sampling only: 0
Both: 11

F; Clostridia 2.66E-15 9.45E-12 + − − + 61.2 G+

B; Bacteroidia 1.02E-02 2.15E-02 − + + + 18.5 G−

A; Actinobacteria 5.80E-14 3.04E-04 + − − − 4.6 G+

F; Negativicutes 2.58E-15 3.52E-04 − − − − 2.9 G−/var

A; Coriobacteria 5.80E-14 4.09E-03 + − − − 2 G+

F; Erysipelotrichia 2.66E-15 8.57E-05 + − − + 1.8 G+

F; Bacilli 2.58E-15 3.61E-05 + − − + 1 G+

V; Verrucomicrobiae 1.94E-03 1.33E-06 − − − + 0.5 G−

P; Betaproteobacteria 2.14E-05 1.49E-09 − + + + 0.4 G−

P; Gammaproteobacteria 3.67E-07 7.22E-03 − − − + 0.2 G−

Order
All taxa: 49
Max >1% taxa: 13
Significantly affected taxa: 13
Isolation only: 1
Sampling only: 0
Both: 12

F; Clostridiales 9.46E-13 1.37E-11 + − − + 61.2 G+

B; Bacteroidales 4.58E-03 1.69E-02 − + + + 18.5 G−

A; Bifidobacteriales 5.63E-12 2.30E-03 + − − − 4.5 G+

F; Selenomonadales 9.08E-17 2.42E-03 − − − + 2.9 G−/var

A; Coriobacteriales 5.73E-12 2.30E-02 + − − − 2 G+

F; Erysipelotrichales 3.05E-13 2.16E-04 + − − + 1.8 G+

F; Lactobacillales 3.05E-13 1.98E-04 + − − + 1 G+

V; Verrucomicrobiales 3.29E-04 1.22E-05 − − − + 0.5 G−

P; Burkholderiales 1.33E-05 1.70E-09 − + + + 0.4 G−

T; Mollicutes 1.04E-05 6.43E-05 − − − + 0.1 G−

Family
All taxa: 85
Max >1% taxa: 23
Significantly affected taxa: 22
Isolation only: 5
Sampling only: 2
Both: 15

F; Ruminococcaceae 9.20E-01 6.81E-13 − + + + 27.1 G+

F; Lachnospiraceae 5.68E-20 1.60E-03 + + + + 25.3 G+

B; Bacteroidaceae 7.55E-03 1.35E-02 − + + + 10.2 G−

A; Bifidobacteriaceae 5.90E-11 6.87E-03 + + + + 4.5 G+

F; Veillonellaceae 1.90E-12 1.55E-04 − + + + 2.4 G+

A; Coriobacteriaceae 7.68E-11 4.62E-02 − + + + 2 G+

F; Erysipelotrichaceae 1.74E-12 8.08E-04 − + + + 1.8 G+

F; Christensenellaceae 8.43E-01 1.24E-08 − + + + 1.4 G−

B; Rikenellaceae 5.90E-11 7.24E-01 − + + + 1.3 G−

B; Porphyromonadaceae 5.57E-04 4.03E-03 − + + + 1.1 G−

Genus
All taxa: 277
Max >1% taxa: 82
Significantly affected taxa: 74
Isolation only: 27
Sampling only: 9
Both: 38

B; Bacteroides 6.18E-03 1.54E-02 − + + + 10.2 G−

F; Faecalibacterium 1.37E-02 9.70E-05 + − − + 7.2 G+

F; Blautia 1.24E-24 1.05E-01 + − − + 5 G+

A; Bifidobacterium 1.48E-10 2.48E-02 + − − − 4.5 G+

F; Subdoligranulum 4.64E-03 3.18E-01 − − − + 3.7 G−

F; Pseudobutyrivibrio 9.63E-10 6.32E-01 + − − + 2.8 G−

F; Dialister 3.17E-09 5.86E-03 − − − + 2.2 G−

F; Roseburia 1.85E-02 4.95E-01 + − − + 1.5 G+

A; Collinsella 8.59E-05 3.91E-01 + + − − 1.4 G+

F,Christensenellaceae R-7 group 6.06E-01 1.50E-07 − − − − 1.4 G−

Table 1.  Summary of taxa at all levels and detailed results for top 10 taxa significantly affected by sampling 
or DNA isolation kit. The significant q - values are shown in bold. SK1- stool container; SK2 – flocked swabs; 
SK3 - cotton swabs; PS – PowerLyzer PowerSoil DNA Isolation Kit; QS - QIAamp DNA Stool Mini Kit. All taxa 
– number of taxa found at the respective taxa level; Max >1% taxa – number of taxa that fulfilled the selection 
criteria for the analysis; Significantly affected taxa – the overall number of taxa at the respective taxa level 
affected by the isolation or sampling kit; Isolation only – number of taxa at the respective taxa level affected by 
the isolation kit only; Sampling only – number of taxa at the respective taxa level affected by the sampling kit 
only; Both – number of taxa at the respective taxa level affected by both sampling and isolation kit.
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On the other hand, the PS kit produced DNA of better integrity, even though in the PS protocol we applied 
more rigorous mechanical lysis (or higher speed of bead beating), which, according to the literature, should result 
in more degraded DNA48. We hypothesize that the observed differences might be caused by another factor, such 
as the type of the beads (0.1 mm glass in PS vs 0.1 mm zirconia in QS), the buffer composition, or the incubation 
temperature. Overall, for preparation of the shotgun libraries or sequencing using third generation of sequencers, 
we consider DNA integrity to be more important factor than the DNA yield, which favors PS kit over the QS kit.

To properly homogenize the samples from the stool container, we included a preprocessing procedure com-
prising five times dilution. This naturally resulted in lower yields of isolated DNA, but after adjustment for this 
dilution we obtained higher final DNA concentrations compared to undiluted stool samples from flocked and 
cotton swabs. It seems that the dilution step also affected the DNA integrity. Compared to the undiluted samples 
from flocked and cotton swabs, stool container samples resulted in less degraded DNA after isolation using the PS 

Figure 3.  Distributions of relative abundances of significantly affected taxa at family level. Four graphs 
represent families divided according to third quartile of their abundance. Only taxa that passed the filtering 
criteria (maximum abundance >1%), significantly affected by isolation or sampling kit are shown. The colored 
squares below the graph indicate whether the family was affected significantly by the sampling kit only, the 
isolation kit only or both.

Phylum Class Order Family Genus

Sample 
groups

Signif. more 
abundant

% of G+ 
phyla q-val

% of G+ 
classes q-val

% of G+ 
orders q-val

% of G+ 
families q-val % of G+ geni q-val

PS to QS
in PS 100% (2/2)

6.67E-02
100% (5/5)

2.71E-03
100% (5/5)

2.10E-03
100% (8/8)

1.98E-05
96.4% (27/28)

1.98E-05
in QS 0% (0/4) 0% (0/6) 0% (0/7) 0% (0/12) 44.1% (15/34)

SK2 to SK1
in S1 66.7% (2/3)

4.00E-01
71.4% (5/7)

2.27E-01
62.5% (5/8)

2.27E-01
58.3% (7/12)

1.10E-01
80.8% (21/26)

4.29E-02
in S2 0% (0/2) 0% (0/3) 0% (0/3) 0% (0/5) 44.4% (4/12)

SK3 to SK1
in S1 66.7% (2/3)

4.00E-01
71.4% (5/7)

2.27E-01
62.5% (5/8)

2.27E-01
58.3% (7/12)

1.10E-01
80.0% (20/25)

1.10E-01
in S3 0% (0/2) 0% (0/3) 0% (0/3) 0% (0/5) 38.5% (5/13)

SK3 to SK2
in S3 25% (1/4)

5.37E-01
37.5% (3/8)

5.37E-01
33.3% (3/9)

5.37E-01
35.7% (5/14)

5.37E-01
60.7% (17/28)

5.37E-01
in S2 50% (1/1) 100% (2/2) 100% (2/2) 66.7% (2/3) 80.0% (8/10)

Table 2.  Results of statistical testing of the proportion of G+ bacteria between significantly more abundant 
taxa within the selected isolation or sampling kit (pairwise). The significant q – values are shown in bold. 
SK1- stool container; SK2 – flocked swabs; SK3 – cotton swabs; PS – PowerLyzer PowerSoil DNA Isolation Kit; 
QS – QIAamp DNA Stool Mini Kit. Sample groups – which pairwise comparison was performed; Signif. more 
abundant – in which group the taxa were significantly more abundant; % of G+ taxa – proportion of G+ in the 
significantly more abundant taxa within the respective group and level.
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kit and, in contrast, in more degraded DNA after isolation using the QS kit. Interestingly, two other independent 
studies, where different isolation kits were used, showed either a negative34 or a positive48 effect of sample dilution 
on the DNA integrity. This, together with our results leads us to conclude, that the effect of dilution step on DNA 
integrity is dependent on the isolation kit.

PCR inhibitors persisted in the DNA of the samples after isolation with both kits. Presence of PCR inhib-
itors could complicate the use of conventional molecular methods for the detection of low abundance or rare 

Figure 4.  Comparison of sampling kits effects at genus level. Each column corresponds to a pair of sampling 
kits and each row corresponds to a specific bacteria genus. The values represent log fold changes of bacterial 
abundances (effect size) between the sampling kits, color coded from green (less abundant) to orange (more 
abundant). Only significantly affected taxa are shown.
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pathogenic microorganisms49,50. The dilution of stool container samples prior to processing has led to signifi-
cantly lower proportion of PCR inhibitors, hence for some applications, this approach might be preferred.

Both DNA extraction kits isolated preferentially bacterial DNA, independently on the sampling kit used and 
the amount of human DNA was negligible. From practical point of view, there is no superiority of any of the DNA 
isolation vs sampling kit combinations with respect to amount of residual human DNA. Some of the studies, how-
ever, use these kits to estimate the concentration of human DNA in stool samples as an indicator of inflammation 
that might predict onset of certain bowel diseases51–55. From this perspective, based on our results, we do not 
consider these kits eligible for human DNA quantification.

As for the alpha diversity, we observed increased number of OTUs after DNA isolation with the PS kit in all 
sampling kits, but the difference was significant only for cotton swab samples. We observed significant differences 
in number of OTUs between all sampling kits combinations, with the stool container resulting in the highest 
number of OTUs. We attribute the observed differences to higher effectivity of bead beating process in the less 
dense samples (the dilution preprocessing step used for the stool container). This is in contrast with the results of 
Santiago et al.34, who report no changes in alpha diversity after sample dilution. In that study, however, a different 
isolation kit was used, so the results are not directly comparable.

The final bacterial composition was more affected by the choice of the DNA isolation kit than by the choice 
of the sampling kit. The preference of the PS isolation kit for Gram-positive bacteria was confirmed by statistical 
testing on all taxa levels and we believe that it is a result of more effective lysis of the Gram-positive cell wall bac-
teria when using the PS kit, despite the additional bead-beating step we introduced into the QS protocol. This is 
in agreement with previously published results8,26. It has to be taken into account, that Gram staining not always 
corresponds with the cell wall structure (e.g. Pseudobutyrivibrio56 or Deinococcus57, which is for many bacteria 
unknown. The efficiency of the lysis procedure can be as well influenced by atypical composition of the cell wall, 
presence of S-layer or capsules. The bacterial cell wall type also plays a role in the sampling effect: in our study it 
was associated with the dilution preprocessing step of the stool container, although less significantly.

There is a common belief that the effect of the individual is the most influential on the final bacterial composi-
tion8,32. Indeed, many metagenomic studies are reporting differences between groups of interest at the OTU level, 
where the effect of isolation and sampling is less important, as we showed in this study. However, some hypothe-
ses are connecting particular disease with higher or lower bacterial abundance at the phylum or family level. An 
example is the commonly used Bacteroidetes/Firmicutes ratio58–64. Our results show, that this ratio is very depend-
ent on both the selected DNA isolation method and sampling kit (dilution step). In our study, the PS kit and the 
dilution step (stool container) led to significantly higher proportion of e.g. Firmicutes (G+) and Actinobacteria 
(G+) and significantly lower proportion of Proteobacteria (G−) and Bacteroidetes (G−).

Another example of the cell wall structure effect is the Gram-positive genus Blautia. Blautia is a common and 
highly prevalent bacteria in the gastrointestinal tract, which is connected with healthy gut, since it is an effective 
short-chain fatty acid producer65,66. Lower abundance of Blautia in the gut is associated with many diseases66–73. 
In our study, Blautia was bacteria the most significantly affected by DNA isolation (across all the taxonomic lev-
els). Similar observations were also described as the effect of isolation in other studies26,34.

The sampling kit (dilution effect) influenced most significantly the abundance of genus Sutterella, bacteria 
correlated with many diseases such as celiac diseases67, Down syndrome74, autism75 or irritable bowel syndrome76. 
Clearly, the dilution step represents an important batch effect, which raises a question, whether it is related only 
to the artificial dilution, or this effect could also be observed in diarrheic samples. The effect of stool consistency 
was described previously as an important factor12,77,78 influencing the bacterial composition, but this effect was 

Figure 5.  Association of bacterial families significantly differentially abundant between different sampling and 
isolation kits. The strength of the edges is weighted by relative abundance of taxa between the different kits (the 
stronger the edge, the larger the difference). Color-coding of the edges highlights taxa belonging to the same 
community, as detected by network modularity (see Methods for details). Grey edges represent connections 
between different communities.
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not connected with effect of higher water content (dilution), rather with the transit time. As previously recom-
mended77, we also suggest to control for the stool consistency as a potential confounding factor to avoid the effect 
of sample water content in this kind of studies, especially if one of the illness symptoms is diarrhea.

Despite the fact that the significance of the sampling and isolation dependent batch effects is repeatedly 
reported, no systematic study of these effects was performed yet on samples from larger numbers of individuals. 
Efforts for standardization of laboratory practices in metagenomics have been made in large international pro-
jects such as Metagenomic Research Group (MGRG), Genomic Standard Consortium (GSC), The Microbiome 
Quality Control Project (MBQC) and International Human Microbiome Standards (IHMS). IHMS recommends 
a procedure for fecal sample DNA extraction, based on study of Costea et al., where 21 extraction protocols were 
compared, including protocols similar to ours – protocol 3 (with PowerLyzer PowerSoil DNA Isolation Kit) and 
11 (with QIAamp DNA Stool Mini Kit and bead beating step)39. They selected the protocol with QIAamp DNA 
Stool Mini Kit as the best choice for its accuracy and reproducibility. In contrast to our results, both protocol 3 
and 11, provide good lysis of Gram-positive bacteria, but protocol 3 was excluded for insufficient DNA quality. 
The main difference between the studies is that the Costea study was based on the results of whole metagenomics 
sequencing and only compared bacterial composition annotated at the species level.

All these above mentioned studies and our results confirm that meta-analytical studies are extremely challeng-
ing due to the many sources of batch effects that need to be accounted for. Incorporation of a standardized mock 
community to the sequencing workflow, followed by normalization of the results to these reference values could 
be solution in future. The increased cost per run and slightly more complex library preparation is a small price to 
pay for robustness, consistency and comparability of results.

Conclusions
We performed systematic study of effects of DNA isolation and sampling kit on DNA quality and bacterial com-
position based on sequencing of gene for 16S rRNA on a the largest number of individuals to day (96 samples 
from 16 individuals).

We found significant effect of both DNA isolation and sampling kits on DNA purity, DNA integrity, alpha diversity 
and bacterial composition. Overall, the DNA isolation effect was stronger than that of the sampling kit. Interestingly 
the proportion of taxa affected by isolation or sampling was decreasing with decreasing taxonomical level.

We confirmed previously reported effect of DNA isolation kit on bacterial composition due to bacte-
rial cell wall structure, namely the better efficacy of The PowerLyzer PowerSoil DNA Isolation Kit in lysis of 
Gram-positive bacteria. In addition, we report that the dilution pre-processing step of the stool container samples 
favored Gram-positive bacteria, although mostly at the genus level.

Both the choice of isolation and sampling kits significantly affected the Firmicutes to Bacteroidetes ratio. We 
conclude that the choice of DNA isolation and sampling kit (dilution step, and by extension the stool consistency) 
is an important batch effect that has to be taken into account mainly when comparing results between studies.

Methods
Sample collection.  Stool samples were collected from a group of 16 volunteers. The subjects were 23–65 
years old with an average age of 40.9 and none of them suffered from diarrhea during sample collection. Stool 
samples were collected at home. Volunteers received three stool sampling kits: sampling kit 1 (SK1) comprising 1x 
stool container (FL Medical, Italy); sampling kit 2 (SK2) comprising 2x flocked swabs (Copan, Italy) and sampling 
kit 3 (SK3) comprising 2x cotton swabs (SceneSafe, Great Britain). Sampling kits also contained disposable gloves 
and hand and surface disinfectant wipes for more convenient sampling. Each volunteer was instructed to collect 
all the samples from the same stool and from the same spot. Stool samples were then stored in a freezer at −20 °C 
overnight to freeze completely and the next day were transported on ice buckets to the laboratory, where they 
were stored at −20 °C prior to processing. Each group of samples was processed at the same time and by the same 
person. Participants filled out a brief questionnaire about satisfaction with individual sampling kits after stool 
sample collection. The study design is summarized in Fig. 6.

This study was carried out in accordance with the recommendations of the ELSPAC Steering Committee of 
Masaryk University with written informed consent from all subjects. All subjects gave written informed consent 
in accordance with the Declaration of Helsinki. The protocols were approved by the ELSPAC Steering Committee 
of Masaryk University.

DNA extraction.  Stool in the stool container (SK1) was diluted 5x with molecular grade water and homoge-
nized by vortexing with Zirconia beads 2.3 mm (BioSpec, USA) to receive identical aliquots. This step is not neces-
sary for the swabs, since each swab serves as an aliquot itself. Stool suspension (250 µl) was used for DNA extractions. 
Flocked swabs (SK2) and cotton swabs (SK3) were transferred into 2 ml tubes to be prepared for subsequent DNA 
extraction. DNA extractions were performed using a PowerLyzer PowerSoil DNA Isolation Kit (Mo Bio, USA) (PS) 
and QIAamp DNA Stool Mini Kit (Qiagen, USA) (QS) according to the manufacturer’s instructions.
Deviations from PS protocol:

•	 750 µl of Bead Solution and 60 µl of C1 Solution were added to swab samples (SK2 and SK3) after defrosting. 
Samples were thoroughly vortexed and centrifuged for 4 min at 36,220 RCF. The swabs were then removed. 
Next, the samples were homogenized using the FastPrep-24 (MP Biomedicals, USA) 45 s 6.5 m/s.

Deviations from QS protocol:

•	 A homogenization step with 0.1 mm zirconia beads (BioSpec, USA) was added to the protocol after the third 
step (i.e. after the suspension was heated for 5 min at 95 °C).
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•	 1.4 µl Buffer ASL was added to swab samples (SK2 and SK3) after defrosting. Samples were vortexed continu-
ously for 1 min and the suspension was heated for 5 min at 70 °C. Next, the samples were homogenized using 
the FastPrep-24 (MP Biomedicals, USA) 45 s 5.5 m/s.

Evaluation of DNA yield, purity and quality.  The final yield of extracted DNA was determined spec-
trophotometrically using theNanoDropND-1000 (Thermo Fisher SCIENTIFIC, USA). The purity of extracted 
DNA was indicated by an A260/A280 nm ratio. The quality of extracted DNA was assessed using the Fragment 
Analyzer (Advanced Analytical Technologies, USA) and High Sensitivity Genomic DNA Analysis Kit (Advanced 
Analytical Technologies, USA). The percentage of short fragments (≤1,500 bp) and Genomic Quality Number 
(GQN threshold of 10,000 bp) were calculated by PROSize 2.0 (Advanced Analytical Technologies, USA). 
Extracted DNA from each sample was diluted approximately to 5 ng/µl, aliquoted and stored at −20 °C. Aliquots 
were subsequently used in all further methods as starting material.

Presence of PCR inhibitors after different DNA extractions.  The presence of inhibitors was tested by 
qPCR. A primer pair specific for the conservative regions of 16S rRNA gene (Table 3) was used. qPCR was per-
formed on the TOptical Thermocycler (Analytik Jena - Biometra, Ireland) using a KAPA SYBR FAST qPCR Kit 
(Kapa Biosystems, USA). Cycling conditions are described in Table 2. Melting temperature was determined after 
PCR to verify the correctness of each PCR product. Extracted DNA from four different isolates of Escherichia 
coli DH10B served as a positive control without PCR inhibitors. Each extracted DNA from sample and positive 
control (concentration approximately 5 ng/µl) was diluted three times (10x, 100x, 1,000x). The subsequent qPCR 
reactions were performed using both diluted and undiluted samples. Inhibition plots were created from Ct values 
and efficiency (=10(−1/slope)−1) was calculated for each sample and positive control.

Proportion of human DNA to bacterial DNA after different DNA extractions.  The ratio of human 
and bacterial DNA in samples was tested by qPCR. Bacterial DNA was assessed using a primer pair specific 
for the conservative regions of 16S rRNA gene and human DNA using a primer pair specific for protein kinase 
(Table 3). qPCRwas performed on the TOptical Thermocycler (Analytik Jena - Biometra, Ireland) with KAPA 
SYBR FAST qPCR Kit (Kapa Biosystems, USA). Cycling conditions are described in Table 3. Melting temperature 

Figure 6.  Study design. Flowchart summarizing the study design and methods used.

Target region/gene
Amplicon 
size Primer name Primer Sequences (5′ → 3′) Cycling conditions Reference

16S rRNA gene 
(bacterial DNA) 146 bp

q16S-univF GTGSTGCAYGGYTGTCGTCA 95 °C 45x 95 °C 53 °C 72 °C
Maeda et al.90

q16S-univR ACGTCRTCCMCACCTTCCTC 10 min 20 s 30 s 20 s —

GAPDH (human 
DNA) 74 bp

TGCACCACCAACTGCTTAGC 95 °C 40x 95 °C 65 °C Vandesompele 
et al.91GGCATGGACTGTGGTCATGAG 10 min 10 s 60 s — —

V3/V4 16S rRNA gene 
(library preparation) ~460 bp

s16S_F TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-
InnerTag-CCTACGGGNGGCWGCAG 95 °C 25x 95 °C 55 °C 72 °C 72 °C

Klindworth 
et al.79

s16S_R GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG- 
InnerTag-GACTACHVGGGTATCTAATCC 3 min 30 s 30 s 30 s 5 min

Table 3.  Primers and cycling conditions used in this study.
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was determined after PCR to verify the correctness of each PCR product. The amount of human DNA to bacterial 
DNA was calculated as 2ΔCt. Ct value of 40 was used for all samples under the limit of detection.

PCR amplification and Illumina library preparation.  Extracted DNA was used as a template in ampli-
con PCR to target the hypervariable V3 and V4 regions of the bacterial 16S rRNA gene. The 16S metagenom-
ics library was prepared according to the Illumina 16S Metagenomic sequencing Library Preparation protocol 
with some deviations described below (for workflow diagram see Supplementary Fig. S1). Each PCR was per-
formed in triplicate, with the primer pair consisting of Illumina overhang nucleotide sequences, an inner tag and 
gene-specific sequences79. The Illumina overhang served to ligate the Illumina index and adapter. Each inner tag, 
i.e. a unique sequence of 7–9 bp, was designed to differentiate samples into groups. Primer sequences and PCR 
cycling conditions are summarized in Table 3. After PCR amplification, triplicates were pooled and the amplified 
PCR products were determined by gel electrophoresis. PCR clean-up was performed with Agencourt AMPure 
XP beads (Beckman Coulter Genomics, USA). Samples with different inner tags were equimolarly pooled based 
on fluorometrically measured concentration using Qubit dsDNA HS Assay Kit (Invitrogen, USA) and microplate 
reader Synergy Mx (BioTek, USA). Pools were used as a template for a second PCR with Nextera XT indexes 
(Illumina, USA). Differently indexed samples were quantified using the KAPA Library Quantification Complete 
Kit (Kapa Biosystems, USA) and equimolarly pooled according to the measured concentration. The prepared 
library was checked with a 2100 Bioanalyzer Instrument (Agilent Technologies, USA) and concentration was 
measured with qPCR shortly before sequencing. The library was diluted to a final concentration of 8 pM and 
20% of PhiX DNA (Illumina, USA) was added. Sequencing was performed with the Miseq reagent kit V3 using a 
MiSeq. 2000 instrument according to the manufacturer’s instructions (Illumina, USA).

Data analysis.  Forward and reverse pair-end reads, that fulfilled the condition of both quality and length fil-
tering, were merged using the fastq-join method within the join_pair_ends.py command in QIIME 1.9.180. Data 
were demultiplexed and barcodes and primers were trimmed using package Biostrings81 in R 3.3.282. Operational 
taxonomic units (OTUs) were constructed by binding sequences into clusters of greater than 97% sequence sim-
ilarity using QIIME. In the next step, chimeras were detected on the set of representative sequences of each OTU 
with UCHIME in USEARCH v6.1.54483. These chimera OTUs were subsequently excluded from the analysis. 
Taxonomy was assigned to each OTU based on SILVA 123 reference database84. The observed species metric and 
the Chao1 index were used to estimate alpha diversity for each sample in QIIME. Beta diversity was computed in 
QIIME using both weighted and unweighted UniFrac metrics85. All statistical analysis was performed in R 3.3.282.

The data were treated as compositional (proportions of total read count in each sample, non-rarefied) and 
prior to all statistical analyses were transformed using centered log-ratio transformation86. The analyses were per-
formed on each of the seven taxonomy levels (Phylum, Class, Order, Family, Genus, Species and OTUs) separately 
and the resulting p-values were adjusted for multiple hypothesis testing using Benjamini-Hochberg procedure. 
Results were considered significant at FDR = 10%. The adjusted p-values are referred to as q-values.

To estimate the effects of isolation and sampling kits on bacterial composition while accounting for repeated 
measurements (effect of individual), we applied linear mixed model with sampling and izolation kits as fixed 
effects and individual as random effect (intercept). Log-likelihood test was performed to detect significance of 
each of the fixed effects – each time we compared the full model to the model without the fixed effect of interest.

A non-parametric Wilcoxon paired test, was used for comparison of effect of isolation kits on DNA quality. 
We used Spearman’s rank order correlation coefficient to discover the strength of the link between the number of 
observed species and DNA concentration.

Bipartite networks were used to visualize the influence of different kits on detection of Gram-positive and 
Gram-negative bacteria. These networks were reconstructed according to Sedlar et al.87 using R 3.3.2 and visual-
ized in Gephi 0.9.288,89. Communities within networks were extracted using modularity optimization criterion88.

Data Availability
Sequencing data were uploaded to the European Nucleotide Archive under accession number PRJEB24411. Read 
counts per sample at different taxa levels and sample information table are available in Supplementary Files S9–
S11.
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Simple Summary: Dysbiosis of the gut microbiome may contribute to the heterogeneity of colorectal
cancer from phenotypic, prognostic and response to treatment perspectives. We analysed CRC
microbiome by 16S rRNA gene sequencing of paired tumour mucosa, adjacent visually normal mucosa
and stool swabs of 178 patients with stage 0–IV CRC. We observed that tumour mucosa is dominated
by pathogenic bacteria of oral origin and proposed a CRC tumour microbiome subtyping system.
The subtypes and tumour mucosa genera were associated with prognostic clinical covariates (tumour
grade, localisation, TNM, BRAF mutation and MSI). In contrast, changes in the stool microbiome
were associated with lymph node involvement and the presence of synchronous metastases. We
discovered new associations between microorganisms and CRC and clinical parameters. Our study
represents a step forward in understanding the role of the microbiome and its interactions with
factors involved in tumour progression, and it opens novel avenues for exploring new treatments
and biomarkers.

Abstract: Long-term dysbiosis of the gut microbiome has a significant impact on colorectal cancer
(CRC) progression and explains part of the observed heterogeneity of the disease. Even though the
shifts in gut microbiome in the normal-adenoma-carcinoma sequence were described, the landscape
of the microbiome within CRC and its associations with clinical variables remain under-explored. We
performed 16S rRNA gene sequencing of paired tumour tissue, adjacent visually normal mucosa and
stool swabs of 178 patients with stage 0–IV CRC to describe the tumour microbiome and its association
with clinical variables. We identified new genera associated either with CRC tumour mucosa or
CRC in general. The tumour mucosa was dominated by genera belonging to oral pathogens. Based
on the tumour microbiome, we stratified CRC patients into three subtypes, significantly associated
with prognostic factors such as tumour grade, sidedness and TNM staging, BRAF mutation and MSI
status. We found that the CRC microbiome is strongly correlated with the grade, location and stage,
but these associations are dependent on the microbial environment. Our study opens new research
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avenues in the microbiome CRC biomarker detection of disease progression while identifying its
limitations, suggesting the need for combining several sampling sites (e.g., stool and tumour swabs).

Keywords: colorectal cancer; 16S rRNA gene; tumour microbiome; microbial subtypes

1. Introduction

Colorectal cancer (CRC) is the third most frequent cancer worldwide and the second
leading cause of cancer mortality in Europe [1]. It is a heterogeneous disease, both from a
phenotypic and a prognostic and response to treatment perspective. The current standard
treatments are limited and remain ineffective for many CRC patients due to inadequate
patient selection, resulting in unneeded toxicity and high cost resulting from over-treating
of patients that do not benefit [2,3]. Recent research shows that gut microbiota may
significantly influence colorectal tumour initiation and progression [4–22].

Several studies showed that bacteria adherent to colorectal adenomas or carcinomas
were different from bacteria adherent to healthy gut mucosa [8,11,12] due to the altered
tumour environment with decreased pH and modified metabolic conditions resulting from
hypoxia and onset of necrosis [23]. Gut microbiota can promote colon cancer development
or change the tumour invasion potential through (i) immunomodulation [10,24–26] or (ii)
metabolic activity—via the production of specific toxins inducing DNA damage responses.
Overall, the evidence of microbiome importance in colon cancer development is so over-
whelming that a bacterial driver-passenger model for colorectal cancer development and
progression has been suggested [27] as an alternative to the universally accepted driver-
passenger mutational adenoma-carcinoma model. Additionally, gut microbiota seems to
play a crucial role also in response to anti-cancer therapy [28].

Previous studies associating gut dysbiosis with CRC were focused on comparing
the gut microbiome in the normal-adenoma-carcinoma sequence [4–22,29–32]. It is the
landscape of the microbiome within the ongoing disease and its associations with clinical
variables that remain under-explored. The published studies vary in techniques employed,
specimen origin and sample size, thus hampering any integrative analysis. Most studies
compared diseased and healthy subjects, and the few that tried to characterise microbial
composition within the CRC patients suffered from a small sample size. The specimens
used in most studies were stool [4,6,7,15,17,18,20–22] or mucosa samples from colonoscopy
biopsies [11,13,15] or post-resection [6,12,16,19]. Stool microbiota sampling has the advan-
tage of being non-invasive, allowing its use for screening and follow-up studies. Some
efforts combined information about the tumour-associated microbiome with existing prog-
nostic scores in an attempt to improve the prediction accuracy [18] or to develop a new
screening/prognostic model [33]. The results of two different meta-analyses showed that
the accuracy of predicting diseased state was about 0.8, such as occult blood test results,
the main non-invasive clinical test for this type of cancer [34,35]. However, the microbial
composition in stool only partially reflects the situation in tumour mucosa, a trend con-
sistent across different nationalities of the patients, sampling techniques or sequencing
methodology [36].

The microbiota adherent to the mucosal tissue differs from the faecal microbiota in its
needs for oxygen and nutrient types [37,38]. Therefore, the information derived from stool
may be insufficient for capturing tumour-microbe interactions consistent with the disease
prognosis. The relevance of the tumour mucosa microbiome assessment for screening
purposes is dependent not only on the co-presence of the bacteria in both tumour mucosa
and stool but also on its association with relevant clinical parameters in both sample
types. Additionally, studying the (dis)similarity of bacterial composition between tumour
and visually normal mucosa from the same individual may provide hints regarding the
changes in microenvironment which have occurred favouring the growth of certain species
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and shed some light on the underlying tumour-immune system-microbe interactions and
metabolic pathways.

Recently, two studies provided a comparison of bacterial composition in both tumour
tissue and visually normal tissue and the bacterial composition of stool samples from the
same patients [34,35]. Liu et al. [34] showed that the bacterial communities in both tumour
tissue and visually normal tissue were similar. Still, the study was vastly underpowered
(n = 8 individuals) and did not explore the clinical relevance of this similarity. Other studies
associated microbiome on tumour or in stool with clinical variables [35,39,40] but had a
similar disadvantage in terms of statistical power (n = 25, n = 30, n = 53, individuals,
respectively).

The studies mentioned were species-centric because they compared the abundance of
individual microbial species between the groups of interest. However, a broader view is
needed to account for lesser-known species coupled with a larger sample size allowing
for capturing enough inter-tumour heterogeneity, thus better understanding the possible
effects of bacteria on tumour growth, aggressiveness or response to therapy. Our study
takes a microbial community-centric approach to provide a comprehensive description of
the CRC tumour microbiome based on 16S rRNA sequencing. We analyse three sample
types (tumour mucosa, visually normal mucosa, stool) from n = 178 individuals with stage
0–IV colorectal cancer.

Our study has a dual nature, both exploratory and confirmatory. We explore and
interpret the landscape of the tumour mucosa-associated microbiome with respect to
clinical variables and microbial composition of paired adjacent visually normal mucosa
and paired stool samples. Benefitting from a larger sample size, we advance the state-of-
the-art knowledge by reporting previously unseen associations. Most importantly, we
capture the tumour microbial heterogeneity and derive CRC tumour microbiome subtypes.

2. Materials and Methods
2.1. Patients and Specimens

All specimens were collected at Masaryk Memorial Cancer Institute (Brno, Czech
Republic) from 2015 to 2019. Patient inclusion criteria were (i) scheduled for resection based
on preliminary screening (such as a colonoscopy), (ii) no neoadjuvant treatment, (iii) no
previous CRC diagnosis (iv) with confirmed stage 0–IV CRC without multiplicities (single
tumour). The stool samples were collected from untreated patients before the scheduled
surgery. Patients performed the collection at home, the morning of their hospitalisation for
the surgery and brought the samples to the hospital, where they were immediately frozen at
−80 ◦C until further processing. Swabs from the tumour and visually normal mucosa were
collected within 30 minutes of the tumour resection at the pathology department. Whenever
possible, the swab from visually normal tissue was taken at least 20 cm proximally to the
tumour. The swabs were then stored immediately in a freezer at −20 ◦C and, without
unnecessary delay, transferred to −80 ◦C until further processing. All samples, including
stool, were collected using DNA free cotton swabs (Deltalab, Barcelona, Spain).

Overall, we analysed n = 483 samples from n = 178 CRC patients. There were
127 triplets (all three sample types from the same patient) and 51 mucosa duplets (swabs
from tumour and visually normal mucosa from the same patient).

The study was approved by the ethical committee of Masaryk Memorial Cancer
Institute. All patients gave written informed consent following the Declaration of Helsinki
prior to participating in the study.

2.2. DNA Extraction, PCR Amplification and Sequencing of 16S rRNA Gene

According to the manufacturer’s instructions, the DNA extraction was performed
using DNeasy® PowerSoil® Isolation kit (QIAGEN, Düsseldorf, Germany). Extracted DNA
was used as a template in amplicon PCR to target the V4 hypervariable region of the
bacterial 16S rRNA gene. The 16S metagenomics library was prepared according to the 16S
Metagenomic Sequencing Library Preparation protocol (Illumina, San Diego, CA, USA),
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with some deviations described below. Each PCR was performed with HotStarTaq Master
Mix Kit (QIAGEN, Hilden, Germany) in triplicate, with the primer pair consisting of
Illumina overhang nucleotide sequences, an inner tag, and gene-specific sequences [41,42].
The Illumina overhang served to ligate the Illumina index and adapter. Each inner tag,
i.e., a unique sequence of 7–9 bp, was designed to differentiate samples into groups.
Primer sequences and PCR cycling conditions are summarised in Table S3. After PCR
amplification, triplicates were pooled, and the amplified PCR products were determined
by gel electrophoresis. PCR clean-up was performed with Agencourt AMPure XP beads
(Beckman Coulter Genomics, Danvers, MA, USA). Samples with different inner tags
were equimolarly pooled based on fluorometrically measured concentration using Qubit®

dsDNA HS Assay Kit (Invitrogen™, Carlsbad, CA, USA) and microplate reader (Synergy
Mx, BioTek, Winooski, VT, USA). Pools were used as a template for a second PCR with
Nextera XT indexes (Illumina, USA). Differently indexed samples were quantified using
the qPCR kit KAPA Library Quantification Complete Kit (Roche, Indianapolis-Marion
County, IN, USA) and LightCycler 480 Instrument (Roche, USA) and equimolarly pooled
according to the measured concentration. The prepared libraries were checked with
a 2100 Bioanalyzer Instrument using the High Sensitivity D5000 Screen tape (Agilent
Technologies, Santa Clara, CA, USA), and concentration was measured with qPCR shortly
prior to sequencing. The final library was diluted to a concentration of 8 pM, and 20%
of PhiX DNA (Illumina, USA) was added. According to the manufacturer’s instructions,
sequencing was performed with the Miseq reagent kit V2 (500 cycles) using a MiSeq
instrument (Illumina, USA).

2.3. Data Analysis
2.3.1. Preprocessing and Quality Control

Forward and reverse pair-end reads were demultiplexed, and barcodes and primers
were trimmed. Denoising algorithm with DADA2 [43] was applied separately on for-
ward and reverse reads that passed the quality and length filter and did not contain N’s.
Reads were merged using the fastq-join method [44]. In the next step, chimaeras were
detected with the function removeBimeraDenovo in DADA2. Chimaera sequences were
subsequently excluded from the analysis, and Amplicon Sequence Variant (ASV) table was
created.

After quality filtering and chimaeras removing, the number of reads ranged from
2968 to 239,116, with a median of 44,371 and a mean of 53,074 reads per sample. The
number of reads did not differ between the sample types (paired Wilcoxon test, Figure S1).

2.3.2. Taxonomy Assignment and Metabolic Potential Prediction

Taxonomy was assigned to each ASV based on SILVA 123 reference database [45] using
the algorithm UCLUST [46] in QIIME [47]. BLAST algorithm [48] was used to identify the
species, and all taxa with the maximum identity and minimum e-value were selected for
each ASV. The observed species metric and the Chao1 and Shannon index were used to
estimate alpha diversity for each sample in QIIME. Beta diversity was computed in QIIME
using both weighted and unweighted UniFrac metrics [49].

We filtered out the ASVs unassigned at the phylum level and all the ASVs belonging
to the phylum Cyanobacteria. Only the taxa present in at least three samples of the same
sample type and at the same time represented by at least nine reads were kept for further
analysis to account for possible contaminations. The threshold of 9 reads represents 0.3%
taxa abundance in the sample with the least number of reads (2968).

This filtering step discarded 46–55% of taxa at each taxa level (Table S4).
Picrust 2 [50] was used to predict hypothetical abundances of KEGG orthologs in each

sample and to summarise them into higher functional processes.
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2.3.3. Statistical Analysis and Data Mining

All comparisons between the three sample types were performed on triplet samples
from 127 patients, totalling n = 381 samples for the analysis. For the analysis of tumour-
visually normal mucosa pairs, we used paired tumour and visually normal mucosa swabs
from 178 patients (totalling 356 samples). We used all the available samples for analyses
performed within each sample type (178 for tumour mucosa swabs, n = 178 for visually
normal tissue mucosa swabs and n = 127 for stool).

Data were analysed using appropriate corrections and approaches for compositional
data [51–54]. Zero multiplicative replacement [53] was applied prior to the centred log-ratio
(clr) transformation.

Non-metric Multidimensional Scaling (R vegan package [55]) over Aitchinson distance
matrices (R coda.base package [56]) was used to analyse tumour microbial heterogeneity
and β-diversity. To estimate the contribution of clinical traits in the microbiome, β-diversity
permutational multivariate analysis of variance for distance matrices (R adonis function
of vegan 2.5.4 package [55]) with 999 permutations were used. To assess the differences
between the sample types in alpha diversity, we used a paired non-parametric two-way
Mann-Whitney U test. We applied a non-parametric approach to identify differences
in microbial composition between sample types and the associations between relative
microbial abundance and clinical variables. For non-parametric analysis, the Friedman
test with paired Wilcoxon test and rank regression was used (R package Rfit [57]). A drop
in dispersion test was used to produce overall p-values for rank regression models. The
Cochran Q test was used to analyse differences in the presence of genera across sample
types (analysis of triplets). Benjamini-Hochberg correction for multiple hypothesis testing
was applied [58]. Results were considered significant at FDR <0.1. The adjusted p-values
are referred to as q-values. Visualisation was performed with gplots 3.0.1.1, ggplot2,
ComplexHeatmap 1.17.and circlize 0.4.8 packages [59–62].

For each clinical variable (or a combination thereof), we only tested genera present in
at least 10 samples in one clinical group (or a combination thereof). We do emphasise that
we approached this statistical testing from the point of view of a pilot discovery study.

Due to the known association between tumour grade and location [63] (also confirmed
in our data, p < 0.001, Fisher’s exact test), we investigated the associations of the micro-
biome with grade and tumour location in a model with the interaction between covariates
compared to a model without interaction. To ensure a more balanced design, we considered
three locations: right and transverse, left, rectosigmoid and rectum, respectively.

The threshold of false discovery rate was set to 0.1, as is customary in similar studies,
with the aim to identify potential candidates for further research. While we consider only
associations with FDR <0.1 to be statistically significant, we also report the unadjusted
results p < 0.05 for hypothesis confirmation by other studies.

2.4. Data Access

The data were uploaded to the European Nucleotide Archive under accession number
PRJEB35990.

2.5. Validation

We performed partial validation of our results on three publicly available datasets.
The association of the tumour microbiome with tumour localisation was validated in the
dataset of Dejea et al. [31], n = 23. No grade information was available, and hence in the
validation we did not use the grade*localisation interaction term. Publicly available fastq
files were analysed with QIIME pipeline with the appropriate approach for 454 Roche
sequencing. Taxonomy was assigned using SILVA 123 database to have comparable results
with our dataset.

The association of stool microbiome with AJCC staging and TNM staging was vali-
dated in two datasets (Zeller et al. [32] and Feng et al. [30]). The processed datasets with
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taxonomic information were used as available in R package curatedMetagenomicData [64]
and were normalised using the clr transformation before the analysis.

All associations were tested using rank regression (R package Rfit [57]). The dataset of
Feng et al. only contained one M1 sample; hence we only analysed associations with AJCC
staging, T stage and N stage.

3. Results

In our effort to describe tumour microbial landscape, we explored the differences in
microbiome abundance, diversity, the presence/absence of the species and the proportion
of samples with the respective genera in different sample types across patient groups
defined by clinical variables (Table 1).

Table 1. Table of clinical variables and their distribution in the complete set of 178 patients, the subset of 127 patients and
in the CRC tumour microbial subtypes, respectively. (For categorical variable, Fisher exact test was performed and for
continuous data, Kruskal-Wallis test was used.).

Clinical
Variables

Data Subset Comparison Tumour Microbiome Subtypes

All Tumours
(n = 178) Triplets (n = 127) p-Value TMS1 (n = 46) TMS2 (n = 55) TMS3 (n = 77) p-Value

age at diagnosis Mean (SD) Mean (SD) 0.804 Mean (SD) Mean (SD) Mean (SD) 0.887
66.92 (10.66) 66.61 (10.61) - 66.89 (9.88) 67.47 (11.39) 66.55 (10.69) -

gender n (%) n (%) 1 n (%) n (%) n (%) 0.729
male 99 (55.6) 70 (55.1) - 25 (54.3) 33 (60.0) 41 (53.2) -

female 79 (44.4) 57 (44.9) - 21 (45.7) 22 (40.0) 36 (46.8) -

tumour
localisation n (%) n (%) 0.597 n (%) n (%) n (%) <0.001

right 64 (36.0) 48 (37.8) - 28 (60.9) 11 (20.0) 25 (32.5) -
transverse 19 (10.7) 13 (10.2) - 6 (13.0) 5 (9.1) 8 (10.4) -

left 44 (24.7) 36 (28.3) - 4 (8.7) 17 (30.9) 23 (29.9) -
rectosigmoideum 32 (18.0) 23 (18.1) - 6 (13.0) 10 (18.2) 16 (20.8) -

rectum 19 (10.7) 7 (5.5) - 2 (4.3) 12 (21.8) 5 (6.5) -

grade n (%) n (%) 0.998 n (%) n (%) n (%) <0.001
NA, in situ 7 (3.9) 5 (3.9) - 0 (0.0) 3 (5.5) 4 (5.2) -

1 18 (10.1) 12 (9.4) - 1 (2.2) 5 (9.1) 12 (15.6) -
2 102 (57.3) 73 (57.5) - 18 (39.1) 37 (67.3) 47 (61.0) -
3 51 (28.7) 37 (29.1) - 27 (58.7) 10 (18.2) 14 (18.2) -

AJCC stage n (%) n (%) 0.968 n (%) n (%) n (%) 0.136
0 8 (4.5) 6 (4.7) - 0 (0.0) 3 (5.5) 5 (6.5) -
I 31 (17.4) 26 (20.5) - 2 (4.3) 12 (21.8) 17 (22.1) -
II 66 (37.1) 45 (35.4) - 21 (45.7) 19 (34.5) 26 (33.8) -
III 48 (27.0) 34 (26.8) - 16 (34.8) 12 (21.8) 20 (26.0) -
IV 25 (14.0) 16 (12.6) - 7 (15.2) 9 (16.4) 9 (11.7) -

tumour
pathologic stage n (%) n (%) 0.979 n (%) n (%) n (%) 0.007

pTis 8 (4.5) 6 (4.7) - 0 (0.0) 3 (5.5) 5 (6.5) -
pT1 11 (6.2) 10 (7.9) - 0 (0.0) 5 (9.1) 6 (7.8) -
pT2 32 (18.0) 24 (18.9) - 2 (4.3) 12 (21.8) 18 (23.4) -
pT3 115 (64.6) 79 (62.2) - 42 (91.3) 30 (54.5) 43 (55.8) -
pT4 12 (6.7) 8 (6.3) - 2 (4.3) 5 (9.1) 5 (6.5) -

regional lymph
nodes pathologic

stage
n (%) n (%) 0.618 n (%) n (%) n (%) 0.041

pN0 109 (61.2) 79 (62.2) - 23 (50.0) 36 (65.5) 50 (64.9) -
pN1 46 (25.8) 36 (28.3) - 13 (28.3) 10 (18.2) 23 (29.9) -
pN2 23 (12.9) 12 (9.4) - 10 (21.7) 9 (16.4) 4 (5.2) -

synchronous
distant

metastasis
n (%) n (%) 0.846 n (%) n (%) n (%) 0.722

M0 153 (86.0) 111 (87.4) - 39 (84.8) 46 (83.6) 68 (88.3) -
M1 25 (14.0) 16 (12.6) - 7 (15.2) 9 (16.4) 9 (11.7) -
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Table 1. Cont.

Clinical
Variables

Data Subset Comparison Tumour Microbiome Subtypes

All Tumours
(n = 178) Triplets (n = 127) p-Value TMS1 (n = 46) TMS2 (n = 55) TMS3 (n = 77) p-Value

MSI/MSS n (%) n (%) 1 n (%) n (%) n (%) <0.001
MSI 27 (15.2) 19 (15.0) - 16 (34.8) 4 (7.3) 7 (9.1) -
MSS 110 (61.8) 81 (63.8) - 22 (47.8) 37 (67.3) 51 (66.2) -
NA 41 (23.0) 27 (21.2) - 8 (17.4) 14 (25.4) 19 (24.7) -

BRAF n (%) n (%) 1 n (%) n (%) n (%) 0.022
BRAF wt 77 (43.3) 53 (41.7) - 17 (37.0) 27 (49.1) 33 (42.9) -

BRAF mut 12 (6.7) 9 (7.1) - 7 (15.2) 1 (1.8) 4 (5.2) -
NA 89 (50.0) 65 (51.2) - 22 (47.8) 27 (49.1) 40 (51.9) -

KRAS n (%) n (%) 1 n (%) n (%) n (%) 0.839
KRAS wt 24 (13.5) 17 (13.4) - 7 (15.2) 8 (14.5) 9 (11.7) -

KRAS mut 13 (7.3) 9 (7.1) - 5 (10.9) 4 (7.3) 4 (5.2) -
NA 141 (79.2) 101 (79.5) - 34 (73.9) 43 (78.2) 64 (83.1) -

NRAS n (%) n (%) 1 n (%) n (%) n (%) 0.553
NRAS wt 37 (20.8) 26 (20.5) - 11 (23.9) 12 (21.8) 14 (18.2) -

NRAS mut 2 (1.1) 1 (0.8) - 1 (2.2) 1 (1.8) 0 (0.0) -
NA 139 (78.1) 100 (78.7) - 34 (73.9) 42 (76.4) 63 (81.8) -

CRC—colorectal cancer, TMS—tumour microbial subtypes, SD—standard deviation, NA—not available, pT—tumour pathologic stage,
pTis—tumour in situ, pN—regional lymph nodes pathologic stage, M—synchronous distant metastasis, MSI—microsatellite instability
MSS—microsatellite stable, wt—wild type, mut—mutation.

3.1. Microbial Categorisation According to Sample Type

There was no significant difference between the read counts across different sample
types (paired analysis of sample triplets, see Methods).

The analysis of the 127 triplet samples revealed that the microbial diversity was
significantly decreased in mucosal samples (both tumour mucosa and visually normal
mucosa swabs) compared to stool, as measured by the number of observed species, Chao 1
and Shannon index (Figure S1). No differences were found between the tumour mucosa
swabs and visually normal mucosa swabs.

Overall, in all the 483 samples, we identified 5449 ASVs: of these, 4800 ASVs in
the 127 triplet samples. The QIIME assigned species only to 48 ASVs. Hence, we also
performed a manual BLAST search to the SILVA database (Table S5).

For further analysis, however, we operated on higher taxonomic levels. After the taxa
filtering step (Table S4), 13 phyla, 25 classes, 43 orders, 75 families and 264 genera were
identified in the 127 triplets, most of which in all three sample types (Table S6). Inclusion
of the additional 51 duplets (tumour mucosa and visually normal mucosa swabs) resulted
only in slight differences at the genus level—the identified taxa remained the same. What
changed was their unique presence in some sample types (Text S1).

While most of the genera were found in all three sample types, their incidence and
abundance across sample types varied greatly between mucosal samples and stool, both in
overall and pairwise comparisons (Text S1, Figure S16). In this case, 14 genera (Stomatobac-
ulum, Pseudoramibacter, Pelomonas, Pasteurella, Mycoplasma, Kingella, Johnsonella, Helicobacter,
Deinococcus, Centipeda, Bergeyella, Actinobacillus, Abiotrophia and an unassigned genus from
order Comamonadaceae) were detected only in mucosal (tumour and visually normal) sam-
ples (Figure S2).

We further analysed the pairwise incidence of the 264 genera across sample types.
We found that 104 genera varied significantly across sample types (analysis of 127 triplets,
Text S1, Table S7).

To categorise the microbial genera based on their preferred environment: we compared
their abundance across sample types. Of the 264 genera, 121 differed significantly in
abundance across the sample types (Tables S8 and S9, Figure S3). Based on these results, we
defined five microbial categories (Figure 1). The first is based solely on the results of tumour
vs stool comparison: tumour genera (57 genera, more abundant in tumours than stool).
Additionally, within the category of tumour genera, we defined mucosa genera (52 genera,
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also enriched in visually normal mucosa compared to stool) and tumour-specific genera
(16 genera of tumour category, additionally enriched in tumours compared to visually
normal mucosa). In this case, 49 genera were significantly more abundant in stool than
tumours and visually normal mucosa from the group of stool genera. The fifth category
was defined as the no-difference genera (143 genera, no difference across any of the sample
types) (Text S1).
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For the description of tumour mucosa microbial heterogeneity without stool contami-
nants, we only considered species that were statistically significantly enriched in tumour
mucosa compared to stool. We hence investigated the group of 57 tumour genera with a
special focus on the subgroup of 16 tumour-specific genera (Gemella, Granulicatella, Parvi-
monas, Hungatella, Peptoclostridium, Flavonifractor, Selenomonas 3, Fusobacterium, Leptotrichia,
Eikenella, Campylobacter, Slackia, Streptococcus, Howardella, Solobacterium, Defluviitaleaceae
UCG-011, Figure 2A).

We performed the analysis of co-occurrence and observed significantly increased
co-occurences between 20 tumour genera (of which 13 tumour-specific) (Text S1, Figure S4,
Table S10). We also observed 14 significantly decreased co-occurrences between genera
(Text S1, Figure S4, Table S10).

Tumour genera incidence ranged from 1.1% to 99.4% (median 26.4%) of tumours with
the median abundance of the individual genera in the samples with the genus detected
ranging from 0.01% to 29.8% (median 0.15%) (Figure 2A). Overall, tumour genera consti-
tuted 1.1% to 97% (median 59.6%) while the tumour-specific genera constituted between
0.0–62.3% (median 3.1%) of the microbiome found on tumour mucosa (Figure 2C).
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The boxplot middle vertical line represents median, the box represents the interquartile range (IQR), the whiskers extend to
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= 127) (C) Overall proportion of the 16 tumour-specific genera in the three sample types (n = 127). (Tis—Tumour in situ,
pT—tumour pathologic stage, pN—regional lymph nodes pathologic, T—tumour swabs, VN—visually normal mucosa
swabs, S—stool, NaN—not a number). * p < 0.05.

We performed a detailed literature search (Table S11) which revealed that tumour
genera consisted predominantly of oral bacteria, many known as oral pathogens.

Some of the tumour genera of (possible) oral origin identified in our study, while previ-
ously associated with CRC, were never reported on tumour mucosa, namely Solobacterium
(increased in CRC faecal samples [35]), Slackia and Pseudomonas (decreased [12,19] in CRC
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faecal samples), and Treponema (the presence of which in the oral cavity was associated
with increased risk of CRC [33]).

We newly identified many genera of both oral and gut origin, not previously associated
with CRC, with increased abundance in the tumour lesions: Selenomonas 3, Selenomonas 4,
Aggregatibacter, Actinobacillus, Bergeyella, Phocaeiola, Defluviitaleaceae UCG-011, Abiotrophia,
Johnsonella, Stomatobaculum, Kingella, Shewanella, Tatumella, Senegalimassilia, Aeromonas,
Prevotellaceae UCG-003, Incertae Sedis genus from family Erysipelotrichaceae, an uncultured
species from Veillonelaceae family, and an uncultured species from boneC3G7 at the family
level (BLAST hit Fusobacterium necrophorum) (oral origin) and Tyzzerella 4, Massilia and an
unassigned genus from Peptostreptococcaceae family (gut origin).

Amongst tumour genera of gut origin, Lachnoclostridium, Flavonifractor [65,66], Sut-
terella and Hungatella (ex-Clostridium hathewayi) [67] were previously only reported in-
creased in the stool of patients with CRC.

3.3. Microbiome and Clinical Variables

Prior to the subtype derivation, we assessed the association of bacterial genera from all
the sampled environments with the clinical parameters and interpreted the results based on
our microbial categorisation. We performed partial validation on three publicly available
datasets.

β-diversity analysis by NMDS performed on each sample type separately showed that
tumour location was the factor with the highest influence on total microbiome composition
for all sample types, while tumour histological grade affected only tumour samples (Text S1,
Table S12, Figures S5 and S6).

The results of regression analysis for each clinical variable are summarised in Table 2
and Table S13, and Figures S7–S10; the detailed results of partial validation are presented
in Text S2, Tables S1, S2 and S14.

Increased abundance of Fusobacterium, Campylobacter and Leptotrichia in tumour mu-
cosa appeared to be independent predictors of tumour’s higher grade (p < 0.01, FDR < 0.1).
Leptotrichia was significantly increased on visually normal mucosa adjacent to grade 3
left-sided tumours (p < 0.05, FDR < 0.1).

The mucosa of grade 3 right-sided tumours was enriched in Prevotella, Selenomonas and
Selenomonas 3 (p < 0.01, FDR < 0.1). Prevotella was also increased in the stool of patients with
grade 3 rectosigmoid/rectum tumours (p < 0.01, FDR < 0.1). The mucosa of grade 3 tumours
of the rectosigmoid/rectum and visually normal mucosa adjacent to left, rectosigmoid and
rectal tumours, regardless of the grade, were enriched in Lachnospira (p < 0.05, FDR < 0.1).

The mucosa of left-sided (for some including rectosigmoid/rectum) low-grade tu-
mours was enriched in Ruminiclostridium 6, Coprococcus 2, [Eubacterium] ventriosum group,
Clostridiales Vadin BB60 group, Ruminococcaceae UCG-010 and an uncultured species and an
Incertae Sedis genus from the Lachnospiraceae family (p < 0.01, FDR < 0.1). Ruminoclostridium
6 remained enriched also in the stool of patients with grade 2 left-sided, rectosigmoid
and rectal tumours (p < 0.01, FDR < 0.1). Methanobrevibacter, Victivallis were significantly
enriched in the mucosa of low-grade tumours of rectosigmoid and rectum (both p < 0.01,
FDR < 0.1).

Christensenellaceae R-7 group, Bifidobacterium and Ruminococcaceae UCG-013 were in-
creased in mucosa of the left-sided, rectosigmoid and rectal tumours (p < 0.01, FDR < 0.1).
Similar associations were found for visually normal mucosa for Christensenellaceae R-7
group, Coprococcus 1, Lachnospira and Bifidobacterium (p < 0.01, FDR < 0.1). The increased
abundance of the Christensenellaceae R-7 group in tumour mucosa of left-sided tumours
was also validated in an independent dataset (p = 0.0047) (Text S2, Table S14). When
comparing early (0–II) and advanced (III–IV) stages, we identified an increased abundance
of Akkermansia in the stool of advanced stage tumours (p < 0.01, FDR < 0.1) (Table S13,
Figures S11 and S12).



Cancers 2021, 13, 4799 11 of 25

Table 2. Summary of rank regression results (p < 0.05) associating microbiome of the three different sample types with the clinical variables. Bold text denotes genera significant at FDR
< 0.1, text underlined by a solid line denotes that the association was validated in an independent dataset, marked by the superscript number (1 Feng et al. [30]; 2 Dejea et al. [31], *
previously published association [40,66,68–72], see Discussion and Table S11). Up and down arrows denote increase or decrease in abundance, respectively.

Regression
Covariate Effect/Contrast Tumour Mucosa Visually Normal Mucosa Stool

grade increasing grade

↑ Fusobacterium *, Campylobacter *,
Leptotrichia, Peptoclostridium,

Mogibacterium *
- -

- ↓ Unassigned genus from order Opitutae
vadin HA64 -

location

right-sided/transverse vs left-sided
and rectum/rectosigmoid

↑ Holdemania, Selenomonas 4, Clostridium
sensu stricto 1, Alloprevotella

↑ Selenomonas 3, Selenomonas,
Treponema 2 -

↓ Bifidobacterium *,
Christensenellaceae R-7 group 2,

Ruminococcaceae UCG-013,
Fusicatenibacter

↓ Lachnospira, Bifidobacterium,
Coprococcus 1, Christensenellaceae R-7

group
-

right-sided/transverse vs left-sided ↑ Campylobacter, Alloprevotella - -
↓ Family XIII AD3011 group, Coprococcus 1 -

right-sided/transverse vs
rectosigmoid/rectum

↑ Oribacterium, Fretibacterium - -
- ↓ [Eubacterium] ventriosum group

grade*location
interaction

low-graded; right-sided/transverse
↑Ruminococcaceae UCG-010, uncultured
bacterium from Clostridiales vadinBB60

group
-

↑ Unassigned genus from order
Opitutae vadin HA64,

Porphyromonas

grade 2; left-sided
↓Coprococcus 2, Ruminiclostridium 6,

[Eubacterium] ventriosum group, Incertae
Sedis from Lachnospiraceae family

↓ Gemella, Corynebacterium 1 ↓ Ruminiclostridium 6, Coprococcus 2

grade 2; rectosigmoid/rectum

- ↑ Veillonella ↑ Veillonella

↓Methanobrevibacter, Dielma, Victivallis ↓Methanobrevibacter, an uncultured
genus from the Peptococcaceae family

↓ Victivallis, Ruminiclosridium 6,
Lachnospiraceae UCG-005, an
unassigned genus from order

Mollicutes RF9

grade 3; right-sided/transverse ↑ Prevotella, Selenomonas, Selenomonas 3 - -
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Table 2. Cont.

Regression
Covariate Effect/Contrast Tumour Mucosa Visually Normal Mucosa Stool

grade*location
interaction

grade 3; left-sided

- ↑ Eisenbergiella, Leptotrichia,
Escherichia-Shigella, Veillonella ↑ Veillonella, Prevotella 7

↓ Coprococcus 2, Ruminiclostridium 6,
[Eubacterium] ventriosum group, Incertae

Sedis from Lachnospiraceae family,
Odoribacter

↓ Gemella, Corynebacterium 1 ↓ Coprococcus 2

grade 3; rectosigmoid/rectum

↑ Lachnospira ↑ Veillonella ↑ Prevotella, Prevotella 7

↓Methanobrevibacter, Dielma, Victivallis
↓Methanobrevibacter, Eisenbergiella, an

uncultured genus from the
Peptococcaceae family

↓ Lachnospiraceae UCG-005,
unassigned genus from order

Mollicutes RF9

AJCC stage III–IV vs 0–II
↑ Peptoclostridium - ↑ Akkermansia

- ↓ Gelria -

Tumour pathologic
stage

pT 3–4 vs pTis-2

↑ Peptoclostridium, Gemella,
Campylobacter, Parvimonas

↑ Peptoclostridium,
Escherichia-Shigella, an unassigned

species from Ruminococcaceae
↑ Escherichia-Shigella

↓ Coprobacter, Intestinimonas,
Ruminococcaceae UCG-009, Oscillospira,

Cloacibacillus

↓ Intestinimonas, Ruminococcaceae
UCG-009, Holdemanella, Coprobacter,
Gelria, an uncultured genus from the

Christensenellaceae family

↓ Prevotella 6,
Ruminococcaceae UCG-0111

Regional lymph
nodes stage N1–2 vs N0

↑ Peptoclostridium -

↑ Peptococcus, Campylobacter,
Akkermansia *, Selenomonas,

Porphyromonas *, Streptococcus,
Oscillospira

↓ Prevotellaceae UCG-001, uncultured
Fusobacterium sp. from family boneC3G7 ↓ [Eubacterium] hallii group

↓ Faecalibacterium,
Ruminiclostridium, Dorea *,

Lachnospiraceae FCS020 group

Synchronous
distant metastasis

present vs absent

↑ Porphyromonas, Streptococcus,
Ruminococcaceae UCG-005 ↑ Akkermansia

↑ uncultured genus from
Erysipelotrichaceae family,
Akkermansia, Coprococcus 1,

Solobacterium

-
↓ Gelria, [Eubacterium] brachy group,

uncultured genera from Christensenellaceae
family, Gordonibacter, Fretibacterium

↓ Selenomonas, Ruminococcaceae
UCG-004

FDR-false discovery rate.
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Patients with advanced T stages (pT 3–4) were characterised by a significant increase
in abundance of Gemella, Campylobacter, Peptoclostridium and Parvimonas (p < 0.01, FDR < 0.1)
on tumour mucosa, and increased Peptoclostridium, Escherichia-Shigella (p < 0.01, FDR < 0.1)
in the adjacent visually normal mucosa. Early T stage tumours (pTis-2) were associated with
an increase in Coprobacter, on tumour mucosa, increased Intestinimonas, Ruminococcaceae
UCG-009, Holdemanella and Coprobacter on the adjacent visually normal tissue (p < 0.05,
FDR < 0.1) and Prevotella 6 (p < 0.01, FDR < 0.1) and Ruminococcaceae UCG-011 (p < 0.05,
FDR > 0.1) in the stool (Table S13, Figures S11 and S13). We validated the decrease of
Ruminococcaceae in the stool of patients with pT 3–4 stage (p = 0.00113, Feng et al.) (Text S2,
Table S14).

The presence of metastases (local or distant) at the time of diagnosis was predomi-
nantly associated with changes in the stool microbiome. Except for the increased abundance
of Akkermansia in stool of patients with N1–2 stage tumours (p < 0.01, FDR < 0.1) and of
the uncultured genus from the Erysipelotrichaceae family in the stool of patients with syn-
chronous distant metastases (p < 0.01, FDR < 0.1), none of these associations were significant
after FDR correction (Table S13, Figures S11, S14 and S15). Nevertheless, we validated
the decrease of Dorea in the stool of patients with N1–2 stage tumours (p = 0.00011) in an
independent dataset (Feng et al.) (Text S2, Table S14).

3.4. Tumour CRC Microbial Subtypes

We continued our characterisation of tumour microbial heterogeneity by performing
hierarchical clustering of patients based on the relative abundance of the 57 tumour genera
in the tumour mucosa samples (See Methods). Once the subtypes were identified, we
performed between-subtype differential abundance analyses of microbiome profiles in all
three sampling environments.

Based on the tumour genera profiles, we observed three major subtypes of tumours
(TMS1–TMS3), that could further be divided into two groups each (Figures 3 and 4). The
bacteria were clustered into six groups B1–B6 (Figure 3, Table S12).

The B1 group and B2 group are represented by typical gut microbiome members.
The B1 group consists of the five most common and most abundant genera Fusobacterium,
Lachnoclostridium, Bacteroides, Escherichia-Shigella and one uncultured genus from the family
Lachnospiraceae. All tumours contain at least three of these bacteria, most tumours (78.7%) all
five. These bacteria have high co-occurrence across the sampled environments (Figure 2A,
fourth panel), except for Fusobacterium, predominantly found in mucosa samples. The
B4 group contains exclusively oral microbiome genera, and we named it the Selenomonas
group due to its enrichment in the Selenomonas genera. B3 and B5 groups include mostly
oral microbiome genera. These genera have significantly different incidence across the
sampled environments, with 45.7–94.1% of patients missing these genera in the stool if
present on tumour mucosa. Group B6 consists of 27 less common species with incidence
ranging from 0% to 37% (median 11.1%).

Tumour microbial subtype 1 (TMS1) represents 26% (46) of tumours and is defined by
the presence of B1–B4 microbial groups, and overall contains most of the high-grade associ-
ated genera (Fusobacterium, Campylobacter, Leptotrichia, Peptoclostridium and Selenomonas, see
Table 2). This subtype is enriched in right-sided (60.9%), grade 3 (58.7%), pT3 or pT4 stage
(95.6%) tumours and is depleted of stage 0 and stage I tumours (0% and 4.3%, respectively)
(Table 1, Figure 4). In addition, TMS1 contains significantly more tumours with MSI-H
(34.8%) and BRAF mutation (15.2%) compared to other tumour microbial subtypes. TMS1
differs from TMS2 and TMS3 by the presence of the Selenomonas group (B4), Solobacterium
and Howardella species, and Clostridium sensu stricto 1. In contrast to other subtypes, this
subtype shows a significantly decreased abundance of typical faecal commensals such as Bi-
fidobacterium, Ruminococcus 2, Anaerostipes and Coprococcus 1 on tumour mucosa (Table S15).
In stool samples, we observed a higher abundance of Prevotella and Clostridium sensu stricto
1 (Table S16).
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Tumour microbial subtype 1 (TMS1) represents 26% (46) of tumours and is defined by
the presence of B1–B4 microbial groups, and overall contains most of the high-grade associ-
ated genera (Fusobacterium, Campylobacter, Leptotrichia, Peptoclostridium and Selenomonas, see
Table 2). This subtype is enriched in right-sided (60.9%), grade 3 (58.7%), pT3 or pT4 stage
(95.6%) tumours and is depleted of stage 0 and stage I tumours (0% and 4.3%, respectively)
(Table 1, Figure 4). In addition, TMS1 contains significantly more tumours with MSI-H
(34.8%) and BRAF mutation (15.2%) compared to other tumour microbial subtypes. TMS1
differs from TMS2 and TMS3 by the presence of the Selenomonas group (B4), Solobacterium
and Howardella species, and Clostridium sensu stricto 1. In contrast to other subtypes, this
subtype shows a significantly decreased abundance of typical faecal commensals such as Bi-
fidobacterium, Ruminococcus 2, Anaerostipes and Coprococcus 1 on tumour mucosa (Table S15).
In stool samples, we observed a higher abundance of Prevotella and Clostridium sensu stricto
1 (Table S16).

Tumour microbial subtype 2 (TMS2) comprises 31% (55) of tumours and is defined
mainly by the absence of B4 bacteria (the Selenomonas group). This subtype can be fur-
ther divided into two groups by the increased incidence of Leptotrichia, Granulicatella,
Aggregatibacter and Neisseria (TMS2a) or Tyzzerella 4, Hungatella (ex-Clostridium hathewayi),
Solobacterium, Pseudomonas and Porphyromonas (TMS2b). TMS2 tumours are predominantly
from the left side, rectosigmoid or rectum (70.9%) (Table 1, Figure 4). The mucosa of TMS2
tumours shows a significantly higher abundance of Haemophilus, Sutterella, Veillonella and
Streptococcus and a lower abundance of Alloprevotella (Table S15). Alloprevotella was also
significantly decreased in stool samples (Table S16).

Finally, the largest subtype, TMS3, represents 43% (77) of tumours and is mostly
missing the B3–5 bacterial groups and most of the high-grade related species. TMS3
is characteristic by an increased proportion of grade 1 tumours (15.6%). In the TMS3
microbial subtype, right-sided and left-sided tumours are equally represented (Table 1,
Figure 4). The subtype can be further divided by increased incidence of Incertae sedis from
the Erysipelotrichaceae family and Tyzzerella 4 (TMS3a) or Clostridium sensu stricto 1, Ru-
minococcaceae UCG-013 and Incertae sedis from Lachnospiraceae family (TMS3b). Interestingly,
subtype TMS3 contains all the tumours that lack Fusobacterium species (most of them in
TMS3a) both in their mucosa and in the patients’ stool.

Most importantly, the subtypes differed significantly in the proportion of the oral
genera with TMS1 median of 15.8%, TMS2 median of 12.3% and TMS3 median of 5.3%
(p < 0.001). We then explored the estimated metabolic potential of the microbial communi-
ties specific to the tumour subtypes (Table S17). TMS1 is characterised by functional shifts
in bacterial composition, including the increase in gene content specific for nucleotide
metabolism, metabolism of terpenoids and polyketides and energy metabolism (p < 0.05,
FDR < 0.1), reduction in lipid metabolism and xenobiotics biodegradation and metabolism
(p < 0.05, FDR < 0.1). At the lower functional level, TMS1 subtype was characterised by
increased peptidoglycan biosynthesis, novobiocin biosynthesis and ansamycin biosynthe-
sis (p < 0.05, FDR < 0.1). The TMS2 subtype exhibited the highest score of xenobiotics
biodegradation and metabolism. TMS3 subtype showed enhanced biosynthesis of other
secondary metabolites, carbohydrate metabolism and amino acid metabolism and reduced
metabolism of other amino acids (p < 0.05, FDR < 0.1).

4. Discussion

Carcinogenesis of colorectal cancer is a complex process with a unique set of somatic
molecular changes. Considerable efforts have been dedicated to understanding the het-
erogeneity of CRC and deriving clinically applicable molecular markers of the disease
progression and patients’ response to therapy. Approaching the problem from the molecu-
lar perspective in supervised analyses led to identifying several molecular markers and
signatures with limited clinical use [73]. The unsupervised approach led to the definition of
four consensus molecular subtypes [74], which, surprisingly, bear some prognostic value.
The CRC heterogeneity puzzle, however, is far from being solved. One of the reasons is
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that the tumour microenvironment, especially the microbiome, seems to play a much more
critical role than imagined. Many studies correlated the dysbiosis of the gut microbiome
with the development of colorectal cancer in the healthy mucous-adenoma-carcinoma
sequence or focused on elucidating the concrete role of selected bacterial species in the gut
(colorectal) pathogenesis progression [4–22].

In contrast, our study aimed to use an unsupervised approach to characterise the
heterogeneity of the CRC gut microbiome in the ongoing disease to discover unforeseen
patterns. The comparison of microbial communities of stool, tumour mucosa and adjacent
visually normal mucosa provided us with insights into the preferred environment of the
observed species. The resulting microbial categorisation served to focus downstream
analyses and to interpret our findings. We based the characterisation of the CRC tumour
microbial landscape by performing subtyping of patients on bacteria with increased abun-
dance in tumour mucosa compared to the stool to filter out potential stool contaminants.
With a median of 59.6%, the tumour genera represented an essential fraction of the total
microbiome found on tumour mucosa. Interestingly, the tumours of different microbial
subtypes differed in the on-mucosa abundance of typical faecal genera (both pathogenic
and commensal) that were not used for their definition. The analysis of microbial com-
position between sample types confirmed previously reported observations [8,11,34] that
mucosa-associated bacteria dominate the tumour mucosal microbiome and that these
species are associated also with visually normal mucosa. It is debatable to what extent
the non-cancerous tissue (however distant from the tumour) from the surgically removed
segment is already influenced by the bacteria initiating CRC development. Consistent with
the bacterial driver-passenger model as proposed by Tjalsman et al. [27] our mucosa genera
could be bacterial drivers, while tumour-specific genera could be bacterial passengers. We
observed that tumours harbour a diverse community of opportunistic pathogens of oral
origin (31 of 57 tumour genera) as previously reported [29,31,75].

Multiple factors make the CRC tumour niche a favourable environment for oral
bacteria, in particular, for oral pathogens. Some of the bacteria can bind to specific proteins
overexpressed on tumour cells [76–78]. Inflammation in the oral tissue niche selects for
those species that are most adapted to the new environment, producing specific molecules
such as microbial proteolytic enzymes [79] that break down the host’s extracellular matrix
and soluble factors to get nutrients and invade the tissue. In the digestive tract, some
oral bacteria can change their oxygen requirements from facultative anaerobic to strict
anaerobic and their metabolism from asaccharolytic to proteolytic [80]. Oral pathogens
gaining a more favourable niche on colon tissue may shift the balance on their behalf,
producing proteins playing a key role in biofilm formation [81]. Some of the oral genera
detected in our study were previously never associated with CRC tumour mucosa (e.g.,
Selenomonas 3, Selenomonas 4, Aggregatibacter, Johnsonella, Abiotrophia, Defluviitaleaceae UCG-
011). Most importantly, we newly associate 22 genera of both oral and gut origin with
CRC overall. Some of these genera contain species that are known human pathogens
causing infections of mucosal or other tissues such as: periodontal disease (Selenomonas,
Phocaeiola Aggregatibacter) [82–84] infections in humans through animal bites (Bergeyella and
Actinobacillus) [85,86]; endocarditis (B. cardium) or respiratory infections (A. hominis) [87,88].
For other genera, their potential involvement in CRC is not so obvious. The tumour-specific
genera of Defluviitaleaceae might influence CRC through the metabolism of butyrate [89].
The association of Tyzzerella 4 from the Lachnospiraceae family with CRC may be due to its
increased occurrence in patients with higher cardiovascular risk (CVR) factor scores [90],
which are also associated with CRC [91]. Massilia was detected in patients with pancreatic
cancer [92].

Correlating the tumour microbiome with clinical variables of tumour progression,
such as grade or stage, bears the promise of offering viable hypotheses on the role of
bacteria in the progression of the disease. Currently, the associations between clinical
variables and gut microbial composition in an ongoing disease are understudied, and only
a few efforts addressed the topic on limited cohorts.
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The sample size of our study allowed for the study of the interaction of grade and
tumour location, thus providing a finer estimation of the differences in the microbiome com-
position. We report 59 associations of 43 genera with tumour grade and/or location for all
sample types studied. We confirmed previously reported high-grade tumour associations
of Fusobacterium, Campylobacter and Mogibacterium, in CRC tumour mucosa [40,68]. We
newly observed potentially beneficial effects of the increased abundance of 13 stool genera
significantly associated with left location, namely decreasing tumour grade with increasing
abundance, e.g., of Bifidobacterium, Ruminococcaceae UCG-010 and Victivallis in tumour
mucosa; and of Porphyromonas and Lachnospiraceae UCG-005, in the stool. Bifidobacterium
was previously shown to have anti-cancerogenic effects [66,69–72].

We also found location-dependent grade-predictive genera. Remarkably, while in the
right colon a higher grade was associated with an increase in pathogenic genera (Prevotella,
Selenomonas) on tumour mucosa, in the left colon a higher grade was associated with a
depletion in possibly beneficial (commensal) genera (Methanobrevibacter, Coprococcus 2,
Ruminiclostridium 6, Odoribacter, Dielma, Victivallis) on tumour mucosa or in the stool. We
can only speculate whether the prolonged exposure of tumour mucosa to predominantly
stool bacteria that is mechanistically related to tumours in a distant part of the colon (left-
sided or with onset in rectosigmoid and rectum) can have potentially harmful or beneficial
effects or whether any associations are mostly due to the well-known molecular differences
in the right vs left-sided tumours [36,93,94]. The increased abundance of pathogens on the
high-grade right-sided tumours might be the result of increased permeability of proximal
gut mucosa [95], but the relevance of the animal models was questioned [96].

We confirmed a previously published increase of Akkermansia and Porphyromonas in
the stool of patients with local metastases [72], and newly associated increased Akkermansia
in stool in patients with stage III–IV CRC. We noted that the occurrence of synchronous
local and distant metastases was mainly associated with shifts in stool microbiome, while
tumour specific variables such as grade or location were associated with changes in tumour
microbiome. On one side, this observation raises the possibility of microbiome-based
non-invasive metastasis diagnostics in colorectal cancer or monitoring the patients at risk.
On the other hand, the alteration of the stool microbial community might only reflect
changes in the overall health status in the presence of metastasis and cancer progression
itself similarly to non-colonic malignancies [97–99].

Pairwise analysis of the incidence of all genera across sample types helped us to assess
their screening potential. On-tumour microbes with significant clinical associations and no
difference in incidence across sample types are perfect candidates for stool-based screening
studies or stool-based prognostic and predictive classifiers. Most of the tumour-specific
genera, if present on tumour mucosa, were not identified in stool of the same patients in
more than 50% of cases. Given that these genera prefer the mucosal environment over the
stool, such associations are not entirely surprising. Consequently, these genera are better
candidates for colonoscopy biopsy sample screening.

We then compared how the previously suggested stool-based predictive microbial
markers of CRC (compared to healthy and adenomas) [29] behave with respect to the
progression of an ongoing disease (associations with grade or stage) as a result of tumour
microenvironment changes. Some retained their predictive potential of progression of the
disease as stool predictors of the presence of local metastases (increase in Campylobacter,
Porphyromonas, Streptococcus and decrease in Lachnospiraceae and Faecalibacterium). Some
showed no significant clinical associations in stool, but their increased abundance on
tumour mucosa was predictive of high pT stage (Parvimonas) or grade (Fusobacterium).

The three tumour–mucosa-based microbial subtypes we derived on patterns of simi-
larity of the abundance of the tumour genera represent the first attempt to systematically
describe microbial heterogeneity of CRC tumour environment. We were intrigued to see
that compared to subtyping efforts based on gene expression [74,100], also microbial profil-
ing identified one subtype (TMS1) enriched in BRAF mutant, MSI-H, right-sided tumours.
An interesting observation was that the tumour microbial subtypes differ not only in the
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type of the tumour genera they host but also in the count of potentially pathogenic micro-
biome correlated with high grade and stage and the proportion of oral pathogens within
the tumour genera. Of the 10 high grade or high stage-related genera, TMS1 tumours
had a median of 8 (80%), TMS2 of 6 (60%) and TMS3 of 4 (40%), differing thus in what
we could call “microbial pathogens burden”. This subtyping could reflect differences in
tumour biological properties linked with cancer progression: malignant tumours with
active growth, cell and tissue atypia because of disruption of the mucus layer and dysreg-
ulation of local immunity provide more comfortable conditions to aggressive microbial
consortia expansion and unconventional (oral) species homing. Moreover, with respect
to the bacteria-supported model of carcinogenesis, proved in animal models [10,101], the
pathogenic bacteria growth leads to additional dedifferentiation of tumour cells forming
the pathogenetic loop. The differences in the proportion of oral pathogens and metabolic
potential lead us to the hypothesis that the TMS1 subtype is enriched in tumours with
microbial biofilms. This subtype is enriched in right-sided tumours and compared with
the other two subtypes, is enriched in the presence of oral bacteria. Recently, biofilms
have been associated with right-sided CRC [31]. Drewes et al. [102] identified several
biofilm-associated shifts, including the functional alteration in peptidoglycan biosynthesis,
novobiocin biosynthesis and ansamycin biosynthesis, which were significantly increased in
the TMS1 subtype. Studies show that the commensal and the pathogenic periodontal bacte-
ria (Fusobacterium, Porphypomonas) produce proteins such as gingipains [81] and RadD [103],
which can play a key role in biofilm formation. Koliarakis et al. [75] proposed a new outlook
on CRC pathogenesis driven by gut mucosa biofilm created by periodontopathic bacteria
translocated into the colorectum. Tomkovich et al. [104] successfully demonstrated that
polymicrobial biofilms are carcinogenic. Transcriptomic studies of periodontal tissues show
that many organisms can fulfil gaps in metabolism, therefore the pathogenic community is
more important as one unit than the virulence of one species [105].

It remains to be investigated whether the microbial subtypes could improve the
prediction of patients’ survival and prognosis. We can speculate that the high microbial
pathogen burden could worsen not only the tumour progression but also potentially the
patient’s condition after the surgical resection and during and after the chemotherapy
treatment. Given the fact that tumour-related genera reside also on visually normal
mucosa, they could initiate CRC tissue dysplastic changes and malignisation. There is
limited evidence of linkage between mucosal microbiota and metachronous adenomas
growing demonstrated by Liu et al. [106]. On the other side, it is shown that the microbiome
could interact and metabolise chemotherapeutic medicine, which leads to modulation of its
activity and toxicity [107]. In the light of the above, modification of gut microbiome after
colorectal cancer surgical removal might be considered as an additional step of treatment
to prevent tumour recurrence and modulate chemotherapy effectiveness and toxicity.

The probable presence of biofilm in the TMS1 subtype might make this subtype of
interest to potential prevention and treatment strategies. Importantly, although TMS1
is enriched in proximal tumours, it occurs in 9.1–18.8% of left, rectosigmoid and rectal
tumours. Remarkably, biofilm communities from the colon biopsies of healthy individuals
were as potent in inducing colon inflammation as the biofilm communities from CRC
hosts [104]. The inhibition or removal of such biofilms from patients with CRC could
represent a promising strategy for secondary CRC prevention and treatment but remains
an uneasy task due to inefficiency of traditional antimicrobial strategies such as antibiotic
treatment [108]. A recent study associated periodontitis with increased risk of high-grade
proximal colorectal cancer [109]. Based on this, our results suggest an intriguing hypothesis:
whether improving oral hygiene would impact the incidence of TMS1 tumours, or, more
importantly, would lower the recurrence rate or development of secondary tumours in the
TMS1 patients.

Another clinically relevant observation is the association of left-sided high-grade
tumours with the depletion in protective species rather than increase in bacterial pathogens.
This suggests that antibiotic treatment of patients with distal tumours may have a detri-
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mental effect on their prognosis. Coadministration of probiotics in this case could be highly
beneficial.

We believe that for certain patient populations, the inclusion of tumour mucosa
sampling during colonoscopy for analysis of microbial composition could help to efficiently
steer pre- and post-operative treatment decisions.

5. Conclusions

In our study, by analysis of 483 samples from n = 178 patients, we extended the
current characterisation of the colorectal cancer microbiome in several directions. Thanks
to the large sample size, we identified bacterial genera that were not previously associated
with CRC tumour mucosa, clinical variables or with colorectal carcinoma at all. These
genera should be studied in more detail to describe their mechanism of interaction with
the disease.

By focusing on microbial community analysis, in contrast to classical microbiome-
centred approaches, we were able to identify co-occurring species and three major tumour-
microbial subtypes that correlate with clinical variables, such as grade, location and TNM
staging. The subtypes also differ in what we describe as microbial pathogens burden—
the number of pathogenic species correlated with increased grade and stage present on
tumour mucosa, although the concept can be defined with respect to all three environments
(tumour mucosa, visually normal mucosa and stool).

An important limitation of our study is the lack of proper validation of all the results
since adequate data is unavailable, hence these results must be taken cautiously. Addi-
tionally, it is well known that the gut microbial composition changes with dietary patterns
and lifestyle, which could be region-based [98]. More studies of similar sample size or
larger from different geographical locations, are needed to derive robust and generalisable
patterns. We make the full data available, including clinical variables, as a first step towards
building a data corpus that could support such investigations. The nature of the samples
(mucosa) prohibited us from using more advanced whole-metagenomic sequencing due
to severe human DNA contamination issues [110–112]. The technology chosen was high
throughput, fitting the purpose of microbial community-based analysis. We did perform
the sequence matching for the identified ASVs against the SILVA database, however, being
aware of the limitations, we provide these results solely as supplementary information
without discussing them here in detail.

Having sampled the microbiome at three different complementary sites allowed the
study of several environments leading to the definition of novel microbial categories with
multiple implications. Our study shows that the associations with clinical variables found
for the tumour mucosal or adjacent visually normal mucosa microbiome are rarely pre-
served in the microbial composition of stool and vice versa. While tumour histological
grade, stage and location are reflected in the corresponding mucosal microbiome, the pres-
ence of lymph nodes or distant metastases influences mainly the stool microbiome. It seems
that the mucosa and stool microbiome are complementary with respect to the modulation
of their effects on disease progression. Tumour-mucosa biopsies from colonoscopy might
need to be coupled with stool sampling for efficient screening or diagnostic purposes.

Understanding the role of tumour-subtype specific microbial communities could lead
to tailored strategies of CRC patient gut microbiome management through lifestyle and
diet recommendations including probiotic and antimicrobial interventions.

Our study is a step forward in understanding the role of the microbiome and its
interactions with other factors involved in oncogenesis and tumour progression. Rather
than providing definite answers it opens new avenues for exploring new treatments and
biomarkers.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13194799/s1, Figure S1: Number of reads and diversity comparison of three sample
types on 127 triplets, Figure S2: Genera which were detected only in some of the three sample
types, Figure S3: Differences in microbiome composition across the sample types, Figure S4: Co-
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occurrence analysis of 57 tumour genera, Figure S5: Microbial β-diversity analysis by NMDS on
178 tumour tissue swab, Figure S6: Microbial β-diversity analysis by NMDS performed on 127
triplets, Figure S7: Side-dependent associations between tumour histological grade and microbiota
composition, Figure S8: Boxplots of distribution of clr transformed abundance of genera associated
with tumour grade and/or location in 178 tumour mucosa samples in models with or without
interaction at p-value < 0.05, Figure S9: Boxplots of distribution of clr transformed abundance of
genera associated with tumour grade and/or location in 178 visually normal mucosa samples in
models with or without interaction at p-value < 0.05, Figure S10: Boxplots of distribution of clr
transformed abundance of genera associated with tumour grade and/or location in 127 stool samples
in models with or without interaction at p-value < 0.05, Figure S11: Associations between tumour
stage, including TNM staging separately, gender and microbiota composition in all sample types and
sample sizes, Figure S12: Boxplots of distribution of clr transformed abundance of genera associated
with tumour stage in 178 tumour mucosa samples, 178 adjacent visually normal mucosa samples and
127 stool samples at p-value < 0.05, Figure S13: Boxplots of distribution of clr transformed abundance
of genera associated with tumour pathologic stage in 178 tumour mucosa samples, 178 adjacent
visually normal mucosa samples and 127 stool samples at p-value < 0.05, Figure S14: Boxplots of
distribution of clr transformed abundance of genera associated with the presence of lymph-node
metastases in 178 tumour mucosa samples, 178 adjacent visually normal mucosa samples and
127 stool samples at p-value < 0.05, Figure S15: Boxplots of distribution of clr transformed abundance
of genera associated with the presence of distance metastases in 178 tumour mucosa samples, 178
adjacent visually normal mucosa samples and 127 stool samples at p-value < 0.05, Figure S16: Results
of pairwise coincidence analysis of genera across sample types within the same patient, Table S1:
Results of validation of associations of microbiome with tumour location on the Dejea et al. dataset,
Table S2: Results of validation of associations of microbiome with tumour location on the Dejea et al.,
Zeller et al. and Feng et al. datasets, Table S3: List of primers and the length of PCR products, Table
S4: Results of the filtering steps based on ASV abundance and type of taxonomic assignment, Table
S5: Table of identified ASV’s in the three sample types (127 triplets) with taxonomy assigned by
BLAST and QIIME, Table S6: Number of taxa identified at respective taxonomic levels after the
filtering steps in 127 triplets (381 samples) and overall (483), in different sample types and their
combinations, Table S7: Results of Cochran’s Q test and McNemar’s test including the report of the
results as the co-occurence of specific event pairs: genera present in one sample type but not in the
second sample type and vice versa, Table S8: Total counts of genera found significantly differentially
abundant across the three sample types (127 triplets), divided into categories according to their
enrichment in different sample types (TtoS—tumour to stool, VNtoS—visually-normal to stool,
TtoVN—tumour to visually-normal.), Table S9: Results of the Friedman test across the three sample
types (127 triplets), Table S10: Results of microbial co-occurrence analysis, Table S11. Summary of
the 57 tumour genera. Overview of the current knowledge about the genera that we categorise as
associated with tumour mucosa, Table S12: Results of adonis testing of the associations between
β-diversity and clinical variables, Table S13: Results of rank regression associating microbiome
with the clinical variables, Table S14: Results of rank regression on publicly available validation
datasets, Table S15: Results of rank regression associating tumour microbiome abundance with
tumour microbiome subtypes, Table S16: Results of rank regression associating stool microbiome
abundance with tumour microbiome subtypes, Table S17: Results of rank regression of differences
between tumour microbiome subtypes in metabolic potential of the microbial communities, Text S1:
Extended results of differences in microbiome diversity and incidence across the sample type, Text
S2: Validation of results on publicly available data.
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Abstract: Biomarker-guided treatment for patients with colon cancer is needed. We tested ABCG2
and topoisomerase 1 (TOP1) mRNA expression as predictive biomarkers for irinotecan benefit in
the PETACC-3 patient cohort. The present study included 580 patients with mRNA expression data
from Stage III colon cancer samples from the PETACC-3 study, which randomized the patients to
Fluorouracil/leucovorin (5FUL) +/− irinotecan. The primary end-points were recurrence free survival
(RFS) and overall survival (OS). Patients were divided into one group with high ABCG2 expression
(above median) and low TOP-1 expression (below 75 percentile) (“resistant”) (n = 216) and another
group including all other combinations of these two genes (“sensitive”) (n = 364). The rationale
for the cut-offs were based on the distribution of expression levels in the PETACC-3 Stage II set of
patients, where ABCG2 was unimodal and TOP1 was bimodal with a high expression level mode
in the top quarter of the patients. Cox proportional hazards regression was used to estimate the
hazard ratios and the association between variables and end-points and log-rank tests to assess the
statistical significance of differences in survival between groups. Kaplan-Meier estimates of the
survival functions were used for visualization and estimation of survival rates at specific time points.
Significant differences were found for both RFS (Hazard ratio (HR): 0.63 (0.44–0.92); p = 0.016) and
OS (HR: 0.60 (0.39–0.93); p = 0.02) between the two biomarker groups when the patients received
FOLFIRI (5FUL+irinotecan). Considering only the Microsatellite Stable (MSS) and Microsatellite
Instability-Low (MSI-L) patients (n = 470), the differences were even more pronounced. In contrast,
no significant differences were observed between the groups when patients received 5FUL alone.
This study shows that the combination of ABCG2 and TOP1 gene expression significantly divided
the Stage III colon cancer patients into two groups regarding benefit from adjuvant treatment with
FOLFIRI but not 5FUL.
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1. Introduction

Based on the results from the MOSAIC prospective randomized clinical trial (PRCT) [1],
treatment of high risk Stage II and of Stage III colon cancer (CC) patients currently consists of
5-Fluorouracil or Xeloda plus leucovorin (5FUL) plus oxaliplatin (FOLFOX or XELOX).

Presently, irinotecan is not used in adjuvant treatment of primary CC but only in the metastatic
setting [2]. The reason for this is that none of two high-powered and independent PRCTs (PETACC-3 [3]
and CALGB 89803 [4]), including high risk Stage II and Stage III colon cancer and randomizing patients
to 5FUL ± irinotecan, could demonstrate a significant difference between the treatment groups with
respect to recurrence free survival (RFS) or overall survival (OS).

With a five-year recurrence rate of approximately 30% following adjuvant FOLFOX/XELOX
treatment of Stage III CC patients [1], there is obviously a need for other adjuvant treatment modalities
using drugs with different mechanisms of action than FOLFOX/XELOX. These treatments must be
accompanied by predictive biomarkers, allowing rational allocation of individual patients to the most
effective regimen.

Although PRCTs have not shown any added benefit from adjuvant irinotecan of CC cancer when
co-administered with 5FUL, it is conceivable that specific subgroups of patients may benefit from the
addition of irinotecan treatment but that these patients are concealed within the total patient population.
Moreover, given the fundamental differences in molecular mechanisms of action of oxaliplatin and
irinotecan as well as the different molecular mechanisms underlying resistance to these two drugs [5],
it is likely that the groups of patients benefitting from adjuvant FOLFOX/XELOX or FOLFIRI treatments,
respectively, are only partly overlapping, if at all.

We recently characterized isogeneic pairs of CRC cell lines selected for resistance to SN38 (the
active metabolite of irinotecan) or oxaliplatin [5]. We identified several genetic aberrations associated
with SN38 resistance; in particular, the xenobiotic drug transporter ABCG2 was found to be the most
up-regulated gene in the SN38 resistant cell lines [5]. Subsequent functional analyses of this gene
demonstrated its major role in SN38 resistance [5]. Moreover, downregulation of the irinotecan target,
the topoisomerase-1 enzyme (Top-1), has also been observed in our SN38 resistant cancer cells [6].
Of specific interest is that the resistance mechanisms in our three oxaliplatin-resistant colorectal
cancer cell lines [5] did not include regulation of ABCG2 or TOP1 mRNA. In recent publications [5,7],
we correlated each of ABCG2 and TOP1 mRNA expression to patient outcome in a subset of Stage III
colon cancer patients enrolled in the PETACC-3 study. A trend was demonstrated towards high ABCG2
mRNA expression being correlated with shorter recurrence-free survival (RFS) and shorter overall
survival (OS) when compared to patients with low ABCG2 mRNA expression [5], and high TOP1
expression was significantly associated with longer OS but not RFS in FOLFIRI treated patients [7].
We now hypothesize that low TOP1 and high ABCG2 expression (“resistant patients”) define patients
who will not benefit from irinotecan containing adjuvant chemotherapy while any other combination of
these two genes defines patients (“sensitive patients”) who will benefit from the addition of irinotecan
to 5FUL. The present study was designed to test this hypothesis.

2. Results

2.1. Patient Characteristics

For a detailed description, including a CONSORT diagram on the selection of the present
PETACC-3 cohort, please see [7]. Table 1 shows the clinicopathological characteristics of the n = 580
stage III CC patients included in the study. For comparison, the clinicopathological characteristics of
the full set of 2315 patients from the PETACC-3 Stage III CC patient cohort are included. With gender
composition as exception (the subpopulation is slightly enriched in males), the present study population
was representative of the global PETACC-3 study population.
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Table 1. Population characteristics for the whole PETACC-3/Stage III and the study subpopulation.
The only statistically significant difference was between male/female proportions (* starred covariate
in the table; p = 0.025). The missing values (denoted NA (not available)) were not considered when
computing the proportions. Microsatellite Instability (MSI) Status is divided into MSI High (MSI-H),
MSI Low (MSI-L) and Microsatellite Stable (MSS).

Variables All PETACC-3 Stage III (n = 2315) Study Subpopulation (n = 580)

Age (mean (sd)) 58.35 (10.54) 58.86 (10.44)
Sex * (n (%))

Male 1263 (54.6) 347 (59.8)
Female 1052 (45.4) 233 (40.2)

Treatment (n (%))
5FUL 1157 (50.0) 279 (48.1)

FOLFIRI 1158 (50.0) 301 (51.9)
Site (n (%))

left 1422 (61.4) 366 (63.1)
right 893 (38.6) 214 (36.9)

Grade (n (%))
1,2 877 (88.1) 512 (88.9)
3,4 119 (11.9) 64 (11.1)
NA 1319 4

T-stage (n (%))
T1, T2 196 (8.5) 51 (8.8)

T3 1766 (76.4) 438 (75.5)
T4 351 (15.2) 91 (15.7)
NA 2 0

N-stage (n (%))
N0, N1 1496 (64.4) 377 (65.0)

N2 819 (35.4) 203 (35.0)
Mucinous histology (n (%))

No 807 (81.0) 477 (82.8)
Yes 189 (19.0) 99 (17.2)
NA 1319 4

MSI status (n (%))
MSI-H 106 (12.1) 51 (9.8)

MSI-L, MSS 772 (87.9) 470 (90.2)
NA 1437 59

BRAF V600E (n (%))
mutated 78 (8.4) 37 (6.7)

wild type 848 (91.6) 512 (93.3)
NA 31

KRAS codon 12, 13 (n (%))
mutated 364 (39.6) 219 (40.1)

wild type 556 (60.4) 327 (59.9)
NA 1395 34

Table 2 shows the correlations between clinicopathological parameters and ABCG2 gene expression
and TOP1 gene expression, respectively. TOP1 was associated with site, grade, mucinous histology
and KRAS mutational status, while ABCG2 was associated with site, MSI and BRAF mutational status.
These observations suggest a possible association of ABCG2 with BRAF mutated pathway, and of TOP1
with BRAF-mutant-like (t-test p-value < 0.001) [8]. In univariate analysis including all 580 patients
stratified by treatment arm, no significant benefit from irinotecan addition was found either for RFS or
for OS (Figure 1) and thus the selected subgroup does not differ from the main PETACC-3 population
with regard to treatment effect.
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Table 2. Comparison of expression levels between various stratifications in the study subpopulation
for ABCG2 and TOP1 genes, respectively. For each gene, the mean and standard deviation of the
expression levels (log2) are indicated and the corresponding p-values from Student’s t-test (significant
are emphasized by italic) for binary categories and ANOVA for multiple categories.

Stratification Factor n (%) TOP1 (Mean (sd)) ABCG2 (Mean (sd))

Site
left 366 (63.1) 4.85 (1.00) 2.43 (0.55)

right 214 (36.9) 4.59 (0.98) 2.55 (0.73)
p-value 0.002 0.025
Grade

1, 2 512 (88.9) 4.79 (0.97) 2.46(0.59)
3,4 64 (11.1) 4.49 (1.21) 2.59 (0.85)

p-value 0.026 0.120
T-stage
T1, T2 51 (8.8) 4.86 (1.10) 2.47 (0.46)

T3 438 (75.5) 4.75 (0.96) 2.48 (0.65)
T4 91 (15.7) 4.74 (1.12) 2.46 (0.55)

p-value 0.725 0.961
N-stage
N0, N1 377 (65.0) 4.80 (0.95) 2.44 (0.52)

N2 203 (35.0) 4.68 (1.08) 2.54 (0.78)
p-value 0.162 0.079

Mucinous histology
no 477 (82.8) 4.85 (0.98) 2.48 (0.63)
yes 99 (17.2) 4.32 (0.97) 2.43 (0.61)

p-value < 0.001 0.411
MSI status

MSI-H 51 (9.8) 4.52 (1.01) 2.20 (0.40)
MSI-L, MSS 470 (90.2) 4.78 (0.99) 2.49 (0.59)

p-value 0.074 0.001
BRAF V600E mutation

mutated 37 (6.7) 4.55 (1.15) 2.81 (0.98)
wild type 512 (93.3) 4.77 (0.99) 2.44 (0.53)
p-value 0.202 < 0.001

KRAS codon 12, 13
mutated 219 (40.1) 4.65 (0.97) 2.45 (0.55)

wild type 327 (59.9) 4.82 (1.01) 2.48 (0.59)
p-value 0.040 0.549
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Figure 1. Summary of main survival analysis results: log-rank tests were used to assess the statistical
significance of survival differences between groups of interest. Each section of results refers to a set of
related tests. The differences assessed are given in the first column, the corresponding sample sizes in
the second column (N1/N2: sample size of the first and second group, respectively), while the columns
3–6 summarize the test results in terms of hazard ratios and 95% confidence intervals (plots in column 3)
and corresponding p-values (log-rank test—column 6). In the first column, “sensitive” was abbreviated
as “S” and “resistant” as “R”, respectively. Thus, “S/FOLFIRI” stands for “sensitive under FOLFIRI
treatment” etc.
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2.2. Combining TOP1 and ABCG2 mRNA Expression

The Spearman’s correlation coefficient between ABCG2 and TOP1 gene expression was r = 0.046
(Figure S1). There were 216 patients in the ABCG2 high/TOP1 low (“resistant patients”) and 364 patients
in the “sensitive patient” group. When stratifying the whole set of patients (n = 580) according to
ABCG2/TOP1 status, a significantly better RFS (Hazard Ratio (HR): 0.75; 95% confidence interval
CI: 0.58–0.98; p = 0.036) was observed in the “sensitive patient” group as compared to the ABCG2
high/TOP1 low “resistant patient” group (Figure 1 and Figure S2; online only). When stratifying each
of the two treatment groups according to the proposed test, the separation between the “sensitive”
and “resistant” patient groups in terms of RFS was significant in the FOLFIRI arm (HR: 0.63; 95% CI:
0.44–0.92; p = 0.016) but not in the 5FUL arm (Figure 1, Figure 2A,B).

Figure 2. Survival plots (Kaplan-Meier estimates) for “resistant” (ABCG2-high/TOP1-low,
abbreviated A/T under the plots) and “sensitive” (all other combinations of ABCG2 and TOP1
genes) patient groups in whole Stage III cohort (n = 580). The four plots show the RFS of “resistant”
(blue line) and “sensitive” (gold line) under (A) Fluorouracil/leucovorin (5FUL) + irinotecan (FOLFIRI)
and (B) 5FUL treatments and the overall survival (OS) of the same groups under (C) FOLFIRI and
(D) 5FUL treatments, respectively. Numbers at risk are given under each plot.
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In terms of relative 3- and 5-years RFS, the patients in the “sensitive” group performed better only
under FOLFIRI treatment (relative benefit of 18.2% and 19.9% at 3- and 5-years, respectively–Table 3).
The complete pairwise comparisons between all combinations of test group (“sensitive” vs. “resistant”
patients) and treatment arm (FOLFIRI vs. 5FUL) (six comparisons) did not yield any statistically
significant difference, aside from that between “sensitive” and “resistant” patients groups within the
FOLFIRI arm (Figure 1 and Figure S3 (online only)).

Table 3. Summary of patient survival rates by treatment and biomarker group (R: resistant, S: sensitive)
at 3 and 5 years, respectively. The relative benefit is denoted by (S−R)/R.

End-Point

FOLFIRI
S vs. R 3-Year Survival Rates 5-Year Survival Rates

HR (95% CI) p-Value S (%)
(95% CI)

R (%)
(95% CI)

(S−R)/R
(%)

S (%)
(95% CI)

R (%)
(95% CI)

(S−R)/R
(%)

RFS 0.63
(0.44–0.92) 0.016 71.5

(65.3–78.3)
60.5

(52.2–70.5) 18.2 68.3
(61.9–75.3)

57.0
(48.6–66.8) 19.9

OS 0.60
(0.39–0.93) 0.020 85.5

(80.6–90.7)
77.2

(69.9–85.3) 10.8 77.9
(72.2–84.1)

67.3
(59.2–76.6) 15.7

5FUL
S vs R 3-year survival rates 5-year survival rates

HR (95% CI) p-value S (%) (95%
CI)

R (%) (95%
CI)

(S−R)/R
(%)

S (%) (95%
CI)

R (%) (95%
CI)

(S−R)/R
(%)

RFS 0.90
(0.61–1.32) 0.58 68.3

(61.7–75.5)
69.6

(61.2–79.1) −0.02 63.0
(56.3–70.6)

60.8
(52.0–71.0) 0.04

OS 1.08
(0.69–1.68) 0.75 84.1

(78.8–89.7)
85.2

(78.6–92.4) −0.01 73.1
(66.8–80.0)

74.3
(66.2–83.3) −0.02

Abbreviations: HR (Hazard Ratio), CI (Confidence Interval), FOLFIRI (Fluorouracil/leucovorin (5FUL) + irinotecan),
RFS (Recurrence Free Survival), OS (Overall Survival).

We also pooled all the 5FUL-only treated patients and estimated the 3- and 5-year RFS (3-years
RFS: 68.8%; 5-year RFS: 62.2%). The relative benefit in 3-year and 5-year RFS between FOLFIRI-treated
“sensitive” patients and all 5FUL alone treated patients were 4.1% and 9.9%, respectively, in favor
of FOLFIRI.

Similar analyses were performed for OS as endpoint. In the whole Stage III population,
no statistically significant difference was found between “sensitive” and “resistant” patients (Figure 1
and Figure S4 (online only)). However, when analyzing by treatment arm, the FOLFIRI-treated
patients labeled as “sensitive” by the test had a significantly longer OS (HR: 0.6; 95% CI: 0.35–0.92;
p = 0.02) (Figures 1 and 2C), while no such difference could be detected in 5FUL only treated patients
(Figures 1 and 2D). When combining the 5FUL patients into one group and then comparing this
pooled group with each of the two FOLFIRI treated groups, no significant differences in OS were
observed (Figure S5; online only). Nevertheless, the “sensitive” patients treated with FOLIFIRI seemed
to fare better with 3- and 5-year relative gains of 1.2% and 6%, respectively (Figure S5; online only).
The pairwise comparisons of all possible combinations between test group and treatment arm did
not reveal any significant difference with the exception of the one between “sensitive” and “resistant”
patients treated with FOLFIRI, already discussed above (Figure 1).

2.3. ABCG2 and TOP1 in MSS Plus MSI-L Patient Subgroup

Due to the low number of Microsatellite Instable (MSI) tumors, we focused our analyses on
the Stage III Microsatellite Stable (MSS) plus Microsatellite Instable-Low (MSI-L) tumors (n = 470).
MSS and MSI-L patients in “sensitive patients” treated with FOLFIRI had a significant better RFS (HR:
0.57; 95% CI: 0.37–0.85; p = 0.006) (Figure 3A) and OS (HR: 0.57, 95% CI: 0.35–0.92; p = 0.02) (Figure 3B)
than patients in the “resistant” group. Stratifying the 5FUL only treated MSS patients by the ABCG2
and TOP1 test did not result in any significant separation of the patients for RFS or OS (Figure 1).
The 5-year RFS for all MSS plus MSI-L patients treated with 5FUL alone was 59.7% (95% CI: 53.7–66.5),
while for “sensitive patients” treated with FOLFIRI it was 69.3% (95% CI: 62.1–77.3), resulting in a
relative gain of 15.9% in favor of the latter. When also dichotomizing the 5FUL-only treated group with
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the biomarker test and when comparing to the FOLFIRI arm, it was seen that FOLFIRI treatment of
“sensitive patients” resulted in a 7.3% and 14.3% relative gain in 3-year and 5-year RFS in comparison
with the equivalent group treated with 5FUL alone, however without reaching statistical significance.
When considering all possible pairwise comparisons of groups defined by the test and treatment arm
(Figures S6–S8 (online only) for RFS and OS, respectively) the only significant differences were between
“sensitive” and “resistant” patients treated with FOLFIRI and between FOLFIRI-treated “resistant
patients” and 5FUL-treated group 1 patients (Figure 1).

Figure 3. Survival plots (Kaplan-Meier estimates) for “resistant” (ABCG2-high/TOP1-low, abbreviated
A/T under the plots) and “sensitive” (all other combinations of ABCG2 and TOP1 genes) patient groups
in stage III/MSS (Microsatellite Stable) subset (n = 470). The two plots show the (A) Recurrence free
survival (RFS) and (B) Overall Survival (OS) of “resistant” (blue line) and “sensitive” (gold line) under
FOLFIRI treatment, respectively. Numbers at risk are given under each plot.

2.4. ABCG2/TOP1 Status as Independent Predictor in Multivariable Models

We tested the independence of ABCG2/TOP1 status in multivariable models including tumor
site, MSI status, mucinous histology, and BRAF and KRAS mutation status (without interaction
terms). In least absolute shrinkage and selection operator (LASSO) [9] penalized regression analyses,
ABCG2/TOP1 status was selected as the most important variable for RFS both in the whole population
and in the FOLFIRI-treated arm. In 5FUL, none of the tested variables was found to be significant.
Similar results were obtained in the MSS subpopulation, with ABCG2/TOP1 status being selected as
the most important variable in whole MSS and in MSS FOLFIRI-treated subpopulations, but not in
MSS 5FUL.

In multivariable Cox regression, after including all the variables selected by penalized regression,
ABCG2/TOP1 status had a corresponding adjusted HR: 0.75 (95% CI: 0.57–1.00, p = 0.052) for
the whole population and HR: 0.72 (95% CI: 0.53–0.96, p = 0.028) for the MSS subpopulation.
In FOLFIRI arm, ABCG2/TOP1 status had a corresponding HR: 0.63 (95% CI: 0.42–0.94, p = 0.020) for
all patients and HR: 0.57 (95% CI: 0.38–0.87, p = 0.009) for the MSS subpopulation. See Supplemental
Materials—Multivariable Regression section.

3. Discussion

Irinotecan is a topoisomerase 1 poison and by binding to the Top1 enzyme, toxic complexes are
formed leading to induction of apoptosis. We therefore hypothesized that a higher Top1 level in cancer
cells is associated with more toxic effects of irinotecan. ABCG2 is a xenobiotic drug efflux pump being
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involved in outwards transportation of SN38 from cells. An additional hypothesis therefore is that a
high cellular level of ABCG2 is associated with less cytotoxic effects of irinotecan.

In a previous study, which included the 580 PETACC-3 patients [5], we found in Stage III CC
patients a trend towards association between high ABCG2 expression and poor patient outcome in the
irinotecan containing treatment group, but not in the 5FUL only treated group. In another retrospective
PETACC-3 study [7], we reported for low TOP1 expression a trend towards an association with short
RFS and a borderline significant association with shorter OS in the irinotecan treated patients but not in
the 5FUL treated patients [7]. On the assumption that more than one molecular resistance mechanism
is involved in irinotecan resistance [5], we now combined ABCG2 and TOP1 expression status in
a single dichotomous parameter and hypothesized that patients with a tumor with a high ABCG2
and a low TOP1 expression level might represent those with a low response to irinotecan added to
adjuvant 5FUL treatment. As presented in Figure 2, our data confirm this hypothesis in showing that
ABCG2/TOP1 status is significantly associated with RFS and OS in Stage III CC patients receiving
adjuvant irinotecan containing chemotherapy. In contrast, ABCG2/TOP1 status was neither associated
with RFS nor with OS in patients receiving 5FUL only as adjuvant treatment, which is consistent with
a predictive rather than a prognostic value.

We compared our results with those published from the MOSAIC study [1], in which 2216 stage
III CC patients were randomly assigned to receive 5FUL alone or in combination with oxaliplatin
(FOLFOX) for six months. A significant difference (p = 0.003) in disease-free survival (DFS) in favor of
FOLFOX with a 5-year 8.8% relative increase in DFS in the FOLFOX treated patients was noted and
adjuvant FOLFOX is now the standard of care in Stage III CC patients. When we compared 5-year RFS
between FOLFIRI “sensitive patients” and the total 5FUL only treated group in our study, we noted
that RFS in FOLFIRI treated FOLFIRI “sensitive patients” was 9.9% higher than that of all patients
treated with 5FUL only. Thus, the benefit from adjuvant systemic treatment in the MOSAIC study and
in the PETACC-3 subgroup of patients with FOLFIRI “sensitive” tumors were comparable at 5 years
(the only difference between DFS in the MOSAIC study and RFS in the PETACC-3 study was the
inclusion of a second malignancy in the RFS).

We also performed subgroup analyses, including only MSS + MSI-L patients, which led to even
more significant results than those reported for the whole cohort (Figure 3). Klingbiel et al. [10]
previously reported that in the PETACC-3 study, MSI status had no effect on survival of FOLFIRI
treated patients, neither on RFS nor on OS. Moreover, an interaction test between treatment and MSI
status in Stage III patients was not significant. When we included only MSS+MSI-L patients, the
differences in RFS and OS between FOLFIRI and 5FUL patients and ABCG2/TOP1 status became more
pronounced but still did not reach statistical significance, most probably due to the low number of
included patients.

An interesting point is that the function of ABCG2 can be inhibited in patients [11]. In Scandion
Oncology, we develop novel drugs to inhibit ABCG2 [12,13]. When these drugs have been tested in
regular clinical phase II trials in patients with metastatic and irinotecan resistant colorectal cancer, they
can be taken into randomized clinical testing including Stage III colon cancer patients with high ABCG2
expression. We recently analytically validated commercial antibodies for immunohistochemical (IHC)
staining of ABCG2 on formalin-fixed formalin embedded colorectal cancer tissue and identified the
BXP21 antibody to fulfill requirements for ABCG2 IHC [14].

The major strength of our study lies in the design. In the PETACC-3 PRCT, 5FUL treatment
constituted the backbone and irinotecan was added to half of the patients only. This design lends
itself to study biomarkers predictive of irinotecan response and to separate a potential predictive
from a prognostic impact [15]. Moreover, RFS and OS are valid endpoints for estimating the effect of
predictive biomarkers. Finally, the choice of ABCG2 and TOP1 as potential biomarkers for irinotecan
sensitivity/resistance was based on a hypothesis derived from results of our in vitro studies on cell
lines [5,6].
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The weakness of the study is related to the lack of an independent validation cohort. However,
only one other PRCT (CALGB 89803) has investigated the impact of adding irinotecan to 5FUL in the
adjuvant treatment of Stage III CC [4]. Unfortunately, no mRNA expression data are available from the
CALGB 89803 study.

4. Materials and Methods

4.1. Patients

The set of patients considered for the present study consisted of all Stage III patients with good
quality mRNA expression data (n = 580) from the PETACC-3 study [3]. For further information on
patient characteristics, inclusion and exclusion criteria, treatment schedules and follow-up, please see
the original publication [3]. n = 279 of these patients had been randomized to receive adjuvant 5FUL
only and n = 301 patients received irinotecan in addition to 5FUL. Further details on the present study
population are given in Table 1.

All patients signed an informed consent form, allowing collection of tumor tissue for future
translational research. Approval for the present translational study was obtained from the PETACC-3
Translational Research Working Party.

4.2. Gene Expression Analyses

As previously described [16], total RNA was extracted from formalin fixed paraffin embedded
(FFPE) blocks of the primary cancers. The RNA was amplified and hybridized to the Almac Colorectal
Cancer DSA microarray platform (Almac, Craigavon, UK). Whole-genome gene expression data is
publicly available from ArrayExpress under accession number E-MTAB-990 [16].

4.3. Statistical Methods

The present study was prospective-retrospective in nature. The statistical plan and the applied
cutoff values were defined prior to the study. We used the original PETACC-3 study endpoints being
RFS and OS. RFS was defined as time in months from randomization until occurrence of local, regional
or distant relapse, a second primary colon cancer or death. OS was defined as time in months from
randomization until death. For ABCG2, the median from the whole expression data set (Stage II and III)
was chosen to dichotomize the patients into ABCG2 high and ABCG2 low. For TOP1 mRNA, we used,
based on our previous study [7], the third quartile on the whole expression data of stage II and III
patients to group the patients into TOP1 high and low. ABCG2 and TOP1 were then combined into
a binary variable: ABCG2 high (above median) and TOP1 low (below the 75-percentile) formed the
“resistant patients”, while all other combinations of ABCG2 and TOP1 formed the “sensitive patients “.
The patients were further stratified according to the treatment (5FUL or FOLFIRI).

The Kaplan–Meier method was used to estimate RFS and OS rates, and univariate comparisons
were made using the log rank test. The effect size of ABCG2/TOP1 status and treatment arm
were estimated in univariate and multivariable analysis using the Cox proportional hazards model.
Adjustment variables for multivariable analysis were selected based on LASSO penalized proportional
hazards regression [9]. Microsatellite instability (MSI) data were available from a previous study [10]
and were tested alongside the clinical and pathological baseline variables: N stage, tumor localization,
tumor grade, sex, and age. Formal tests for statistical interaction between dichotomized ABCG2/TOP1
status (“resistant patients” vs “sensitive patients”) and treatment were performed in separate Cox
models, including main effects and an interaction term. All results were summarized in terms of
hazard ratios (HR), estimated 95% confidence intervals (CI), and p-values from the Wald-test.

Pearson correlation coefficients (r) were calculated to test for statistical dependence between the
ABCG2/TOP1 variables.

All p-values were two-sided and the significance level was set at 0.05. All analyses were performed
in R software for statistical computing version 3.4.0 [17].
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4.4. Subgroup Analyses

Since mechanisms of drug resistance effective in MSI tumors might be different from those in MSS
tumors [18], we also divided the Stage III patients into MSS and MSI genotypes, (n = 470 tumors being
MSS and MSI-L and n = 51 tumors being MSI-H (59 missing values)). Kaplan Meier survival statistics
were used to estimate RFS and OS rates in each group according to ABCG2/TOP1 status dichotomized
as described above.

The REMARK guidelines [19] were followed wherever applicable.

5. Conclusions

In conclusion, we show that ABCG2/TOP1 status as a combined test results is a potential biomarker,
which provides significant predictive information on benefit of adjuvant irinotecan treatment of Stage
III CC patients. However, our data could only show a trend for a better patient outcome with FOLFIRI
treatment of “sensitive patients” as compared to the 5FUL treated patients. The predictive value of our
biomarker test needs to be confirmed in an independent validation cohort. Our results also raise the
question whether FOLFIRI biomarker positive patients will benefit from FOLFIRI only or whether they
are those benefiting from adjuvant treatment with FOLFOX as well. An adjuvant study enrolling Stage
III CC patients with a FOLFIRI “sensitive” gene profile and randomizing these patients to treatment
with FOLFOX or FOLFIRI will answer this question.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/4/977/s1,
Figure S1: Scatter plot of log2-expression levels of ABCG2 and TOP1 genes. Figure S2: RFS stratified by biomarker
in whole stage III. Figure S3: RFS stage III stratified by biomarker and treatment. Figure S4: RFS in FOLFIRI by
biomarker vs whole 5FUL arm. Figure S5: OS by biomarker in whole Stage III. Figure S6: OS by biomarker in
FOLFIRI arm vs 5FUL arm. Figure S7: RFS stage III/MSS stratified by biomarker and treatment. Figure S8: OS for
stage III/MSS stratified by biomarker and treatment. Multivariable Cox regression analyses.
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BACKGROUND & AIMS: Fecal tests currently used for colo-
rectal cancer (CRC) screening show limited accuracy in
detecting early tumors or precancerous lesions. In this respect,
we comprehensively evaluated stool microRNA (miRNA) pro-
files as biomarkers for noninvasive CRC diagnosis. METHODS:
A total of 1273 small RNA sequencing experiments were per-
formed in multiple biospecimens. In a cross-sectional study,
miRNA profiles were investigated in fecal samples from an
Italian and a Czech cohort (155 CRCs, 87 adenomas, 96 other
intestinal diseases, 141 colonoscopy-negative controls). A pre-
dictive miRNA signature for cancer detection was defined by a
machine learning strategy and tested in additional fecal sam-
ples from 141 CRC patients and 80 healthy volunteers. miRNA

profiles were compared with those of 132 tumors/adenomas
paired with adjacent mucosa, 210 plasma extracellular vesicle
samples, and 185 fecal immunochemical test leftover samples.
RESULTS: Twenty-five miRNAs showed altered levels in the
stool of CRC patients in both cohorts (adjusted P < .05). A 5-
miRNA signature, including miR-149-3p, miR-607-5p, miR-
1246, miR-4488, and miR-6777-5p, distinguished patients
from control individuals (area under the curve [AUC], 0.86;
95% confidence interval [CI], 0.79–0.94) and was validated in
an independent cohort (AUC, 0.96; 95% CI, 0.92–1.00). The
signature classified control individuals from patients with
low-/high-stage tumors and advanced adenomas (AUC, 0.82;
95% CI, 0.71–0.97). Tissue miRNA profiles mirrored those of
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stool samples, and fecal profiles of different gastrointestinal
diseases highlighted miRNAs specifically dysregulated in CRC.
miRNA profiles in fecal immunochemical test leftover samples
showed good correlation with those of stool collected in pre-
servative buffer, and their alterations could be detected in ad-
enoma or CRC patients. CONCLUSIONS: Our comprehensive
fecal miRNome analysis identified a signature accurately
discriminating cancer aimed at improving noninvasive diag-
nosis and screening strategies.

Keywords: Stool MicroRNAs; Noninvasive Diagnosis; Small RNA
Sequencing; Colorectal Cancer; Precancerous Lesions; Machine
Learning.

In the last 30 years, we have witnessed a dramatic
increase in understanding the epidemiology, etiology,

molecular biology, and various clinical aspects of colorectal
cancer (CRC).1 However, approximately 1.8 million new
cases are annually diagnosed worldwide, posing CRC as the
third most common incident cancer. Moreover, although
early-stage tumors can be efficiently treated, CRC is still the
second-leading cause of cancer-related death, with 900,000
deaths in 2018.2,3 Hence, the early detection of preclinical
cancers or precursor lesions is a desirable objective,
because it may strongly increase the chances for successful
treatment and cure.

Most European countries have implemented CRC
screening programs based on noninvasive stool tests for
detecting fecal occult blood, mainly the fecal immuno-
chemical test (FIT).4,5 FIT selects individuals showing a
higher prevalence of CRC and advanced benign neoplasia
but has limited sensitivity to recognize advanced colorectal
adenomas (AAs).6 Colonoscopy is also used in an oppor-
tunistic screening setting and detects both cancer and
premalignant lesions but is bothersome and invasive, as
well as costly for the health system.7 Despite the fact that
FIT-based screening programs are undeniably efficient in
detecting premalignant growths and providing an earlier
diagnosis, successfully reducing CRC burden, only
approximately 5% of individuals who receive a colonos-
copy based on FIT results will end up with a significant
lesion (CRC or AA). Stool tests show a relatively low
specificity, resulting in a high number of false positives and
a considerable number of unnecessary colonoscopies.8

Complementing traditional screening stool tests with
other noninvasively detectable fecal molecular biomarkers
could improve the triage of individual for colonoscopy,
reducing the costs for the health systems in terms of the
number of examinations and decreasing the risks and
discomfort for patients.9,10

Identifying reliable biomarkers is not trivial, given the
ensemble of hidden interactions between molecules and
patient-specific clinical/anamnestic characteristics. Howev-
er, machine learning (ML) algorithms have been defined to
reveal significant features able to accurately discriminate
groups of individuals. In particular, explainable ML ap-
proaches allow the identification of novel molecular
biomarker signatures to improve early CRC diagnosis, as

recently demonstrated for fecal microbial species11 and
urinary proteins.12

The analysis of small noncoding RNAs in fecal samples
has attracted interest with an excellent biological and ana-
lytic rationale for its application in large-scale clinical in-
vestigations.13 Tumor-secreted small noncoding RNAs are
directly and continuously released into the intestinal lumen,

WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

Current screening programs for the noninvasive detection
of colorectal cancer (CRC) are based on fecal tests with
limited accuracy for early malignancies or precancerous
lesions. Evaluating microRNA (miRNA) profiles in stool
could improve the screening strategy.

NEW FINDINGS

Investigating the whole miRNome in stool and with ad hoc
explainable machine learning, we identified in 2
independent cohorts 5 miRNAs that could accurately
classify CRC patients from control individuals. The
signature was validated in a third cohort and assayed in
fecal immunochemical test leftover samples from the
screening.

LIMITATIONS

Despite the large number of samples overall collected and
sequenced, the disease subtypes investigated were still
not exhaustive of the heterogeneity in CRC and
adenomas. Although we showed the feasibility of the
molecular analysis, the investigation on screening
samples still represents a pilot approach.

CLINICAL RESEARCH RELEVANCE

The investigation of the whole miRNome in all of the
cohorts led to a comprehensive overview of the fecal
miRNA profiles, providing the possibility to accurately
single out those signals that may enhance the accuracy
of the screening. The identified miRNA signature
accurately discriminates different stages of CRC
development, and it constitutes a coadjuvant to current
screening programs for a noninvasive, accurate diagnosis.

BASIC RESEARCH RELEVANCE

New and previously reported miRNAs altered in CRC are
detectable in stool and may highlight a novel role of these
molecules released in the gut in physiologic and
pathologic conditions.
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and their profiles may be altered in concomitance with the
presence of CRC and precancerous lesions. Moreover, small
noncoding RNAs, such as microRNAs (miRNAs), are remark-
ably stable, enabling their accurate detection in stool without
the need for special stabilization or logistic requirements.14

miRNAs are suitable biomarkers in surrogate tissues and
biofluids because their levels are altered in specific pathologic
states,15 in the presence of precursor lesions,16 and in CRC
development.17–19 In addition, specific fecal miRNA alterations
have been associated with the gut microbiome composition20

and proposed as noninvasive CRC biomarkers.21

So far, comprehensive miRNA profiling by small RNA
sequencing (small RNA-seq) has been mainly performed on
tumor tissues or plasma.21,22 In contrast, studies on fecal
samples investigated few miRNAs in relation to CRC, typi-
cally in small cohorts and without taking into account their
demographic characteristics.23 In this respect, studies on the
whole fecal miRNome showed that different lifestyles and
dietary habits might critically affect specific miRNA
levels.24,25 In addition, limited evidence is available on stool
miRNA profiles in relation to patient clinicopathologic
characteristics, such as specific CRC stages, precancerous
lesions or other gastrointestinal (GI) diseases, except for the
reported pleiotropic dysregulation of miR-21-5p in several
diseases.26 Therefore, an miRNA signature for CRC detection
derived from a comprehensive fecal miRNome analysis
across multiple populations is currently lacking.

This multicenter study aimed to explore, by deep
sequencing, the miRNA profiles in stool samples that best
characterize CRC patients from control individuals and
distinguish colorectal adenomas or other GI diseases. The
analyses were performed in different independent cohorts
adopting the same protocol for participant recruitment,
sample collection, and small RNA-seq experiments/analyses.
An integrated explainable ML strategy identified a fecal
miRNA signature distinguishing CRC patients from control
individuals, and the results were validated in an additional
cohort. Finally, altered miRNAs in stool were also investi-
gated in FIT-positive leftover samples collected within a
population-based CRC screening program.

Methods
Stool Study Cohorts

Italian cohort. Stool specimens as well as clinical and
demographic data were collected from 317 individuals
recruited in a hospital-based study in Vercelli, Italy (Table 1).
Based on the results of complete colonoscopy examination,
participants were classified into (1) 89 sporadic CRC patients,
(2) 74 polyp patients (6 hyperplastic polyps, 20 nonadvanced
adenomas [nAAs] and 48 AAs; serrated lesions were excluded
because there were too few), (3) 49 individuals with a GI dis-
ease (6 Crohn’s disease, 9 ulcerative colitis, 14 diverticulitis, 7
diverticulosis, 13 hemorrhoidal disease), and (4) 105
colonoscopy-negative control individuals. AAs were defined
based on the presence of high-grade dysplasia, villous compo-
nent, or lesion size of >1 cm as defined by Zarchy and Ersh-
off.27 Of this cohort, 93 stool samples (from 29 CRC patients, 27
polyps, 13 patients with a GI disease, and 24 colonoscopy-

negative control individuals) have been used and described
previously in other studies.11,28,29

Czech cohort. Stool specimens as well as clinical and
demographic data were collected from 162 Czech individuals
recruited in 2 hospitals in Prague and 1 in Plzen, Czech Re-
public (Table 1). Based on colonoscopy results, participants
were divided in (1) 66 CRC patients, (2) 28 polyp patients (9
hyperplastic polyps, 13 nAAs, 6 AAs; no serrated lesions were
collected), (3) 32 patients with other GI diseases (3 Crohn’s
disease, 11 ulcerative colitis, 17 diverticulosis, 1 unclassified
inflammatory bowel disease [IBD]); and (4) 36 colonoscopy-
negative individuals.

Validation cohort. Stool specimens from 141 CRC pa-
tients recruited in a hospital in Brno, CzechRepublic, and 80 stool
samples of healthy volunteers contributing to science were
included. These participants were previously described in other
studies: the CRC population is described by Zwinsova et al30 but
here is sequenced for the first time for small RNA-seq; healthy
volunteers are a part of the cohorts described and sequenced for
small noncoding RNAs by Tarallo et al24 and Francavilla et al.31

Fecal immunochemical test cohort. FIT buffer left-
over samples from 185 individuals with a positive test result
were collected within the CRC screening for the Piedmont Re-
gion (Italy). Based on colonoscopy results, participants were
classified as control individuals (n ¼ 53), AA (n ¼ 80), nAA
(n ¼ 30), or CRC (n ¼ 22). Among them, 57 individuals also
provided stool samples before undergoing colonoscopy.

More details on the cohorts included in the study are given
in the Supplementary Materials. The local ethics committees of
Azienda Ospedaliera SS. Antonio e Biagio e C. Arrigo of Ales-
sandria (Italy, protocol no. Colorectal miRNA CEC2014), AOU
Città della salute e della Scienza di Torino (Italy), the Institute
of Experimental Medicine of Prague (Czech Republic), Masaryk
Memorial Cancer Institute (protocol no. 2018/865/MOU), and
Masaryk University of Brno (Czech Republic, protocol no. EKV-
2019-044) approved the study. All patients gave written
informed consent following the Declaration of Helsinki before
participating in the study.

Other Analyzed Biospecimens
For 132 patients having surgery at the Vercelli hospital,

primary tissues (102 CRC and 30 adenomas) paired with
adjacent colonic mucosa were collected.

Blood samples were collected from 210 out of 317 Italian
(IT) cohort participants, stratified into patients with CRC (n ¼
52), AAs (n ¼ 19), nAAs (n ¼ 15), hyperplastic polyps (n ¼ 6),
and other GI diseases (n ¼ 39), and control individuals (n ¼ 79).

Sample Collection
Naturally evacuated fecal samples were obtained from

participants previously instructed to self-collect the specimen
at home. Samples were collected in nucleic acid collection and
transport tubes with RNA stabilizing solution (Norgen Biotek
Corp). Stool aliquots (200 mL) were stored at –80�C until RNA
extraction.20 For the validation cohort of CRC patients from
Brno, stool samples were collected from untreated patients
before the scheduled surgery with DNA-free swabs (Deltalab).
Patients performed the collection at home and returned the
samples to the hospital, where they were immediately frozen at
–80�C until further processing.
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Table 1.Study Population Characteristics

Covariate

IT cohort (n ¼ 317) CZ cohort (n ¼ 162)

Controls
(n ¼ 105)

Other GI
disease (n ¼ 49)

Polyps
(n ¼ 74)

CRC
(n ¼ 89) P value

Controls
(n ¼ 36)

Other GI
disease (n ¼ 32)

Polyps
(n ¼ 28)

CRC
(n ¼ 66) P value

Age, y
Average ± SD 59.6 ± 10.7 56.7 ± 13.6 66.2 ± 9.1 70.6 ± 9.7 7.34E–13 57.8 ± 10.5 58.7 ± 9.4 63.1 ± 8.4 68.0 ± 11.2 8.34E–06
Range 39–84 30–82 42–93 50–88 40–76 41–75 48–82 40–88

Sex, n
Male 52 23 41 52 4.83E–01 14 16 14 46 1.74E–02
Female 53 26 33 37 22 16 14 20

BMI, kg/m2

Average 25.3 ± 4.5 25.0 ± 3.4 25.0 ± 3.7 25.8 ± 5.1 9.02E–01 28.2 ± 6.1 28.8 ± 7.0 29.0 ± 3.5 27.1 ± 5.4 1.61E–01
Range 15.4–40.0 19.5–33.7 19.5–36.0 16.0–44.1 21.0–43.9 22.0–60.9 22.6–34.7 16.9–47.6

Smoking status, n
Nonsmoker 31 17 18 35 2.16E–01 25 24 13 32 2.53E–02
Ex-smoker 16 6 20 15 3 0 8 12
Smoker 38 12 22 31 8 8 6 18
NA 20 14 14 7 0 0 1 4

Localization, na

Proximal 19 37 16 16
Distal 11 20 11 15
Rectum 18 28 6 34
NA 32 6 0 1

Polyp type, n
Tubular adenoma 18 19
Tubulovillous

adenoma
12 0

Tubular sessile 5 0
Hyperplastic

polyp
6 9

NA 31 0

Adenoma type, n
AA 48 6
nAA 20 13

pT (combined), n
T1–T2 27 20
T3–T4 54 43
Tis 0 1
NA 7 2
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Table 1.Continued

Covariate

IT cohort (n ¼ 317) CZ cohort (n ¼ 162)

Controls
(n ¼ 105)

Other GI
disease (n ¼ 49)

Polyps
(n ¼ 74)

CRC
(n ¼ 89) P value

Controls
(n ¼ 36)

Other GI
disease (n ¼ 32)

Polyps
(n ¼ 28)

CRC
(n ¼ 66) P value

AJCC staging, n
I 18 16
II 24 16
III 29 15
IV 5 14
NA 13 5

Grade, n
G1–G2 39 44
G3 38 18
NA 12 4

Metastasis (lymph
node or distal), n
No 49 52
Yes 31 11
NA 9 3

Other GI diseases, n
Crohn’s disease 6 3
Ulcerative

rectocolitis
9 11

Diverticulosis 7 17
Diverticulitis 14 0
Hemorrhoidal

disease
13

NA 0 1

AJCC, American Joint Committee on Cancer; NA, not available; pT, post-operatory tumor size; SD, standard deviation.
aTotals may be different from the total number of individuals in each category because of the presence of multiple lesions.

586
Pardiniet

al
Gastroenterology

Vol.165,Iss.3

GICANCER



For the FIT cohort, leftovers from FIT tubes (w1.2 mL)
used for automated tests (OC-sensor, Eiken Chemical Co) for
hemoglobin quantification were stored at –80�C until use.

Plasma samples were obtained from 8 mL of blood centri-
fuged for 10 minutes at 1000 revolutions/minute, and aliquots
were stored at –80�C until use. Plasma extracellular vesicles
(EVs) were precipitated from 200 mL of plasma using ExoQuick
(System Biosciences) according to Sabo et al.32

Paired tumor/adenoma tissue and adjacent nonmalignant
mucosa (at least 20 cm distant) were obtained from CRC and
adenoma patients during surgical resection and immediately
immersed in RNAlater solution (Ambion). All samples were
stored at –80�C until use.

Total RNA Extraction, Small RNA Sequencing
Library Preparation, and Quantitative Real-Time
Polymerase Chain Reaction

Total RNA from stool and FIT leftover samples was
extracted using the Stool Total RNA Purification Kit (Norgen
Biotek Corp) as previously described.20 Total RNA from plasma
EVs was extracted as described in Sabo et al.32 For tissue
samples, total RNA was extracted using QIAzol (Qiagen) ac-
cording to the manufacturer’s instructions.

Small RNAs were converted into barcoded complementary
DNA libraries for Illumina single-end sequencing (75 cycles on
HiSeq4000 or NextSeq500, Illumina Inc) as previously described.24

Candidate miRNA biomarkers were replicated in stool
samples using the miRCURY LNA miRNA PCR Assays (Qiagen).
Reverse transcription (RT) was performed using the miRCURY
LNA RT kit (Qiagen) according to the manufacturer’s in-
structions. All reactions were run on an ABI Prism 7900
Sequence Detection System (Applied Biosystems). Analyses
were performed as described by Moisoiu et al.33 More details
are provided in the Supplementary Materials.

Computational and Statistical Analyses
Small RNA-seq analyses were performed as described by

Tarallo et al,20 considering a curated miRNA reference based on
miRBase v22 and including a characterization of novel miRNAs
(Supplementary Table 1A). Differential expression analyses
were performed using DESeq2 v1.22.2.34 Functional enrichment
analysis was performed with RBiomirGS v0.2.12,35 considering
the validated miRNA-target interactions. A generalized linear
model was defined by considering the miRNA levels as the
dependent variable and participant age, sex, body mass index
(BMI), smoking habit, and cohort as independent variables.

An ML strategy was implemented to identify the optimal
fecal miRNA signature to accurately classify CRC patients from
control individuals. The ML approach is composed of 3 phases:
data preparation, feature selection, and classification. (More
details are provided in the Supplementary Materials.) The
signature was determined by considering an increasing number
of miRNAs prioritized by filter and classifier-embedded
methods applied to the training set (70% of the IT/Czech
[CZ] cohorts). The optimal set of miRNAs providing the highest
area under the curve (AUC) was selected and further tested by
100 stratified 10-fold cross-validations, first on the remaining
30% of the IT/CZ cohorts excluded from the training set and
then on the validation cohort. The training and test sets were
defined by a stratified selection to maintain the same

proportion of participants characterized by specific covariates
(ie, age, sex, cohort, disease status, and tumor staging).

Other statistical tests were performed using the Wilcoxon-
Mann-Whitney and Kruskal-Wallis (continuous variables) or
chi-square (categorical variables) methods. The Benjamini-
Hochberg method was used for multiple-testing correction.
Results were considered significant at P < .05.

Study Design
This study was designed to define and characterize a fecal

miRNA signature that accurately distinguishes CRC patients
from control individuals (Figure 1). The applied analysis
strategy included the following phases.

Fecal miRNome profiling and biomarker
discovery.

� Detection of stool miRNAs with altered levels in CRC: miRNA
profiles from small RNA-seq and metadata were used for a
differential expression analysis between CRC patients and
control individuals of both the IT cohort and CZ cohort, inde-
pendently. The overlapping differentially expressed miRNAs
(DEmiRNAs) from both cohorts were the input of the next step.

� Feature selection and definition of an miRNA predictive
signature: An ML strategy identified an miRNA signature
composed of the minimal set of DEmiRNAs that better
distinguished CRC patients from control individuals by a
stratified cross-validation procedure.

� Validation of the miRNA predictive signature. The signature
performance was estimated in the validation cohort by a
stratified cross-validation procedure.

Fecal differentially expressed microRNA charac-
terization in different sample types and diseases.

� Assessment of DEmiRNA profiles in different biospecimens and
clinical situations: DEmiRNA levels were evaluated in (1) tu-
mor/adenoma tissue and adjacent mucosa, (2) plasma EVs of
CRC patients and control individual, and (3) fecal samples from
patients with a GI disease or precancerous lesions to identify
CRC-specific or commonly altered miRNAs. In particular, the
miRNA signature from (1) was also tested in the discrimination
of patients with precancerous lesions (AA or nAA), alone or in
combination with CRC, from control individuals.

� Testing the DEmiRNA levels in samples from a CRC screening
program: DEmiRNA profiles were explored in parallel in FIT
buffer leftovers and in stool collected in tubes with RNA
stabilizing solution. Subsequently, stool DEmiRNA levels were
analyzed in the leftover samples of the FIT cohort by strati-
fying participants based on the colonoscopy results.

A detailed description of the methods is provided in the
Supplementary Materials.

Results
Stool MicroRNA Profiles Are Altered in Colorectal
Cancer Patients: Evidence From 2 European
Populations

In agreement with previous studies,20,24,31 an average of
479 (range, 86–1516) miRNAs were detected in each stool
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sample by small RNA-seq (further details in the
Supplementary Materials and Supplementary Table 1B and
C). The age- and sex-adjusted differential expression anal-
ysis between CRC patients and control individuals was
performed independently on both the IT cohort and CZ
cohort identifying, respectively, 250 and 29 DEmiRNAs
(median expression, >20 reads; adjusted P < .05)
(Figure 2A and Supplementary Table 2A).

Twenty-five stool DEmiRNAs were in common between
both cohorts (Figure 2B, Table 2, and Supplementary
Table 2A), all with a coherent expression trend (20 up-
regulated and 5 down-regulated; rho ¼ 0.75; P < .001)
(Figure 2B). The alteration of these fecal miRNA levels in
relation to CRC was further supported by a generalized
linear model analysis adjusted for cohort, age, sex, BMI, and
smoking habits: 22 out of the 25 DEmiRNAs remained
significantly associated (P < .05) (Supplementary Table 2B).
DEmiRNA profiles were further explored in relation to CRC
patient clinical data (Figure 2C and D). The levels of 3 down-
regulated miRNAs (miR-607-5p, miR-677-5p, and miR-922-
5p) significantly decreased with increasing tumor size
(Figure 2D). miR-922-5p also significantly decreased in
patients with advanced disease stages or lymph node in-
vasion (Figure 2D and Supplementary Table 2C).
Conversely, increasing levels of 19 out of the 20 up-
regulated miRNAs in CRC were observed along with tumor
size, with miR-1246, miR-1290, miR-148-3p, and miR-194-
5p significantly related to this parameter. The levels of 11
CRC–up-regulated miRNAs significantly increased in pa-
tients with lymph node invasion. In addition, the levels of 11
miRNAs were significantly higher in samples from patients
with rectal compared to colon cancers (Figure 2D).

Functional analysis of DEmiRNA target genes showed
their involvement in cancer-related processes, including cell
cycle regulation and DNA repair, particularly for up-
regulated miRNA targets (Supplementary Table 2D and E).

A Fecal MicroRNA Signature Distinguishes
Colorectal Cancer Patients From Control
Individuals

An explainable ML strategy was implemented to identify
the minimal set of miRNAs as a signature for CRC detection
(Supplementary Figure 1 and Supplementary Materials).
The pipeline was applied on the 25 DEmiRNA profiles and
considering 70% of the IT cohort and CZ cohort as the
training set (Supplementary Table 3A). The best miRNA
signature distinguishing CRC patients from control in-
dividuals included miR-607-5p, miR-6777-5p, miR-4488,
miR-149-3p, and miR-1246 (AUC, 0.87 ± 0.01)
(Figure 2E). This set of 5 miRNAs represented the best
combination of noncorrelated molecules with the highest
discriminative power. Moreover, they showed a good per-
formance in the classification of the 30% of participants
excluded from the training set (AUC, 0.81 ± 0.01)
(Figure 2F). The classification improved after the inclusion
of sex and age in the model (AUC, 0.86 ± 0.01) (Table 3 and
Supplementary Table 3B). The performance of the signature
was again tested in the validation cohort, where it remained

fairly similar, irrespective (AUC, 0.91 ± 0.01) or not (AUC,
0.96 ± 0.01) of age and sex (Figure 2F, Table 3, and
Supplementary Table 3B).

By stratifying patients for CRC stage, the same 5-miRNA
signature accurately distinguished patients with stages III–
IV CRC (validation cohort: AUC, 0.96 ± 0.01 and 0.94 ±
0.01, respectively, including or not age and sex), or CRC
stages I–II from control individuals (validation cohort: AUC,
0.95 ± 0.01 and 0.87 ± 0.01, respectively, including or not
age and sex) (Table 3 and Supplementary Table 3B).

The panel of 5 miRNAs of the signature identified by
sequencing was tested by RT quantitative polymerase chain
reaction (qPCR) in RNA isolated from a subset of 96 stool
samples equally distributed among IT and CZ cohort par-
ticipants, with a balanced number of CRC patients and
control individuals (Supplementary Figure 2A). The 5 miR-
NAs were detected in all samples, also using this second
method. The normalized levels from RT-qPCR showed pat-
terns comparable to those provided by sequencing, except
for miR-4488 (Supplementary Figure 2A). In particular,
miR-1246 and miR-149-3p levels were significantly
increased in patient samples. The same method was used to
test the 5 miRNA levels in RNA from 8 FIT leftover samples
of participants with a positive FIT result at the CRC
screening: all miRNAs were also detected in this bio-
specimen (data not shown).

For 4 signature miRNAs, a concordant expression
pattern was observed between small RNA-seq and RT-qPCR
normalized levels, particularly for miR-1246 (rho ¼ 0.63, P
< .001) and miR-149-3p (rho ¼ 0.26, P < .05)
(Supplementary Table 3C and Supplementary Figure 2B).
Only the levels of miR-4488 were characterized by a nega-
tive correlation (rho ¼ –0.48, P < .001) in CRC patients only.

Stool Differentially Expressed MicroRNA Profiles
Mirror Those of Primary Colorectal Cancer and
Adenoma Tissues

A paired differential expression analysis was performed
between tumor tissues and matched adjacent mucosa
collected from 102 CRC patients. Among the 25 stool
DEmiRNAs, 14 were differentially expressed (adjusted P <
.05) in this comparison (Figure 3A and Supplementary
Table 4A), with 7 miRNAs (miR-21-5p, miR-1246, miR-
1290, miR-148a-3p, miR-4488, miR-149-3p, miR-12114)
up-regulated in tumor tissues coherently with their increase
in CRC patient stool. Among them, 3 (miR-1246, miR-4488,
miR-149-3p) were included in our miRNA signature. The 5
miRNAs significantly down-regulated in CRC patient stool
(miR-607-5p, miR-6777-5p, included in the 5-miRNA
signature; miR-6076; miR-922-5p; and miR-9899) were
poorly expressed (normalized reads, <20) in both tumor
and adjacent tissues (Supplementary Table 4A).

The differential analysis performed on 30 adenoma tis-
sues matched with adjacent mucosa showed miR-21-5p,
miR-1290, miR-148a-3p, and miR-200b-3p as significantly
up-regulated in adenoma tissues (adjusted P < .001),
whereas let-7i-5p and miR-4508 were down-regulated
(Figure 3A and Supplementary Table 4A).
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Few MicroRNA Levels Are Dysregulated in
Circulating Extracellular Vesicles of Colorectal
Cancer Patients

Small RNA-seq was performed on RNA isolated from
plasma EVs collected from 210 participants in the IT cohort,
detecting an average of 309 (range, 252–1213) miRNAs in
these samples (Supplementary Table 4B). Among the 25
DEmiRNAs identified in stool samples of CRC patients, both
miR-1246 and miR-4488 emerged as coherently signifi-
cantly dysregulated in plasma EVs, although the latter was
associated with low levels (normalized reads, <20)
(Supplementary Table 4B). Another miRNA (miR-150-5p)
was differentially expressed between CRC patients and
control individuals (Supplementary Table 4B).

A Subset of Stool Differentially Expressed
MicroRNAs Is Specifically Dysregulated in
Colorectal Cancer Patients but Not in Those With
Other GI Diseases

The CRC DEmiRNAs were further compared with those
from patients with GI disorders and other precancerous
lesions in both the IT and CZ cohorts. The age-, sex-, and
cohort-adjusted differential expression analysis between
each disease category and control individuals showed that
the levels of 21 out of the 25 CRC DEmiRNAs were signifi-
cantly altered in at least another GI disease (Figure 3B).
Notably, in patients with ulcerative colitis, diverticulitis,
nAA, or AA, 60% of the CRC DEmiRNAs were also dysre-
gulated (Figure 3B and Supplementary Table 4C). The
lowest number of dysregulated miRNAs was observed in
patients with Crohn’s disease (2 miRNAs) or diverticulosis
(5 miRNAs), whereas no DEmiRNAs were found in patients
with hyperplastic polyps.

Considering the 5 miRNAs constituting our predictive
signature to distinguish CRC patients from control in-
dividuals, miR-6777-5p was not differentially expressed
(compared to control individuals) in any other GI disease,
miR-149-3p was significantly up-regulated only in patients
with AA, and miR-607-5p was significantly down-regulated
in patients with AA or ulcerative colitis compared to control
individuals (Figure 3B and Supplementary Table 4C).
Conversely, miR-4488 and miR-1246 stool levels signifi-
cantly increased in patients with diverticulosis, ulcerative
colitis, diverticulitis, or AA, with the latter miRNA also
increased in Crohn’s disease patients.

The identified signature was also used to classify AA and
nAA patients from control individuals. Specifically, the
miRNA signature was able to distinguish AA from control
participants, both including (AUC, 0.82 ± 0.01) or not (AUC,
0.77 ± 0.02) age and sex in the analysis, as well as nAA
(AUC, 0.80 ± 0.03 and 0.77 ± 0.02, respectively, including or
not age and sex). Finally, patients with either CRC or AA
were accurately distinguished from control individuals
(including or not age and sex: AUC, 0.84 ± 0.01 and 0.81 ±
0.01, respectively) but not between them (CRC vs AA: AUC,
0.68 ± 0.02) (Table 3 and Supplementary Table 3B).

MicroRNAs Are Detectable in Fecal
Immunochemical Test Leftover Samples by Small
RNA Sequencing

The sequencing analysis was extended to 185 available
leftover samples of the FIT cohort, still detecting an average
of 618 miRNAs in each sample (Supplementary Table 1B).
All of the 25 stool DEmiRNAs were detected in this type of
sample. Considering the threshold adopted by our pipeline
(ie, a minimum of 20 reads), 4 (miR-607-5p, miR-1246, let-

Valildation on an independent cohort
(141 CRC, 80 controls)

RT-qPCR validation

StrategiesStudy subjects
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Figure 1. Representation of the study design.
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7a-3p, miR-922) were detected in all samples, and 18 were
detected in more than half (Figure 3C and Supplementary
Table 4D). Three miRNAs included in our signature (miR-
607-5p, miR-1246, miR-6777-5p) were detected in more
than 95% of samples (Figure 3C), whereas miR-149-3p and
miR-4488 were detected in 112 (57.4%) and 57 (30.8%)
samples, respectively.

Then, miRNA levels in FIT cohort samples were explored
by stratifying participants according to the colonoscopy
results. Comparing the levels of the 25 stool DEmiRNAs
between 46 participants with a negative colonoscopy result
(excluding 7 participants with high hemoglobin levels) and
22 patients with CRC, 8 (let-7a-5p, let-7i-5p, miR-148a-3p,
let-7b-5p, miR-320a-3p, miR-12114, miR-21-5p, miR-607-
5p) were significantly different (adjusted P < .05)
(Supplementary Table 4E and Figure 3C). Correlating the
miRNA levels in FIT leftovers with the hemoglobin levels,
only let-7b-5p showed a significant but limited correlation
(rho ¼ 0.16, P < .05) (Supplementary Table 4F).

Interestingly, miR-1246 and miR-607-5p were charac-
terized, respectively, by increasing and decreasing levels,
from colonoscopy-negative participants to CRC patients, as
observed in the stool of the 3 case-control cohorts initially
investigated for the miRNA signature identification
(Figure 3D).

Comparable miRNA expression levels and variability
were observed between paired FIT leftover/stool samples
from 57 individuals analyzed by small RNA-seq (rho ¼ 0.70,
P < .001) (Supplementary Table 1B and Supplementary
Figure 2C). Considering the levels of 468 miRNAs detected
in at least half of FIT leftover samples, 99.6% were coherent
with those in stool, with 282 miRNAs significantly corre-
lated (average rho ¼ 0.39, P < .05) (Figure 3C,
Supplementary Figure 2C, and Supplementary Table 4D). In
both sample types, miR-3125-3p, miR-6075-5p, and miR-
1246 were characterized by the highest levels, and miR-
3125-3p was detected in all samples and associated with
the lowest expression variability, in agreement with our
previous findings in stool samples of 335 control in-
dividuals25 (Supplementary Figure 3A and Supplementary
Table 4D). The levels of all 25 stool DEmiRNAs positively
correlated between the 2 specimens, with 13 of them
reaching statistical significance (including miR-607-5p, miR-
1246, miR-149-3p, and miR-4488 from the 5-miRNA

signature; P < .05) (Figure 3C and Supplementary
Table 4D).

The 5-miRNA signature analyzed in FIT buffer leftovers
was finally tested for the classification of patients with CRC
from control individuals considering the signature alone or
in combination with patient age, sex, and FIT hemoglobin
levels. The 5-miRNA signature alone showed comparable
classification performance (AUC, 0.85) as using age, sex, and
hemoglobin levels (AUC, 0.87), and the combination of both
data provided the best classification results (AUC, 0.93)
(Supplementary Table 3D).

Discussion
In the present study, to our knowledge, we performed

the first large-scale profiling of the stool miRNome by deep
sequencing of samples from patients with CRC, colorectal
polyps, or other GI diseases and control individuals. Given
the pervasive detection across multiple cohorts, we
confirmed previous findings about fecal miRNA potential
use as noninvasive molecular biomarkers23 (Supplementary
Table 1C and Supplementary Figure 3A). We also reported
novel evidence on specific markers across different disease
conditions. Notably, a fecal miRNA signature was able to
accurately distinguish CRC patients from control in-
dividuals: both its ability to distinguish AA and its detection
in FIT leftovers support future investigations for a use in
CRC screening implementation.

In CRC patients, 25 fecal miRNAs emerged coherently
altered in 2 independent cohorts. The profile of these
miRNAs in stool reflected their altered expression in tumor
tissue or adjacent colonic mucosa. More than half of such
DEmiRNAs were already reported as altered in CRC, either
in tissue or in various biofluids, including the up-regulated
miR-21-5p, miR-148a-3p, miR-149-3p, miR-194-5p, miR-
200b-3p, and miR-320a-3p (Supplementary Table 5A).23,36

Other miRNAs were associated with a disease for the first
time by us; thus, further in vitro studies are needed to
characterize the functional activity of these molecules and
their involvement in CRC. Moreover, 3 DEmiRNAs identified
in our study (miR-4323-5p, miR-607-5p, and miR-922-5p)
are not currently annotated in the miRbase but were
quantified based on the read mapping position within the
miRNA hairpin. This is consistent with the need for

=
Figure 2. (A) Scatterplot reporting the stool miRNA average levels in CRC patients (y-axis) or control individuals (x-axis) from
the IT cohort (left) or CZ cohort (right). The dot color represents the log2 fold change (log2FC) from the differential expression
analyses between CRC and healthy individuals, and the size is proportional to the age, sex, and multiple-testing adjusted P
values. (B) Scatterplot reporting the correlations of log2FC of the 25 DEmiRNAs from the comparison between CRC and
control individuals and in common between the IT cohort (x-axis) and the CZ cohort (y-axis). The up-regulated and down-
regulated miRNAs are reported in red and blue, respectively. (C) Heatmap of stool DEmiRNA levels in CRC and control in-
dividuals of both cohorts. For each participant, the CRC stage and grade based on the American Joint Committee on Cancer
system, presence of metastasis, lymph node invasion status (pN), tumor size (pT), tumor localization, cohort of origin, and
disease status (CRC or control) are reported. (D) DEmiRNA levels comparing CRC patients stratified for clinical data. The dot
color represents the log2FC, and the dot size is proportional to the statistical significance. Black borders represent tests with P
< .05. (E) Line plot reporting the ability of different combinations of feature selection methods and classifiers to perform the
classification of CRC and control individuals. Each dot represents an AUC obtained using a different number of fecal DEm-
iRNAs in input. (F) Receiver operating characteristic curves obtained for the classification of CRC and control individuals using
the identified miRNA signature. Data are reported for the 30% of participants excluded from the training set (left) and for the
validation cohort (right). Adj., adjusted.
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Table 2.Expression Levels and Fold Changes of the 25 Stool DEmiRNAs in Common Between the IT and CZ Cohorts

ID miRNA gene ID Chromosome Genomic context

Median levels, controls Median levels, CRC log2FC
Benjamini-Hochberg
adjusted P valuea

IT cohort CZ cohort IT cohort CZ cohort IT cohort CZ cohort IT cohort CZ cohort

let-7a-5p MIRLET7A3 chr22 Intergenic 52.18 28.12 717.25 50.53 5.44 1.39 2.51E–24 1.05E–02

let-7b-5p MIRLET7B chr22 Intergenic 20.19 12.94 474.50 26.28 4.63 1.83 3.04E–19 6.54E–03

let-7f-5p MIRLET7F1/MIRLET7F2 chr9/chrX Intergenic/intron (HUWE1) 54.93 33.83 513.72 38.72 5.41 1.40 2.27E–27 1.05E–02

let-7i-5p MIRLET7I chr12 Partial overlap (LINC01465) 16.75 10.68 577.93 27.38 5.68 2.49 1.25E–23 6.54E–04

miR-1181 MIR1181 chr19 Exon (CDC37) 72.46 38.12 83.60 65.61 0.64 0.78 1.12E–02 4.63E–02

miR-12114 MIR12114 chr22 Intron (PPP6R2) 126.48 43.52 266.97 67.67 1.50 1.53 1.06E–07 4.71E–03

miR-1246 MIR1246 chr2 Intron (LINC01117) 909.33 568.34 2970.91 2364.91 3.59 2.83 9.63E–17 3.98E–06

miR-1290 MIR1290 chr1 Intron (ALDH4A1) 46.70 33.77 231.36 82.25 3.73 2.29 1.71E–21 4.13E–04

miR-148a-3p MIR148A chr7 Intergenic 19.17 11.56 425.27 25.82 5.60 2.27 4.19E–22 1.92E–03

miR-149-3p MIR149 chr2 Intron (GPC1) 30.82 16.15 34.55 36.97 0.58 0.96 1.89E–02 3.92E–02

miR-194-5p MIR194-1 / MIR194-2 chr1 / chr11 Intron (IARS2)/intergenic 69.85 59.45 206.31 68.59 3.63 1.02 3.44E–20 2.38E–02

miR-200b-3p MIR200B chr1 Intergenic 22.03 20.39 204.93 23.29 5.16 1.43 2.85E–23 2.01E–02

miR-21-5p MIR21 chr17 Exon (VMP1) 37.68 42.23 557.19 63.56 5.36 1.78 1.15E–22 1.22E–02

miR-26a-5p MIR26A1 / MIR26A2 chr3 / chr12 Intron (CTDSPL)/intron
(CTDSPL2)

36.78 33.23 425.88 44.01 4.77 1.59 2.85E–23 1.68E–02

miR-320a-3p MIR320A chr8 Intergenic 27.26 16.26 271.19 33.93 3.29 1.50 1.01E–15 5.33E–03

miR-4323-5p MIR4323 chr19 Intron (POU2F2-AS1) 67.11 29.50 73.39 58.96 1.62 1.92 8.88E–07 5.12E–03

miR-4488 MIR4499 chr11 Intergenic 113.12 50.73 342.90 73.67 2.53 1.23 2.94E–19 2.91E–02

miR-4492 MIR4492 chr11 Exon/intron (BCL9L) 25.04 14.50 34.76 22.24 1.28 1.26 1.62E–06 7.47E–03

miR-4508 MIR4508 chr15 Intergenic 94.44 34.09 98.33 86.36 0.87 1.12 3.85E–04 2.56E–02

miR-607-5p MIR607 chr10 Intergenic 222.53 132.30 51.44 87.13 –1.72 –0.88 2.17E–18 6.54E–03

miR-6076 MIR6076 chr14 Intron (LINC01588) 32.14 23.14 15.10 15.54 –0.68 –1.24 1.05E–02 1.83E–02

miR-6131 MIR6131 chr5 Intergenic 31.05 15.50 103.66 22.39 2.08 1.49 2.19E–12 3.31E–03

miR-6777-5p MIR6777 chr17 Intron (SREBF1) 235.14 140.02 42.53 80.22 –1.60 –1.02 4.60E–08 1.29E–02

miR-922-5p MIR922 chr3 Exon (RUBCN) 335.74 206.43 71.51 89.57 –2.06 –1.26 1.99E–11 3.92E–02

miR-9899 MIR9899 chr2 Intron (LYPD6) 71.25 50.86 33.99 26.40 –0.55 –1.03 1.09E–02 4.00E–02

chr, chromosome; ID, identifier; log2FC, log2 fold change.
aAge- and sex-adjusted analysis.
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Table 3.Performance of the 5-miRNA Predictive Signature in the Different Comparisons

Analysis detailsa

AUC (Mean ± SD) 95% CI Accuracy Sensitivity Specificity

Precision F1 score

Comparison Validation set Disease Control Disease Control

CRC vs control individuals IT cohort þ CZ cohortb 0.86 ± 0.01 0.79–0.94 0.78 0.78 0.78 0.82 0.74 0.80 0.76

CRC vs control individuals Validation cohort 0.96 ± 0.01 0.92–1.00 0.89 0.90 0.88 0.93 0.83 0.91 0.85

Stage I–II CRC vs control individuals IT cohort þ CZ cohortb 0.86 ± 0.01 0.76–0.96 0.81 0.65 0.90 0.79 0.82 0.71 0.86

Stage I–II CRC vs control individuals Validation cohort 0.95 ± 0.01 0.90–1.00 0.86 0.82 0.91 0.90 0.83 0.86 0.87

Stage III–IV CRC vs control individuals IT cohort þ CZ cohortb 0.88 ± 0.01 0.78–0.98 0.83 0.66 0.92 0.82 0.83 0.73 0.88

Stage III–IV CRC vs control individuals Validation cohort 0.96 ± 0.01 0.91–1.00 0.85 0.75 0.94 0.91 0.82 0.82 0.88

CRC þ AA vs control individuals IT cohort þ CZ cohortb 0.84 ± 0.01 0.77–0.91 0.77 0.83 0.67 0.81 0.70 0.81 0.69

AA vs control individuals IT cohort þ CZ cohortb 0.82 ± 0.01 0.71–0.97 0.79 0.61 0.86 0.62 0.85 0.62 0.85

AA þ nAA vs control individuals IT cohort þ CZ cohortb 0.77 ± 0.02 0.65–0.89 0.73 0.62 0.81 0.67 0.77 0.64 0.79

nAA vs control individuals IT cohort þ CZ cohortb 0.80 ± 0.01 0.63–0.97 0.82 0.13 0.99 0.79 0.82 0.22 0.90

CRC vs AA IT cohort þ CZ cohortb 0.68 ± 0.02 0.54–0.82 0.76 0.92 0.25 0.80 0.49 0.85 0.33

aAnalysis includes age and sex covariates.
bThirty percent of samples were excluded from the training and matched by age, sex, cohort, and CRC stage.
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continuous refinement of miRBase annotations37 and with
evidence of new miRNAs reported by different groups.38,39

Consistent with their overall higher/lower levels in the
stool of CRC patients with respect to that of control in-
dividuals, the 25 DEmiRNA levels also increased/decreased
with tumor size and stage. On the other hand, they were
characterized by coherent altered levels when patients were
stratified by tumor localization (proximal, distal, rectum)
(Supplementary Table 4C). This further supports the impor-
tance of these miRNAs in relationship with the disease, as
confirmed by the overrepresentation of cancer-related

processes involving their validated target genes
(Supplementary Table 2D and E).

Based on this initial evidence, we implemented an inte-
grated explainable ML strategy to explore, among the 25
DEmiRNAs, the minimal set of stool miRNAs able to accu-
rately discriminate CRC patients from control individuals.
Our approach generated a signature composed of 5 miRNAs
(namely, miR-1246, miR-607-5p, miR-6777-5p, miR-4488,
miR-149-3p) that was clinically validated in an additional
independent cohort of cases compared to healthy volunteers
and technically validated by another methodology (ie, RT-
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Figure 3. Characterization of the 25 fecal DEmiRNAs in different sample types. (A) Bar plot reporting the median levels in
tumor, AA, and nAA tissues. The color code represents the log2 fold change (log2FC) from the paired differential expression
analysis between CRC/adenoma tissues and matched adjacent mucosa. ***Adjusted P < .001, **adjusted P < .01, *adjusted P
< .05. (B) Comparison of miRNA levels in the stool of patients with CRC, colorectal adenomas, hyperplastic polyps, or other GI
disorders with respect to control individuals. The dot color represents the log2FC, and the dot size is proportional to the
analysis significance. Black borders represent results with an adjusted P < .05. (C) DEmiRNA analysis in FIT leftover samples
from CRC screening. (Left) The fraction of FIT cohort samples in which each miRNA was detected and (center) results of the
differential expression analysis between FIT-positive patients with CRC diagnosis based on colonoscopy outcome and those
with a negative one. The dot color represents the log2FC, and the dot size is proportional to the analysis significance. Black
borders represent a DESeq2 Benjamini-Hochberg adjusted P < .05. (Right) Correlation coefficients between miRNA levels in
stool and FIT buffer leftover samples from the same individuals (***P < .001, *P < .05). (D) Box plots reporting miR-1246 and
miR-607-5p levels in all study cohorts and biospecimens.

594 Pardini et al Gastroenterology Vol. 165, Iss. 3

GICANCER



qPCR). The accurate discrimination of both participants in
early and late cancer stages from control individuals
confirmed the robustness of these 5 miRNAs for CRC
detection. Although based on a small sample set, the
signature could also accurately discriminate participants
with AA from control individuals (AUC, 0.86), and in all
analyses, high performances were obtained, irrespectively,
by adjusting or not for sex and age, 2 relevant risk factors
for this cancer.40 To the best of our knowledge, this is the
first signature based on fecal miRNAs whose efficiency was
proven in populations from 2 countries characterized by
different lifestyle and dietary habits41 and CRC incidence.42

Notably, such populations also show different trends in
early-onset CRC,43 the incidence of which is linked to un-
healthy individual habits, such as a sedentary lifestyle.44

Similar to the functional analysis of all 25 DEmiRNAs,
focused research on the 5-signature miRNA target genes
evidenced a prevalence of genes involved in cancer-related
processes, including regulation of the cell cycle, pro-
grammed cell death, and DNA damage response. Interest-
ingly, functional analysis of predicted target genes of miR-
607-5p highlighted terms/processes related to nuclear cell
cycle DNA replication and showed TRIM66, HIPK2, GRIN2B,
and WTIP as the targets with the highest number of miR-
607-5p binding sites (Supplementary Table 5B and C).

Among all the miRNAs of the signature, miR-1246 has been
previously widely studied in CRC. Altered levels of this miRNA
have been found in circulating exosomes in relation to cancer
metastasis and prognosis.45,46 Exosomal miR-1246 levels were
induced by Fusobacterium nucleatum in in vitro and in vivo
CRC models with an increase of tumor cell metastatic poten-
tial.47 These results align with more recent observations on the
relationship between intratumor levels of F nucleatum and the
aggressiveness of colon and breast cancers.48 An intratumor
increase in this well-known CRC-related bacteria might induce
the release of exosomal miR-1246 in the gut lumen, with the
subsequent detection of this miRNA in stool samples. Similar
considerations could be drawn from another study investi-
gating a model of enterotoxigenic Bacteroides fragilis that
induced up-regulation of exosomal miR-1246 in CRC cell
lines.49 Interestingly, in the same study, this microbial species
reduced the exosomal levels of another fecal miRNA included
in our signature, miR-149-3p, that was demonstrated to regu-
late tumor-infiltrating CD4þ T-helper type 17 differentiation.49

Similar findings were observed when analyzing the fecal
miRNome and gut metagenome data from a previous study
by our group in which we investigated the miRNA-
microbiota relationships in stool samples.20 Specifically, by
reanalyzing the data from that study, miR-1246 levels
emerged as significantly related to both F nucleatum and B
fragilis abundances, whereas miR-149-3p was inversely
related to B fragilis abundances (Supplementary Figure 3B).
This pervasive relationship between in vitro exosomal
miRNA levels and microbial infections suggests that the
most informative stool biomarkers for CRC might reflect the
dysregulated interactions between colonic tissue and the
gut microbiota. Interestingly, in the miRNA-microbiota cor-
relation analysis, 2 down-regulated fecal miRNAs (miR-607-
5p and miR-6777-5p), included in the predictive signature

and so far scantly investigated in the literature, were
inversely related not only to F nucleatum and B fragilis
abundances but also to Escherichia coli, another species
related to CRC onset50 (Supplementary Figure 3B).

To further explore the stool results, we tested DEmiRNA
patterns in tumor and adenoma tissues paired with nonmalig-
nant adjacent mucosa from patients of the IT cohort. Stool
generally mirrored the altered miRNA expression levels of these
tissues. Only the levels of miR-21-5p and miR-148a-3p
increased in both CRC and adenoma compared to matched
adjacent mucosa, whereas the other DEmiRNAs (including miR-
1246, miR-4488, and miR-149-3p of the signature) showed a
CRC-specific dysregulation. miR-607-5p and miR-6777-5p,
decreasing in patients’ fecal samples, were characterized by
low expression levels in both tumor/adenoma and adjacent
mucosa, suggesting their deletion or epigenetic silencing. In The
Cancer Genome Atlas,51 both miRNAs are frequently deleted in
CRC (Supplementary Table 5D), supporting the down-regulation
in stool and tumor tissues observed by us. In agreement with
our findings, previous studies have demonstrated that the
down-regulation of miRNAs seems to be a premature step in
the development of several cancers.52,53 Surprisingly, miR-
320a, let-7b-5p, and let-7a-3p, more abundant in stool of
CRC patients, were more expressed in adjacent mucosa than
in tumor tissue. miR-320a has been widely reported as down-
regulated in CRC,54 whereas its circulating levels increased in
relation to gut inflammation in IBD patients,55 coherent with
our data in stool samples. Interestingly, miR-320a has been
described as a key regulator of intestinal barrier formation.56

Similarly, the expression of let-7 family members has been
observed in the healthy gut epithelium, whereas their genetic
depletion induced tumorigenesis in CRC mouse models.57

Thus, the analysis of stool miRNAs is relevant to identify
not only markers of the tumor small noncoding transcriptome
but may also unveil an intestinal response of the stromal
component to the presence of a tumor mass.

We also explored the miRNome of plasma EVs from a
subset of the study population using the same experimental
approach as in stool and tissue samples. However, in this
circulating biospecimen, only a few miRNAs showed similar
trends as in feces. For instance, among the miRNAs of the
signature, miR-1246 and miR-4488 levels significantly
increased in plasma EVs of CRC patients compared with
control individuals. These results are consistent with pre-
vious findings reported by us, supporting stool miRNAs as
more sensitive than plasma miRNAs in reflecting intestinal
changes driven by a long-term dietary pattern.24 Although
more data are needed to compare the stool and plasma EV
miRNome, given the reported relationships between miR-
1246 levels in EVs and CRC metastasis,45 these circulating
molecules may be more informative for advanced stages of
the disease, which is beyond the scope of our investigation.

In this study, we sought to compare the stool DEmiRNA
profiles of CRC patients with those of patients with other
bowel inflammatory diseases of different severity confirmed
by colonoscopy. Besides different polyp types, we included
samples from several GI diseases, like different types of IBDs
and diverticulitis. Notably, although the CRC-specific miRNAs
were down-regulated, most of the altered miRNAs in common
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with adenomas and inflammatory diseases were up-regulated:
miR-21-5p was the clearest example, confirming the litera-
ture.26 As an exception, miR-607-5p was down-regulated in
the stool miRNA profiles of patients with AA and ulcerative
colitis. Accordingly, recent studies showed altered miRNA
profiles in the fecal samples of patients with inflammation,58,59

even in relation to microbiota.60 We can therefore conclude
that altered stool miRNA profiles reflect either the intestinal
response to an inflammatory process or the transcriptional
alterations related specifically to CRC development. Impor-
tantly, we clearly demonstrated that well-known CRC-related
miRNAs, such as miR-21-5p, show dysregulated fecal levels in
several disease contexts, suggesting that other miRNAs, such
as miR-6777-5p and miR-149-3p, should be investigated to
design CRC-specific molecular signatures. This is the first ev-
idence from a large-scale analysis of individuals with different
gastrointestinal diseases of stool miRNAs specifically altered in
CRC. It also highlights an extensive reflection of the gut
inflammation on the fecal miRNA levels.

The fact that specific dysregulated fecal miRNAs could
distinguish individuals with CRC or precursor lesions from
control individuals and that, at least for cancer, data were
confirmed in different cohorts, encouraging their use to
complement the existing noninvasive screening tests. In this
respect, we also investigated whether miRNAs can be detec-
ted in buffer-diluted stool leftovers from FIT tubes used in a
context of a population-based screening program, and we
found a remarkable similarity between the profiles detected
in the stool samples collected in nucleic acid preservative
medium tubes from the same participants. Despite data on a
larger cohort being needed, this pilot small RNA-seq–based
quantification of miRNAs in FIT buffer leftovers is consistent
with previous evidence measuring miRNAs in this sample
type by RT-qPCR,22 as well as by us. By exploring miRNA
profiles within FIT-positive patients, we observed a subset of
miRNAs differentially expressed between individuals with a
positive or a negative colonoscopy outcome. In addition, miR-
1246 and miR-607-5p from the 5-miRNA signature deserve
further investigation because they were detected in most of
the samples, and their levels respectively increased and
decreased progressively, going from individuals with negative
colonoscopy results, to those with adenomas of different
severity, to CRC patients. Although these data confirm that
miRNAs can be widely detected in FIT leftovers, the
comparative results between individuals must be carefully
considered given the small group size analyzed so far; the lack
of samples from FIT-negative individuals; and the fact that we
cannot rule out the role of confounding factors, including
subclinical diseases in the colonoscopy-negative patients.

Most likely, by including hemoglobin levels evaluated by FIT,
the discrimination capability of the present stool miRNA pre-
dictive signature would be further improved, as already re-
ported in the past (FIT/FOBT þ microbiome,11,61 FIT þ
miRNAs,21 and FIT þ methylation markers62). The sensitivity
and specificity of our 5-miRNA signature suggest that it could
show a similar diagnostic performance as the multitarget stool
DNA test63 when used as a screening test in average-risk pop-
ulations. Duran-Sanchon et al21 proposed a 2-stool miRNA-
based classification signature (namely, miR-27a-3p and miR-

421) combined with hemoglobin levels, age, and sex of FIT-
positive individuals. The signature accurately classified CRC
(AUC, 0.93) from control individuals but was less efficient when
AA patients were included (AUC, 0.70).62 Different from us, the
researchers initially selected miRNAs based on their differential
expression between tumor tissue and adjacent mucosa and
included in all models sex and age, 2 important risk factors
for CRC. Hereby, we demonstrated the robustness of our
signature because its performance remained similar even
without the inclusion of age and sex covariates. In addition,
despite the study not being designed for identifying stool
biomarkers for adenomas, the 5-miRNA signature was able to
accurately distinguish AA alone or in combination with CRC
(AUC, 0.84), suggesting its use to detect precancer lesions at
risk. In our study, miR-27a-3p and miR-421 were detected in
tissue samples but not in stool, where only the former miRNA
was measurable. In search of reproducible fecal molecular
biomarkers for the noninvasive diagnosis of CRC and ade-
nomas,11 a hypothesis-free miRNome-wide approach, such as
the small RNA-seq analysis in stool performed in multiple
independent populations, overcomes these issues.

The present study has several strengths: (1) the inclu-
sion of independent cohorts from 2 countries with different
diet and lifestyle habits as well as CRC rates; (2) the fact that
the cohorts were different for CRC clinical characteristics,
allowing the identification of accurate biomarkers inde-
pendent of the disease stage; (3) the adoption of the same
protocol for the collection of stool in both training cohorts;
(4) the validation of the signature on a cohort with a
different stool collection protocol, showing its robustness;
(5) the miRNome-wide approach in different biospecimens
and different GI disease contexts, which has allowed us to
discriminate miRNAs specifically dysregulated in the stool
of CRC patients; 6) the implementation of an explainable ML
approach able to provide an unbiased method for identi-
fying the minimal set of predictive biomarkers.

However, we are also aware of several limitations.
Although there was a similar study design for recruitment, the
2 cohorts were heterogeneous for individual cancer categories.
This heterogeneity could be responsible for the observed dif-
ferences in the median stool miRNA levels and expression
differences between the 2 cohorts. Given the difference in the
clinical characteristics of CRC patients, the main driver of such
a difference may be the higher proportion of low-grade and
low-stage tumors in the CZ cohort. However, the fact that the
results are reproducible between cohorts further supports the
robustness of the signature identified in this study.

Despite the large number of analyzed samples, the var-
iegated spectrum of CRC, adenomas, and other precancerous
lesions needs to be more exhaustively represented and de-
serves further investigation. For example, we did not
investigate serrated lesions or deeply explore the alterations
in CRC stratified based on molecular or clinical data. In
addition, even though the observed DEmiRNAs were not
reported to be modulated by dietary habits,24 the lack of
dietary/lifestyle information of analyzed individuals may
represent a limitation of the study. Follow-up studies with
additional cohorts representing patients with different eth-
nicities, dietary patterns, and lifestyle habits are required,

596 Pardini et al Gastroenterology Vol. 165, Iss. 3

GICANCER



but this is beyond the scope of this study, which, to our
knowledge, represents the largest sequencing-based anal-
ysis of stool miRNAs so far.

In conclusion, this multicenter and international study
based on small RNA-seq allowed us to comprehensively
detect in stool several miRNAs differentially expressed in
CRC. Furthermore, the implemented ML approach identified a
minimal number of miRNAs whose combined profiles
showed a good discriminating power for the presence of a
tumor or AA, independent of age and sex. This may represent
a fecal signature for improving the effectiveness of current
noninvasive screening programs, potentially increasing
sensitivity and maintaining high specificity, and applicable on
a large scale, with a reasonable cost/time required.

In this respect, for FIT implementation, in the near future
miRNA profiles will be investigated in additional cohorts,
possibly from different countries, increasing the number/
types of precancer lesions and also including FIT-negative
samples, with the chance to explore the role of diet and
lifestyle habits on an adequate scale. Furthermore, the in-
clusion of FIT-negative samples will allow the possibility to
prospectively test miRNA profiles in subsequent rounds of
CRC screening, collecting multiple samples per individual. In
parallel, the analysis of the microbiome composition of stool/
leftover FIT samples will help deepen the research on gut-
host crosstalk with small noncoding RNAs. Finally, even if
small RNA-seq and RT-qPCR currently represent the most
commonly used approaches for miRNA analyses, we must
consider that more rapid, practical, but reliable approaches,
such as biosensors, may provide an alternative for testing the
miRNA signature in a large clinical setting.

Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/
j.gastro.2023.05.037.
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Supplementary Methods

Stool Study Cohorts
Italian cohort. Stool specimens as well as clinical and

demographic data were collected from 317 individuals
recruited in a hospital-based study at 1 hospital in Vercelli,
Italy (Table 1 and Figure 1A). Based on the results of a
completed colonoscopy examination with adequate bowel
preparation, participants were classified into (1) 89 CRC
patients (individuals with newly diagnosed sporadic CRC);
(2) 74 polyps patients, stratified as hyperplastic polyps (n¼
6), nAA (n ¼ 20), or AA (n ¼ 48); (3) 49 patients with GI
disease, such as IBD (including Crohn’s disease and inde-
terminate or ulcerative colitis) or diverticular disease; and
(4) 105 control individuals.

AAs were defined based on the presence of high-grade
dysplasia, villous component, or lesion length of >1 cm as
defined by Zarchy and Ershoff.1 Of this cohort, 93
stool samples (from 29 CRC patients, 27 polyps, 13 in-
dividuals with a GI disease, and 24 colonoscopy-negative
control individuals) were used and have been described
previously.2–4

Czech cohort. Stool specimens as well as clinical and
demographic data were collected from a cohort of 162
Czech individuals recruited in 2 hospitals in Prague and 1 in
Plzen, Czech Republic (Table 1 and Figure 1A). Based on
colonoscopy results, participants were divided into (1) 66
CRC patients; (2) 28 individuals with colorectal polyps,
grouped as hyperplastic polyps (n ¼ 9), nAA (n ¼ 13), and
AA (n ¼ 6); (3) 32 patients with other GI disorders; and (4)
36 colonoscopy-negative control individuals.

In both studies, colonoscopy was recommended for 2
main reasons: (1) because of the recommendation of the
family doctor for various reasons (age of the patient, com-
plaints in the gut, etc) or (2) because the patient had a
positive FIT result (ie, there was blood in the stool at the
time of the test, and therefore the individual was invited to
have a colonoscopy to further investigate the reason for
blood in stool). In any case, individuals with major GI dis-
eases other than cancer were considered apart from those
control individuals with a negative colonoscopy finding.

Validation cohort. Stool specimens from 141 CRC
patients recruited in the hospital in Brno, Czech Republic,5

and 80 stool samples of healthy volunteers contributing to
science6 were included as an independent validation cohort.
Stool specimens from 141 CRC patients were obtained at a
hospital in Brno, Czech Republic: these individuals were
previously described by Zwinsova et al5 and here are
sequenced for the first time for small RNA-seq.

Stool samples of healthy volunteers contributing to sci-
ence are a part (about 20%) of the cohort described and
sequenced for small RNA-seq by Tarallo et al6 and Franca-
villa et al.7 The healthy volunteers are derived from a
subgroup of healthy individuals (no cancer, no precancer
lesions) nested from the omnivorous group described by
Tarallo et al.6 and Francavilla et al.7 Only individuals with
age >30 years were considered for the analysis.

Fecal immunochemical test cohort. FIT leftover
samples collected from 185 participants with a positive
result from FIT analysis in the CRC screening for the general
population of Piedmont Region (Italy) were added to the
study. Based on the results of a completed colonoscopy
examination with adequate bowel preparation, the in-
dividuals were classified as control individuals (n ¼ 53) or
individuals with AA (n ¼ 80) or nAA (n ¼ 30) and with CRC
(n ¼ 22). Among the 185 participants, 57 also provided
stool samples before undergoing colonoscopy.

Colonoscopy was recommended because the patients
had abnormal or positive FIT results (ie, there was blood in
the stool at the time of the test), and therefore they were
invited to have a colonoscopy to further investigate the
reason for blood in stool.

Other Analyzed Biospecimens
For 132 patients (102 CRC patients and 30 patients with

colorectal adenoma) primary CRC/adenoma tissues paired
with adjacent colonic mucosa were collected in the same
hospital as IT cohort. Among these patients, 69 (51 CRC and
18 colorectal adenoma) donated their stool and plasma
samples and were included in the IT cohort.

Blood samples were collected from 210 participants of
the IT cohort, stratified as 52 patients with CRC, 19 with
AAs, 15 with nAAs, 6 with hyperplastic polyps, 34 with
other GI disorders, and 79 control individuals.

Sample Collection
Naturally evacuated fecal samples were obtained from

all participants previously instructed to self-collect the
specimen at home. For all cohorts, stool samples were
collected in nucleic acid collection and transport tubes with
RNA stabilizing solution (Norgen Biotek Corp) and returned
to the endoscopy unit. Stool aliquots (200 mL) were stored
at –80�C until RNA extraction.6,8 The only exception was
represented by the validation cohort of CRC patients from
Brno, for which stool samples were collected from un-
treated patients before the scheduled surgery with DNA-
free swabs (Deltalab). Patients performed the collection at
home before their hospitalization for the surgery and
brought the samples to the hospital, where they were
immediately frozen at –80�C until further processing.

For the FIT cohort, leftovers from FIT tubes (w1.2 mL)
used for automated tests (OC-sensor, Eiken Chemical Co)
for hemoglobin quantification were also collected and
stored at –80�C until use.

Plasma samples were obtained from 8 mL of blood
centrifuged for 10 minutes at 1000 revolutions/minute, and
aliquots were stored at –80�C until use. Plasma exosomes/
EVs were isolated from 200 mL of plasma using the ExoQuick
exosome precipitation solution (System Biosciences, Moun-
tain View), according to the manufacturer’s instructions.9,10

Briefly, plasma was mixed with 50.4 mL of ExoQuick solution
and refrigerated at 4�C overnight (at least 12 hours). The
mixture was then further centrifuged at 1500g for 30 mi-
nutes. The EV pellet was dissolved in 200 mL of nuclease-free
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water, and RNA was extracted immediately from the
solution.

Paired primary tumor/adenoma tissue and nonmalig-
nant adjacent mucosa were obtained from CRC and ade-
noma patients (at least 20 cm distant), collected during
surgical resection and immediately immersed in RNAlater
solution (Ambion). All tissues samples were stored at –80�C
until use.

Extraction of Total RNA
Total RNA was extracted from all stool samples using

the Stool Total RNA Purification Kit (Norgen Biotek Corp) as
previously described.8,10 Total RNA from plasma EVs was
extracted as described by Sabo et al9 and Ferrero et al.10 For
tissue samples, total RNA was isolated using QIAzol (Qia-
gen) after tissue homogenization performed with ULTRA-
TURRAX Homogenizer (IKA), followed by phenol/chloro-
form extraction according to the manufacturer’s standard
protocol.

Library Preparation for Small RNA Sequencing
Small RNA-seq libraries were prepared from RNA

extracted from tissues, stool, and plasma EVs as previously
described by Tarallo et al.6 Briefly, the NEBNext Multiplex
Small RNA Library Prep for Illumina (New England Biolabs,
Inc) kit was used to convert small RNA transcripts into
barcoded complementary DNA (cDNA) libraries. For each
library, 6mL of RNA (35ng for EV RNA and 250ng for tis-
sue/stool RNA) was processed as the starting material. Each
library was prepared with a unique indexed primer.
Multiplex adapter ligations, RT primer hybridization, RT
reaction, and PCR amplification were performed according
to the manufacturer’s protocol. After PCR amplification, the
cDNA constructs were purified with the QIAQuick PCR Pu-
rification Kit (Qiagen), following the modifications sug-
gested by the NEBNext Multiplex Small RNA Library Prep
for Illumina protocol. Final libraries were loaded on the
Bioanalyzer 2100 (Agilent Technologies) using the DNA
High Sensitivity Kit (Agilent Technologies) according to the
manufacturer’s protocol. Libraries were pooled together (in
24-plex or 30-plex) and further purified with a gel size
selection. A final Bioanalyzer 2100 run with the High
Sensitivity DNA Kit (Agilent Technologies) allowed us to
assess DNA library quality regarding size, purity, and con-
centration. The obtained libraries were subjected to the
Illumina sequencing pipeline on Illumina HiSeq4000 and
NextSeq500 sequencers (Illumina Inc).

Quantitative Real-Time Polymerase Chain
Reaction

Five miRNAs of the final signature (miR-607-5p, miR-
6777-5p, miR-4488, miR-149-3p, and miR-1246) were
validated with a different technique in 2 subsets of stool
RNA from the IT cohort (n ¼ 51), the CZ cohort (n ¼ 45),
and the FIT cohort (n 8) using the miRCURY LNA SYBR
Green PCR kit (Qiagen) according to the manufacturer’s
instructions for plasma/serum. RT was performed using the

miRCURY LNA RT kit (Qiagen) according to the manufac-
turer’s instructions with the addition of 1 spike-in (UniSp6)
to the RT reaction.

For qPCR, complement cDNA was diluted 1:30; 3 mL of
1:30 water-diluted cDNA products were mixed at 7 mL of
miRCURY SYBR Green Mastermix and 1 mL of specific
miRNA probe (Qiagen). All cDNA products were prepared in
triplicate PCR reactions following the manufacturer’s in-
structions. For quality control purposes, 1 RNA sample was
measured twice, and a sample containing nuclease-free
water and carrier RNA was profiled as the negative con-
trol. All the reactions were run on the ABI Prism 7900
Sequence Detection System (Applied Biosystems). A melt
curve analysis was performed for the amplification speci-
ficity of each individual target per sample.

GenEx software (Multi-D) was used for data pre-
processing, including interplate calibration, evaluation of
isolation and RT efficiency, setting specific cutoffs for
negative control miRNA cycle threshold (Ct) values, and
triplicate averaging. The analyses were performed by
calculating DCt values by global mean. The fold change was
calculated as log2 – DDCT between CRC and control sam-
ples. miRNAs with a Ct value of >38 were deemed to be not
detected. To avoid biased inference due to qPCR nondetects
(Ct value ¼ 40), a left-censoring approach was used. Ct
values of 40 were in fact substituted with the highest
observed Ct value for a given miRNA.11 Ct values were then
normalized by subtracting the Ct value of the selected
endogenous controls or the global mean Ct from each of the
5 miRNAs of interest. Differential miRNA expression was
determined by logistic regression adjusted for age and
smoking. The unadjusted P values of <.05 were considered
as statistically significant because these analyses were hy-
pothesis driven.

Bioinformatics and Statistical Analysis
Small RNA-seq pipeline analyses were performed using

a previously published Docker-embedded software to
guarantee the computational reproducibility of the anal-
ysis.8 Trimmed reads were mapped against an in-house
curated reference of human miRNAs based on miRbase
v22 (Supplementary Table 1A). The alignment was per-
formed using BWA algorithm v0.7.12.12 miRNA levels were
quantified using 2 methods called the “knowledge-based”
and “position-based” methods, as described by Tarallo
et al.8 The sequences of the mature miRNAs were compared
and, in the case of mature miRNAs characterized by iden-
tical sequences, the associated read counts were summed.
An miRNA was considered as detected if supported by at
least 20 normalized reads.

The age- and sex-adjusted differential expression anal-
ysis was performed using DESeq2 R package v1.22.213 us-
ing the likelihood ratio test method. For tissue samples, to
test the significance of miRNA differential expression levels
between CRC/adenoma tissue and matched adjacent
nonmalignant colonic mucosa, a paired DESeq2 analysis
was applied. An miRNA was considered differentially
expressed (DEmiRNA) if associated with an adjusted P value
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of <.05 and a median number of reads of >20 in at least 1
study group. In each analysis in which the IT and CZ cohorts
were analyzed together, the cohort variable was added to the
DESeq2 model to adjust for the cohort batch effect.

Statistical analysis between continuous variables was
performed using the Wilcoxon rank sum test or Kruskal-
Wallis test. Statistical analysis between categorical vari-
ables was performed using the chi-square test.

Functional enrichment analysis was performed with
RBiomirGS v0.2.1214 in default settings and considering the
validated miRNA-target interactions from miRTarBase and
miRecord. A term was considered enriched if associated
with an adjusted P < .05 and at least 2 target genes. The
analysis was performed on the Kyoto Encyclopedia of Genes
and Genomes (c2.cp.kegg.v7.5.1), Reactome (c2.cp.reacto-
me.v7.5.1), WikiPathways (c2.cp.wikipathways.v7.5.1),
Gene Ontology Biological Processes (c5.go.bp.v7.5.1), and
Hallmark gene set libraries (h.all.v7.5.1) from MSigDB
v7.5.1.15 The analysis input was the average log2 fold
change and combined adjusted P value computed by the
differential expression analysis between the CRC and con-
trol groups of the IT cohort and CZ cohort.

Analysis of the copy number variation data from the
COAD cohort of The Cancer Genome Atlas was performed
by retrieving the GISTIC score from CBioPortal v4.1.15
(https://www.cbioportal.org/) considering the dataset
named “Colorectal Adenocarcinoma (TCGA, PanCancer
Atlas).”

Functional analysis of signature miRNA target genes was
performed using Enrichr (version March 29th, 2021)16

considering the validated targets provided by miRTarBase.
A Gene Ontology Biological Process was considered
enriched if associated with a P < .001. Because miR-607-5p
was a novel miRNA identified in this study, its putative
targets were predicted using miRanda v3.3a.17 to scan the
human 30 untranslated region sequences from Ensembl
v109. Among the 3807 potential targets identified, the top
100 genes characterized by the highest binding score were
used for the analysis.

The correlation analysis between fecal miRNA levels and
microbial abundances was performed by reanalyzing the
small RNA-seq and shotgun metagenomic data from
Thomas et al.2 Preprocessing of metagenomic data was
performed following the procedures described by Thomas
et al2 and Wirbel et al.3 Specifically, raw reads quality
controlled, adapter removal, and removal of human and
PhiX reads were performed using the pipeline available at
https://github.com/SegataLab/preprocessing. Then, taxo-
nomic profiling was performed with MetaPhlAn3 in default
settings with mpa_v30_CHOCOPhlAn_201901 as the
markers database. Correlation analysis was performed us-
ing the Spearman method and graphically represented us-
ing the corrplot R package.

Explainable Machine Learning Approach
The 3-phase explainable ML approach to identify the

minimal miRNA predictive signature is shown in
Supplementary Figure 1. The 3 phases of the workflow
were data preparation, feature selection and classification.

The data preparation phase has been designed to make
the data usable to the ML approach and consists of (1)
dataset loading and encoding, (2) dataset splitting in
training and test sets, and finally (3) feature z-score
normalization. The input data consist of a list of N in-
dividuals associated with the pathologic category, charac-
terized by a set of covariates (eg, age and sex) and by a
count matrix of dysregulated miRNAs. Once loaded and
encoded, the dataset is represented by a matrix X paired
with a vector Y. Matrix X is composed of N � M real
numbers, where N is the number of individuals that are
described by M features, which are either miRNAs or
covariates. Vector Y is of length N as well and contains the
encoded pathologic category of each participant repre-
sented in X.

The dataset is divided into training and test sets (with a
given proportion of individuals, eg, 70% vs 30%). The
former set is used to train ML models, and the latter is used
only to evaluate the model performances. During the data-
set split, a stratification of the participants according to the
pathologic category and specific confounding covariates (eg,
sex, age, disease stage) is performed. This guarantees that
the proportion of pathologic categories of the whole dataset
is maintained in both the training and test sets.

Finally, a z-score normalization is applied. The mean and
standard deviation of all the features of the training set are
estimated and used to normalize both the training and the
test set.

The feature selection phase identifies the most relevant
and nonredundant features in the distinction of the partic-
ipants between groups of interest. To identify the k-best
features from a given dataset, multiple selection criteria are
available.18 Specifically, filter methods assess feature rele-
vance by computing a score between each feature and the
target variable, whereas embedded strategies are based on
learning algorithms that have built-in feature selection
mechanisms. Hereby, the analysis of variance F test and
mutual information were adopted as filter methods,
whereas the embedded methods were based on logistic
regression and random forest.

A repeated stratified k-fold cross-validation setting is
adopted to apply the selection criteria on different
subsamples of the training set to avoid—or at least
reduce—data overfitting.

For this study, the whole procedure was repeated 30
times for any k from 1 to 25 to test feature sets composed of
an increased number of DEmiRNAs. Each feature set was
evaluated by a classification procedure, described later in
this section, to identify its average performance.

The final selection was performed by means of a utility
function, peak of the AUC(k), that guarantees the best bal-
ance between the AUC and the number of features selec-
ted—namely, to select the minimal number of miRNAs
providing the best performance—that ultimately consti-
tutes the miRNA predictive signature.

The classification phase is used to predict the qualitative
response for a given individual to a category, according to
the miRNA signature previously identified. Hereby, 3 clas-
sifiers were selected and applied independently: random
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forest,19 logistic regression,20 and gradient boosting.21 The
classifiers were applied with default values for the hyper-
parameters. Specifically, for the random forest classifier, the
parameters were num_trees ¼ 100 and criterion ¼ entropy,
penalty ¼ l2 was selected for the logistic regression, and
num_trees ¼ 100 was set for the gradient boosting classi-
fier. The set of patients to be classified was partitioned using
a stratified 10-fold cross validation. For each classifier, 100
independent runs were performed. The performance met-
rics for each classifier—AUC, accuracy, precision, and
recall—were computed as average metrics among all runs
performed.

This approach was implemented in Python 3 using the
following libraries: scikit-learn,18 pandas, and matplotlib
library22 for ML algorithms, dataset representation, and
data visualization, respectively.

Overview of the MicroRNA Content in the
Analyzed Sample Types

Fecal samples from the Italian cohort and Czech
cohort. From the analysis of small RNA-seq experiments,
an average of 86.50% ± 10.03% of reads passed the pre-
processing phase, and an average of 1.32% ± 2.22% of
reads were aligned to human miRNAs. The observed per-
centage of aligned reads is in line with previous small RNA-
seq analyses of fecal miRNA content.6,8 Despite all miRNA
annotations that were used for the differential expression
analysis, a threshold of 20 normalized reads was used to
define an miRNA as detected in a specific sample. Using this
threshold, on average, 421.97 ± 222.07 (range, 86–1516)
miRNAs were detected in each sample.

Fecal samples from the validation cohort. From
the analysis of small RNA-seq experiments on the validation
cohort, an average of 95.58% ± 2.88% of reads passed the
preprocessing phase, and an average of 1.14% ± 1.34% of
reads were aligned to human miRNAs. An average of 440.73
± 217.94 (range, 75–1713) fecal miRNAs were detected in
these samples.

Plasma extracellular vesicle samples. From the
small RNA-seq experiments on plasma EV samples, an
average of 91.41% ± 9.85% of sequencing reads passed the
preprocessing phase and, on average, 20.12% ± 11.56%
were assigned to human miRNA annotations. The average
number of miRNAs detected in these samples was 309.69 ±
90.40 (range, 252–1213).

Tissue samples. In tissue samples, an average of
81.75% ± 13.01% sequencing reads were obtained from the
preprocessing step, and among them, 68.56% ± 18.01%
aligned on human miRNA annotations. On average, 581.84 ±
173.34 (range, 403–1997) miRNAs were detected in each
sample.

Fecal immunochemical test leftover sam-
ples. From the small RNA-seq experiments on FIT leftover
samples, an average of 90.30% ± 6.04% of sequencing
reads passed the preprocessing phase, and, on average,
1.18% ± 0.49% were assigned to human miRNA annota-
tions. The average number of miRNAs detected in these
samples was 633.81 ± 41.07 (range, 541–744).
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Supplementary Figure 1. Schematic representation of the 3-phase explainable ML approach. An miRNA count matrix and the
clinical/demographic data are the input data, and the best performing miRNA signature is the output.
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An invasion front gene
expression signature for
higher-risk patient selection
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Stage II colon cancer (CC) encompasses a heterogeneous group of patients with

diverse survival experiences: 87% to 58% 5-year relative survival rates for stages IIA

and IIC, respectively. While stage IIA patients are usually spared the adjuvant

chemotherapy, some of them relapse and may benefit from it; thus, their timely

identification is crucial. Current gene expression signatures did not specifically

target this group nor did they find their place in clinical practice. Since processes

at invasion front have also been linked to tumor progression, we hypothesize that

aside from bulk tumor features, focusing on the invasion front may provide

additional clues for this stratification. A retrospective matched case-control

collection of 39 stage IIA microsatellite-stable (MSS) untreated CCs was

analyzed to identify prognostic gene expression-based signatures. The endpoint

was defined as relapse within 5 years vs. no relapse for at least 6 years. From the

same tumors, three different classifiers (bulk tumor, invasion front, and

constrained baseline on bulk tumor) were developed and their performance

estimated. The baseline classifier, while the weakest, was validated in two

independent data sets. The best performing signature was based on invasion

front profiles [area under the receiver operating curve (AUC) = 0.931 (0.815–1.0)]

and contained genes associated with KRAS pathway activation, apical junction

complex, and hememetabolism. Its combinationwith bulk tumor classifier further

improved the accuracy of the predictions.
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1 Introduction

Despite important progress made in early detection and

treatment over the last decades, colon cancer (CC) is still one of

the major causes of death among all solid tumor cancers accounting

for more than 600,000 deaths yearly (1). The TNM (tumor–node–

metastasis) staging remains the cornerstone of patient management

and outcome prediction, even though several other predictors have

been proposed, including commercially available gene signatures,

such as Oncotype Dx Colon (2), ColoPrint (3), and ColDX (4), or

immune system scoring, such as Immunoscore Colon (5). Globally,

stage II CC, accounting for 35%–40% of newly diagnosed cases

(SEER Cancer Stat Facts: Colorectal Cancer; https://seer.cancer.gov/

statfacts/html/colorect.html), has a good prognosis, with 5-year

relative survival rates of 58%–87% (6). However, compared to

other stages, it is more heterogeneous with low, intermediate, and

high risk for metastatic dissemination subgroups, as recognized in

the revised categorization (6). Microsatellite instability (MSI) or

deficiency in DNAmismatch repair (dMMR) are characteristics of a

low-risk group, with more than 90% 5-year overall survival (7). The

high-risk (pT4bN0, stage IIC) or intermediate-risk microsatellite-

stable (pT4aN0/MSS, stage IIB/MSS) patients are generally treated

with adjuvant chemotherapy after curative surgical resection (8).

The benefits from adjuvant therapy are not clear in these patients

probably because direct evidence from clinical trials is still

insufficient (9). However, the low-risk patients (pT3N0, stage IIA)

are usually spared the adjuvant treatment, but still, approximately

13% of them will die within 5 years (6). Therefore, it is of utmost

importance to develop better prognostic tools, eventually integrated

with the TNM staging, targeting the earlier stage where the benefit

from adjuvant treatment may potentially be significant.

All the transcriptomic signatures proposed so far considered

whole-tumor sampling for RNA extraction. Still, mounting

evidence suggests that processes taking place at the invasion front

would be equally prognostic, if not even more. The activation of

epithelial-to-mesenchymal transition (EMT) at aberrant expression

of nuclear b-catenin as invasion front markers of tumor progression

has been recognized previously (10, 11). Also, the infiltrative

configuration of the invasion front and the presence of tumor

budding have been recognized as additional prognostic

parameters (12, 13). It has been proposed that the balance of pro-

and anti-tumor factors at the invasion front may be decisive for

tumor progression (14) and overexpression of ZEB2 (an epithelial-

to-mesenchymal transition-associated gene) as the invasion front

has been identified as an independent prognostic factor in a general

CC patient population (15). Additionally, the immune reaction

scored along the invasion front could be used to stratify the CC

patients into three distinct risk groups (5). In addition, the

histopathologic characteristics of the reactive stroma at the

invasion front have been shown to bear prognostic potential (16).

Thus, it is of interest whether transcriptomics of the invasion front

may bring novel discriminative markers that could improve

patient stratification.

The goal of the present pilot study is twofold: to assess the

prognostic utility of invasion front gene expression and develop a

predictor of early relapse within the low-risk stage IIA/MSS colon

cancers. From the same group of patients, we develop gene

signatures from both bulk tumor (traditional tumor sampling)

and tumor invasion front predicting the risk of relapse, and we

compare their performance. As the study has a limited sample size,

we opted for increasing the contrasts between the groups by

selecting patients with relapse within 5 years vs. patients with no

relapse for at least 6 years.

2 Materials and methods

2.1 Samples

This retrospective matched case-control study used tumor

samples from patients with CC who underwent surgery at

Masaryk Memorial Cancer Institute, Brno, Czech Republic, in the

years 1998–2018. Inclusion criteria for this study were as follows:

age >18 years, clinically and histopathologically confirmed

diagnosis of primary CC, stage IIA (pathology T-stage 3, N0),

microsatellite-stable primary tumors, and no adjuvant

chemotherapy. Standard clinical and histopathological variables

(TNM, grade, etc.) were retrieved for all patients. The “early

relapse” group was defined as those patients experiencing

a relapse within 5 years from the date of diagnosis, while the “no

relapse” group consisted of patients who did not experience a

relapse for at least 6 years. The relapse was defined as any disease

recurrence or disease-related death except for any second primary

cancers. To the extent possible, the two groups were further

matched in terms of gender, age, and grade distribution. Failure

of laboratory analyses (problematic sample preparation, low quality

and/or quantity of isolated RNA, and low quality of expression

data) was a reason for excluding these samples from the study.

From each tumor block, two different regions were sampled in

adjacent sections: one representing the bulk tumor and one only the

invasion front (Supplementary Figure 1). Each sample was

profiled independently.

2.2 Expression profiling

The RNA extraction was performed from formalin-fixed

paraffin-embedded histopathological slides using AllPrep DNA/

RNA Kits (Qiagen, Hilden, Germany) according to manufacturer’s

instructions. The extracted RNA served as input for a GeneChip WT

Pico Reagent Kit (Thermo Fisher Scientific, Waltham, MA, USA) for

analysis of the transcriptome on whole-transcriptome arrays. Total

RNA from HeLa cells provided in the kit was used as a positive

control together with high-quality low-concentration RNA isolated

from a serum as a low-input control. Clariom D Array for human

samples (Thermo Fisher Scientific, Waltham,MA, USA) was used for

target hybridization to capture both coding and multiple forms of

non-coding RNA. Finally, the arrays were scanned using Affymetrix

GeneChip Scanner 3000 7 G (Thermo Fisher Scientific, Waltham,

MA, USA). All the samples complied with the quality control
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requirements, and none of the samples were excluded from

the analysis.

2.3 Bioinformatics analyses

All resulting CEL files were processed using Bioconductor (17)

(v.3.15) packages oligo (18) (v.1.60), affycoretools (v1.68), and, for

Clariom D chip annotation, pd.clariom.d.human (v.3.14). For the

quality control, we used AffyPLM (v.147) and imposed a maximal

median Normalized Unscaled Standard Error (NUSE) of 1.12. All

chips passing the quality control steps were normalized together

using RMA (oligo) with core-probeset summarization. Further, the

array data were summarized at gene level by selecting the most

variable probeset per unique EntrezID, and entries corresponding

to missing HUGO symbols, speculative transcripts, microRNA, and

short non-coding RNA were discarded resulting in a reduced list of

28,663 unique genes.

For the identification of differentially expressed genes, we used

linear models (limma package v.3.52.2) with a cut-off for false

discovery rate (FDR) of 0.1. The pathways were scored in terms

of enrichment in specific signatures using gene set enrichment

analysis (GSEA) (19) as implemented in fgsea package (v.1.22.0).

MSigDB (hallmark gene sets collection “H” v.7.4.1) (20) was used as

the main source for gene sets and pathways. The gene expression

classifiers were based on ElasticNet model as implemented in the R

package caret (v.6.0). All data analyses were performed in R 4.3 (R

Development Core Team, 2022).

The development of the predictive models required the

following two major steps: feature generation and classifier

training. These two steps were embedded in an external leave-

one-out loop for estimating the performance. The main

performance parameter of the model was the area under the

receiver operating curve (AUC) with sensitivity and specificity

also estimated and reported. For the feature generation step, we

first selected the most predictive (in terms of AUC) and stable genes

and grouped them into modules according to gene signatures from

MSigDB (H-section). For estimating the stability of each gene, we

generated b = 50 bootstraps of the current training set (at each

iteration of the leave-one-out procedure) and recorded the AUC

and direction of the association of the gene with the outcome. We

defined the direction of a gene g as dg = +1 if the average expression

of the gene in the “early relapse” group was higher than in the “no

relapse” group; otherwise, dg = -1. The AUC for a gene was the

average AUC from bootstrapping procedure, and the gene was

considered stable if the direction of the association with the

outcome was constant (over the b bootstraps). The gene modules

were generated from MSigDB gene signatures by selecting the top

five (in terms of AUC) subsets of ng genes from each signature. The

value of a module was defined as ng
-1 S dgx

g, where xg is the

expression of gene g in the module. By extension, the names of the

gene modules were taken from the names of the corresponding

signatures even though they no longer represented their de-/

activation status. Then, an ElasticNet model was fitted on the top

nf gene modules. To minimize the chances of overfitting, the tested

domain for ng and nf was limited to values 3, 4, and 5. No constraint

was imposed on the number of times a gene could be selected in

different modules (the signatures from MSigDB overlapped) nor on

selecting only one module per gene signature. While this choice

introduces potential redundancy in the model, it also improves

its robustness.

To validate the modeling approach, we used two independent

data sets (21) compatible with our experimental design (with the

exception of unknown MSI status) publicly available from

ArrayExpress under accession numbers E-MTAB-863 and E-

MTAB-864, respectively. We further limited the set of genes to

the intersection of the two platforms (Clariom D for our study and

Affymetrix customized Almac array for the independent sets)

resulting in 13,274 common symbols. Also, in the validation sets

(denoted KEN1 and KEN2), we considered only the patients in our

target group (pT3/pN0/pM0); the rest of the expression profiles

were used for mitigating the differences between the two microarray

platforms. The model built (and validated) on the restricted set of

genes was considered as a baseline model. Additionally, as the two

external data sets contained survival data as well, we estimated the

probability of survival in the two predicted groups using the

Kaplan–Meier estimator and tested for significant difference

between the curves using the log-rank test.

The main analysis considered the full set of genes available on

our platform (Clariom D) and concerned the two sampling regions

as follows: bulk tumor and invasion front, respectively.

3 Results

In total, n = 39 patients were identified fitting the selection

criteria [19 cases of early relapse (12 men) vs. 20 cases of no relapse

(11 men)] resulting in 39 bulk tumor profiles. For the same patients,

n = 35 [17 early relapse (11 men) and 18 no relapse (10 men)] good

quality invasion front profiles were also generated. No statistically

significant differences were found between groups regarding age,

tumor location, or grade (Table 1).

3.1 Differentially expressed genes
and pathways

The differential expression analyses of both bulk tumor and

invasion front samples revealed no genes with significantly different

expressions between early and no relapse groups after adjusting for

multiple testing. Nevertheless, 204 and 333 genes had a significant

(un-adjusted) p-value (≤ 0.01) within the bulk tumor and invasion

front samples, respectively. Using the t-statistics estimated by

limma as input for ordering the whole set of genes for GSEA, we

identified a number of pathways/gene sets differentially activated

between the early relapse and no relapse groups (Figure 1). The full

list of significant (un-adjusted p-value) genes (p-value ≤ 0.01) is

given in Supplementary Table 1 and the GSEA results in

Supplementary Table 2.
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3.2 Early relapse predictors

To validate the approach, we developed a baseline predictor of

early relapse cases using a restricted set of genes common to the two

platforms (Clariom D and Almac) and based on bulk tumor profiles.

The optimal model used nf = 5 gene modules each with ng = 4 genes

(see Table 2). Its estimated leave-one-out performance was AUC0 =

0.795(95%CI = 0.625 – 0.964) (Figure 2A). The binary classification

performance (for the default cut-off of 0.5) was sensitivity Se = 0.737

(95%CI = 0.488 – 0.908) and specificity Sp = 0.8(95%CI = 0563 –

0.943). At the same time, the observed performance on the

validation sets was AUCKEN1 = 0.731(95%CI = 0.636 – 0.827) and

AUCKEN2 = 0.768(95%CI = 0.612 – 0.874) being superior to the one

reported elsewhere (21) (Supplementary Figure 2). The Kaplan–

Meier curves for predicted groups (“no relapse” and “early relapse”)

were significantly different (p < 0.001) (Supplementary Figure 3).

For the genes in the modules, a positive sign (explicit or

implicit) indicates its higher expression in the “early relapse”

group, while the negative sign indicates the reverse situation.

With the modeling approach validated, we studied the predictive

power of the profiles derived from bulk tumor and invasion front

regions. First, we compared the univariate (per-gene) AUCs for bulk

and invasion front profiles (Figure 2B, Supplementary Table 3)

estimated using all samples. It was apparent that the invasion front

expression profiles were more predictive with the top ranking genes

having consistently higher univariate AUC (2%–5%). Also, there

were almost twice as many genes from the invasion front with AUC >

0.7 than from bulk tumor profiles (Supplementary Table 3).

The predictors built from the bulk and invasion front profiles

confirmed this tendency (Figure 2A): the leave-one-out estimated

performance for invasion front was AUCi = 0.931(95%CI = 0.815 –

1.0)(Se = 0.882,Sp = 0.833), superior to the bulk tumor performance:

AUCb = 0.887(95%CI = 0.750 – 1.0)(Se = 0.895,Sp = 0.75). The two

models are given in Table 2 and further gene annotations in

Supplementary Table 4.

TABLE 1 Basic patient population demographics for the training set.

Early
relapse
(within
5 years)

No relapse
(for at least
6 years)

p-
Value

Test

N 19 20

Age
[mean (SD)]

69.5 (9.22) 68.9 (9.56) 0.849 Student’s
t-test

Gender

Female
Men

7
12

9
11

0.747 Fisher’s
exact test

Grade

G2
G3

18
1

20
0

0.487 Fisher’s
exact test

Tumor site

Right
(including
transverse

colon)
Left

14
5

12
8

0.501 Fisher’s
exact test

All patients were stage II/A, microsatellite stable.

A B

FIGURE 1

Differentially activated hallmark pathways. (A) Hallmark pathways and top differentially expressed genes from bulk tumor profiles. (B) Hallmark
pathways and top differentially expressed genes from invasion front profiles. In both panels, NES indicates the normalized enrichment scores. The
suffix “_up” or “_dn” indicates whether higher NES values correspond to set of gene sets that were activated (“_up”) or inhibited (“_dn”:
down), respectively.
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3.3 Combining predictors

We also compared the scores (posterior probabilities from

ElasticNet models) produced by the two models (Figure 2C). The

correlations (Pearson correlation: 0.564, Spearman correlation:

0.582) between the scores were modest, as was Cohen’s kappa

coefficient (k = 0.484 between the class assignments based on

these scores). This indicated a certain degree of complementarity

between the two models, and we speculatively created an average

score (from leave-one-out scores of matched tumor bulk and

invasion front samples) and used it for predicting the groups. The

new score indeed improved on all previous predictions—AUC =

0.977(95%CI = 0.907 – 1.0),Se = 0.941,Sp = 0.889).

4 Discussion

The intermediate-risk group of patients with stage II colon

cancer is heterogeneous in terms of survival experience: while most

of the patients fare well without any adjuvant chemotherapy, others

relapse much sooner. Reliably identifying the patients at risk for

early relapse is, therefore, fundamental.

Our pilot study addressed two problems: First, developing a

gene-based predictor for the stage IIA colon cancer patients who,

despite being considered as low risk of relapse by current guidelines,

are relapsing within 5 years. The second problem addressed aimed

at investigating whether the invasion front is more predictive for the

early relapse. Benefitting from a matched data set on which both

bulk tumor and invasion front were profiled, we developed two

predictive models. In our data, the invasion front model proved to

be significantly superior to the bulk tumor model. This suggests that

the dynamic changes happening on the contact border between the

tumor and the normal tissue of the host may bear more information

about the invasiveness potential of the tumor.

The targeted patient population appears to be rather

homogeneous from the perspective of transcriptomics, with no

gene significantly differentially expressed between “no relapse” and

“early relapse” groups, after adjustment for multiple hypotheses

testing. Nevertheless, several genes reached statistical significance

when considered individually with more genes in the case of invasion

front samples. Using the results from the differential expression

analysis as input for gene set enrichment analyses, several

significantly deregulated pathways/gene sets were identified. Some

of them were common between bulk tumor and invasion front

samples, most notably the epithelial-to-mesenchymal transition

pathway, which was strongly up regulated in early relapse cases.

Interestingly, the KRAS activation appeared in contrasting instances

between the following two types of samples: in bulk tumors, the

KRAS-down gene set was activated in the “early relapse” group, while

in invasion front samples, the KRAS-up gene set was activated in the

same group of patients, indicating a differential activation of KRAS

between bulk tumor and invasion front regions within early CC.

The first predictor for early relapse established a baseline model

and performance and validated the modeling approach. However, it

was limited in the number of genes covered, as the two independent

validation sets originated from an older microarray platform.

Nevertheless, we were able to construct and validate a relatively

strong classifier from bulk tumor profiles. The validation sets (21)

were not selected for MSS, as this was not reported, but the baseline

model performed close to the estimated performance. While the

baseline classifier relied on five gene modules, the features selected

by the algorithm referred to only two of the following MSigDB’s

pathways: interferon-gamma (INF-g) and tumor necrosis factor-

alpha (TNF-a) via nuclear factor-kb, related to antitumor

immunity and inflammatory processes, respectively. More

interestingly, one gene—IRF1 (interferon regulatory factor 1)—

was common to both pathways (and to both bulk tumor models)

and selected in four out of five modules being downregulated in the

early relapse group. Upregulation of this gene was shown to be

related to better survival and tumor radiosensitivity (22). We also

note that the model could be further simplified to a model with only

two modules (INF-g and TNF-a) each of five genes; however, this

combination was not foreseen when training the models (we

imposed nf = 3,4,V 5).

The same modeling approach was applied on tumor bulk and

invasion front profiles considering all the genes present on our

platform (still limited to the hallmark pathways of MSigDB). This

led to the development of two models of which the invasion front

TABLE 2 Predictive models and their performance.

Model Modules and coefficients Module
coefficient

Genes in modules Leave-one-out performance
estimates (with 95% confi-
dence intervals)

Baseline
model

INTERFERON_GAMMA_RESPONSE_up1
INTERFERON_GAMMA_RESPONSE_up2
INTERFERON_GAMMA_RESPONSE_up3
TNFA_SIGNALING_VIA_NFKB_up1
TNFA_SIGNALING_VIA_NFKB_up2

1.0545
−0.7575
2.0305
1.8225

−0.9185

LATS2 - IRF1 - TRIM14 - APOL6
LATS2 - CXCL9 - TRIM14 - APOL6
LATS2 - IRF1 - TRIM14 - CXCL9
DUSP1 + LAMB3 - IRF1 - SLC2A6
DUSP1 + JUN - IRF1 - SLC2A6

AUC = 0.795 (0.625–0.964)
Se = 0.737 (0.488–0.908)
Sp = 0.8 (0.563–0.943)

Bulk
tumor
model

INFLAMMATORY_RESPONSE_up
IL6_JAK_STAT3_SIGNALING_up
APICAL_JUNCTION_up

1.1161
−0.1483
0.6747

EBI3 + KCNMB3 + TLR2 - IRF1 - TACR3
EBI3 + HAX1 + TLR2 - IRF1 - CXCL9
CLDN4 + LAYN + ITGA9 + NRAP
+ CADM3

AUC = 0.887 (0.75–1.0)
Se = 0.895 (0.669–0.987)
Sp = 0.75 (0.509–0.913)

Invasion
front
model

APICAL_JUNCTION_up
KRAS_SIGNALING_up
HEME_METABOLISM_up

0.1652
0.1527
0.0915

VCAN + CLDN19 + PTEN + CDH1
GABRA3 + APOD + JUP - TMEM100
EZH1 + CCDC28A + FBXO9 + SLC6A8

AUC = 0.931 (0.815–1.0)
Se = 0.882 (0.636–0.985)
Sp = 0.833 (0.586–0.964)
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signature had the best performance while both being superior to the

baseline model. As the models were derived from tumor samples

originating from the same patients, comparing the two allowed us to

gain more insights into the predictive power of the invasion front. We

first investigated the predictive utility (in terms of AUC) of each gene

and found more genes from the invasion front having higher AUCs

than from bulk tumors (see also Supplementary Table 3). While these

results hinted toward more prognostic value of the invasion front

signatures, it was the multivariable models (ElasticNets) that showed

this being true in practice. Both models comprised of three gene

modules with apical junction being a common term. However, the

genes selected in the two “apical junction” modules were different

with those from the invasion front pointing also toward EMT

(VCAN) and estrogen receptor (CDH1). Also, we note the KRAS-

related module present in the invasion front signature, which,

corroborated with the results of GSEA (Figure 1; Supplementary

Table 2), points toward a stronger KRAS pathway activation in early

relapse patients. While specific mutations of theKRAS oncogene were

shown to be predictive for overall survival in some studies (23, 24),

they appeared not to be predictive for relapse-free survival (25). A

more detailed annotation of all genes, with further references, is given

in Supplementary Table 4. We also noted that the proposed marker

gene for invasion front (15), ZEB2, was prognostic in our data as well,

but with lower performance [AUCZEB2 = 0.716 (0.521–0.910);

Supplementary Table 3].

Our pilot study has some limitations as well: the invasion front

signature could not be validated on external independent data

because no similar data collections exist. We make our data

publicly available to begin filling this gap. Second, the sample size

did not allow for more analyses. For example, the observation that

combining invasion front and bulk tumor signatures into a stronger

predictor was made post hoc, and it would require another data set

for its statistical assessment.

Another aspect pertains to the definition/delineation of the

invasion front. We expect a relatively significant inter-observer

variability. Thus, for the future results to be validated independently,

a consensus must be reached between pathologists to stabilize the

sampling regions.

In conclusion, our study proposes a novel invasion front-

derived gene signature for predicting high-risk patients within the

stage IIA colon cancer group. Its combination with bulk tumor

signature further improved the prediction suggesting that a

combined, dual sampling of core and border of the tumor may

lead to a practical and precise predictor.
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A B

C

FIGURE 2

Prediction of early relapse. (A) Receiver operating characteristics (ROC) curves for the three models (baseline, bulk tumor, and invasion front) and the
corresponding AUCs. (B) Univariate AUC, based on all samples, for top k = 200 genes from bulk tumor and invasion front expression profiles. The
top genes (AUC > 0.775) from MSigDB hallmark signatures are marked. (C) Scatter plots of scores from bulk tumor and invasion front (35 samples)
and their marginal distributions. The points are colored according to their true category, and the quadrants marked (light yellow background)
indicate regions of agreement for the two classifiers.
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